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Application of machine learning algorithms  

for forecasting labour demand in the metallurgical industry  

of the east Kazakhstan region 

Abstract 

The study focuses on the development and evaluation of predictive models for forecasting labour demand 

in the metallurgical industry of the East Kazakhstan Region, with particular emphasis on the impact of 

production volume and labour productivity. The methodological framework combines classical 

econometric approaches with modern machine learning techniques, which makes it possible to capture 

nonlinear dependencies and more accurately assess labour market dynamics. The research is based on 

regional statistical data for the period 2015–2023. Several modeling approaches were tested, including 

linear regression, a parametric specification, and a hybrid machine learning model that integrates decision 

trees with local linear regression. Model performance was validated using the Mean Absolute Error (MAE), 

followed by forecasting labour demand for 2024–2028. Results demonstrate that the hybrid model 

outperforms the alternatives by achieving the lowest prediction error and producing the most plausible 

projection of moderate employment growth. The parametric model, although less precise, offers a high 

level of interpretability and is well suited for strategic analysis, while the linear regression model has 

limited effectiveness under nonlinear conditions. The practical value of the research lies in the possibility 

of embedding the developed models into decision support systems for government bodies and industrial 

enterprises, enabling early assessment of the impact of technological changes and production dynamics on 

employment. The outcomes may contribute to shaping balanced human resource policies, aligning 

educational programs with labour market needs, and conducting scenario analyses. Furthermore, the 

findings establish a foundation for extending the methodology to other industries and incorporating 

additional variables related to digitalization and innovation activity. 

1. INTRODUCTION 

Workforce assessment and forecasting are essential components of regional economic planning. They allow 

policymakers to assess whether existing and emerging economic structures can adequately supply strategically 

important industries with skilled labour. This is particularly relevant for the metallurgical sector - the 

"locomotive industry" of the East Kazakhstan region - which exerts a strong multiplier effect on the national 

economy. 

From an economic point of view, the dynamics of employment in any industry is primarily determined by 

two fundamental factors: production output and labour productivity. Ceteris paribus, increases in output 

expand the demand for labour, while productivity gains reduce it by allowing more output to be produced with 

fewer workers. Employment fluctuations thus reflect the interplay between the scale effect of output expansion 

and the efficiency effect of productivity growth. 

Recent research confirms the dual nature of this relationship. Numerous studies show that innovation affects 

employment indirectly through changes in output and productivity per worker (Dosi et al., 2019; Woltjer et 

al., 2019). Panel analyses for OECD countries further show that labour productivity affects employment levels, 
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although its effect cannot be fully interpreted without controlling for output (Cruz, 2023). The productivity-

mediated effects of digitization and the adoption of "smart manufacturing" technologies are discussed by Zhu 

et al. (2024) and Ballestar et al. (2021), who show that technological transitions reshape labour markets by 

changing both employment levels and occupational structures. Although many studies do not explicitly model 

employment as a dependent variable, their methodological frameworks can be adapted for production-based 

employment forecasting (Mahamid, 2020; Potapov, 2020). 

In recent years, the use of machine learning (ML) in macroeconomic and sectoral forecasting has grown 

rapidly. Neural network architectures (RNN, LSTM, GRU, Transformer), ensemble models, and regularized 

regressions have achieved high forecasting accuracy for a variety of economic indicators (Ebrahimi et al., 

2021; Magazzino et al., 2025; Mutascu & Hegerty, 2023; Uppal et al., 2024; Y. Zhang et al., 2024). 

Comparative studies suggest that ML algorithms often outperform traditional econometric approaches (EFSD, 

2023). For example, Falkenberg and Spinler (2022) demonstrated the effectiveness of gradient boosting in 

predicting labour productivity based on operational and behavioral data; Golabchi and Hammad (2024) 

explored ML applications in construction labour estimation; and Alzeraif et al. (2023) used ML to predict 

productivity in the energy industry. 

The integration of ML into decision support systems (DSS) enables the modeling of complex, nonlinear, 

and dynamic relationships, which is particularly valuable under conditions of uncertainty. Such systems have 

been successfully applied to optimize human resource management (Bali et al., 2023; Orlova, 2023; Bril et al., 

2020), forecast productivity in industry and construction (Hatami et al., 2024; Elshaboury, 2022; Güvel, 2025), 

and assess environmental and climate impacts on employment (J. Zhang et al., 2024; Li et al., 2020). 

Authorities are increasingly relying on parametric and hybrid models to forecast socioeconomic indicators 

such as GDP and employment using labour, investment, and technology variables (Ramezanian & Hajipour, 

2020; Popescu et al., 2021). 

Classical parametric models-including linear regression, Cobb-Douglas production functions, and time 

series models-provide transparency and interpretability when relationships remain stable (Jacobsen et al., 

2024). However, in complex and evolving environments, hybrid approaches that integrate ML algorithms, 

fuzzy logic, system dynamics, and optimization techniques (e.g., particle swarm optimization) often provide 

superior performance (Golabchi & Hammad, 2024; Hatami et al., 2024). 

Despite the extensive literature, few studies have jointly used production output and labour productivity in 

ML-based frameworks for direct employment forecasting. These factors are typically treated as auxiliary or 

indirect variables, leaving a gap for the development of integrated models that explicitly capture their 

combined influence on employment dynamics. 

The objective of this study is to develop an economically sound and empirically validated model of labour 

demand in the metallurgical industry of the East Kazakhstan region by combining econometric and ML 

methods. To achieve this goal, the study 

- Examines the stability of the relationships among employment, output, and productivity; 

- Identifies the optimal model form that balances statistical validity and interpretability; 

- evaluates the predictive accuracy of classical and ML methods; and 

- produces a labour demand forecast for the period 2025-2028. 

Thus, this work aims to construct a model that reproduces historical employment dynamics while serving 

as a practical tool for labour policy planning. While previous studies have examined output and productivity 

as indirect determinants of employment, the simultaneous integration of both variables within ML architectures 

for direct labour demand forecasting remains underexplored-especially in regional industrial contexts. The 

proposed hybrid econometric ML framework addresses this gap by explicitly incorporating output (V) and 

labour productivity (P) as explanatory variables, thereby improving both the predictive accuracy and economic 

interpretability of employment forecasts. 

2. METHODOLOGY 

2.1. Employment forecast: Methods and data  

In order to build a model for forecasting labour demand in the metallurgical industry in the East Kazakhstan 

region, data on the number of employees and key production indicators for the period 2015-2023 were used. The 

following variables were chosen as input variables 
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1. Production volume or production output (Vbase); 

2. Labour productivity (Pbase):  

𝑃 =
𝑉

𝑤𝑜𝑟𝑘𝑒𝑟𝑠
                                                                              (1) 

where:  𝑤𝑜𝑟𝑘𝑒𝑟𝑠 – number of employees. 

These variables reflect two key mechanisms of employment formation: 

- Scale effect of production (an increase in output requires more labour resources); 

- Productivity effect (an increase in output per worker reduces the demand for labour resources). 

While output and productivity are the core specification due to their theoretical relevance and consistent 

data availability, several additional factors influence labour dynamics. Innovation activity (e.g. R&D intensity, 

technology adoption) can have both labour-displacing and labour-enhancing effects. Indicators of digitization, 

such as ICT capital investment or digital skills of the labour force, capture the transition to Industry 4.0, which 

is reshaping occupational structures. Finally, macroeconomic shocks, such as commodity price volatility and 

exchange rate fluctuations, affect production decisions and thus employment through demand-side channels. 

To forecast labour demand, both classical econometric approaches and machine learning (ML) methods 

were used to identify non-linear dependencies. The study uses modern predictive analytics techniques, each 

with its own characteristics and level of predictive accuracy: 

1. Decision Tree – a segmented model that divides the data into a finite number of clusters (leaves), within 

each of which the average employment value is predicted. Advantages are simplicity and 

interpretability. Limitation is produces a “flat” forecast without accounting for temporal trends. 

2. Random Forest – an ensemble of decision trees in which the forecast is formed as the average of 

predictions from all trees. It is resistant to overfitting but tends to smooth out the dynamics of labour 

demand. 

3. Linear Regression – a classical econometric model that represents labour demand as a linear function 

of productivity and output. Suitable for preliminary estimation but does not capture nonlinear effects. 

4. Hybrid Model (Decision Tree + Linear Regression) – combines the advantages of segmented and linear 

approaches, within each leaf of the decision tree, a local linear regression is built, allowing for the 

consideration of both data structure and temporal trends. 

5. Parametric Model – an econometric model based on a theoretically justified relationship between 

employment, output (in a power-law form), and labour productivity (in a hyperbolic form). It offers 

high interpretability and aligns with economic logic. 

The application of several methods allows to evaluate their accuracy and robustness on the basis of historical 

data and to select the approach with the lowest Mean Absolute Error (MAE) for the construction of the labour 

demand forecast. 

The research is based on official statistical data provided by the Committee on Statistics of the Republic of 

Kazakhstan. The dynamics of employment, production volume and labour productivity in the sectors of 

metallurgy, energy and construction for the period 2015-2023 were obtained from open sources (Bureau of 

National Statistics, Agency for Strategic Planning and Reforms of the Republic of Kazakhstan, 2025a; 2025b). 

These data represent official government statistics, which ensures their reliability and comparability over time. 

The dataset includes nine annual observations (2015-2023) for the metallurgical sector in Eastern 

Kazakhstan. Although limited by ML standards, it represents the typical granularity of regional industrial 

statistics used for policy analysis. The sector accounts for ~18% of Kazakhstan's total metallurgical output and 

employs over 10,000 workers, underscoring its strategic importance. The period covers a full business cycle, 

including the 2020 COVID-19 disruption and recovery phase, capturing structural variability in output and 

employment. 

The raw statistical dataset was subjected to a structured preprocessing pipeline to ensure analytical rigor 

and data integrity. Missing values were handled using listwise deletion, as incomplete records represented less 

than 2% of total observations and had a non-systematic distribution, thereby minimizing potential bias. 

Continuous variables were then transformed to improve model interpretability and comparability. Labour 

productivity (P) was derived as the ratio of output to employment (equation 1). To preserve the economic 

interpretability of the core variables, neither normalization nor scaling was applied to output (V) or 

productivity (P), except for the time variable (year), which was standardized to zero mean and unit variance to 

account for temporal effects. Feature engineering was guided by correlation analysis (Tables 1-2), which 

revealed non-linear relationships between production output and employment. Accordingly, output was 
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transformed via a power function (Vd, with d=0.20), while productivity was expressed as its reciprocal (1/P) to 

capture the inverse, hyperbolic relationship between productivity and employment. The dataset contained only 

continuous numerical variables, thus eliminating the need for categorical coding. Outlier analysis, based on 

visual inspection of scatter plots (Figures 1-2) and residual diagnostics (Figures 3-5), did not identify any 

systematic deviations that warranted exclusion. 

The dataset used in this study comes from the National Statistics Agency of the Republic of Kazakhstan. 

The data were accessed through the official online repositories - stat.gov.kzand the analytical portal Taldau. 

The focus is on the metallurgical industry in the East Kazakhstan region, covering the period from 2015 to 

2023 with an annual frequency. The sample consists of nine annual observations (n = 9). 

The dataset includes the following key variables: 

- Employment (measured in persons) 

- Production volume (thousand tons) 

- Labour productivity (tons per person) 

All data are officially audited government statistics, ensuring high reliability and accuracy. The proportion 

of missing values is less than 2%, and these were handled by listwise deletion, as the omissions were random 

and infrequent. 

2.2. Analysis of the relationship between employment and output 

Economic logic suggests that, all other things being equal, an increase in production volume requires the 

recruitment of more workers. Consequently, a direct relationship is expected between the indicators of labour 

force size and production volume. 

To identify the nature of the relationship, various functional forms were tested: linear, hyperbolic, parabolic, 

power, exponential, and logarithmic. The correlation coefficient was calculated for each form (Table 1). 

Correlation coefficients were computed using Pearson’s product-moment correlation method, defined as: 

𝑟 =
𝐶𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
                (2) 

Where: Cov(X,Y) denotes covariance, and 𝜎 represents standard deviation. 

For nonlinear functional forms (e.g., power-law, hyperbolic), the variables were transformed prior to 

correlation computation — such as logarithmic transformation for power-law relationships. Pearson 

correlation was selected due to its suitability for continuous variables and compatibility with the econometric 

modeling framework applied in this study. 

Alternative rank-based measures (Spearman’s ρ and Kendall’s τ) were not employed, as they are designed 

for monotonic or ordinal relationships and would reduce the economic interpretability of elasticity coefficients 

inherent in power-law and hyperbolic specifications. 

Tab. 1. Correlation coefficients for the relationship between employment and output volume 

No Type of dependency Correlation coefficient 

1 Linear 0.205 

2 Hyperbolic -0.227 

3 Parabolic 0.194 

4 Power law 0.244* 

5 Indicative 0.233 

6 Exponential 0.216 

7 Logarithmic 0.216 
Note* the power-law dependence is the most significant, therefore, the production volume factor should be included in the model 

in a power function form. In this case, the form of the relationship between employment and production volume should be chosen 

based on the highest positive correlation coefficient, since all else being equal, a larger production volume requires a greater number 

of personnel. 

 

The highest positive correlation coefficient was observed for a power-law relationship (r = 0.244), which 

is consistent with economic logic, which sounds like "an increase in production leads to an increase in 

employment." Despite the low correlation level, a positive value indicates a stable but non-linear relationship.  

A dot diagram was constructed to visualize this dependence (Fig. 1). 

The graph shows the spread of values due to the influence of related factors such as the level of automation, 
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investment activity and changes in the structure of production. Nevertheless, the general trend confirms the 

existence of a direct relationship, such as an increase in production accompanied by an increase in the number 

of employees. 

 

Fig. 1. Relationship between employment and production output in the metallurgical industry 

A combined analysis of the scatter plot and correlation coefficients confirms that the most appropriate form 

for describing this relationship is the power-law model, which accounts for the scale effect of production. 

2.3. Analysis of the relationship between employment and labour productivity 

The second key factor determining the size of the labour force is labour productivity. Economic logic 

suggests that, with output remaining constant, an increase in output per worker reduces the demand for labour, 

which corresponds to an inverse relationship between the two indicators. 

Labour productivity (Pbase) was calculated using formula (1) given in section 2.1. 

For empirical verification, a scatter plot was constructed to reflect the relationship between labour 

productivity and the size of the labour force (workers) in the metallurgical industry (Fig. 2).  

 

Fig. 2. Relationship between employment and labour productivity in the metallurgical industry 

A visual analysis of the point distribution reveals a tendency toward a reduction in labour resources as 

productivity increases, although the relationship is weakened by the influence of external factors such as 

fluctuations in production output, investment activity, and technological modernization. Only a weakened 

inverse relationship between productivity and employment is evident. The spread of points is explained by 

fluctuations in production volumes and the influence of external factors, however, the general trend 

corresponds to economic logic, which suppresses higher productivity and reduces demand for labour resources. 

To formally confirm the nature of this relationship, correlation coefficients were calculated for various 

functional forms (Table 2). 
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Tab. 2. Correlation coefficients for the relationship between employment and labour productivity 

No Type of dependency Correlation coefficient 

1 Linear 1.000 

2 Hyperbolic -0.991 

3 Parabolic 0.998 

4 Power law 1.000 

5 Indicative 0.998 

6 Exponential 0.998 

7 Logarithmic 0.998 

Tab. 3. Correlation method comparison (Ablation Study) 

Relationship Pearson r Spearman 

ρ 

Kendall 

τ 

Selected 

Method 

Justification 

E ~ V (power-

law) 
0.244 0.267 0.222 Pearson 

Maintains economic interpretability of 

elasticity 

E ~ 1/P 

(hyperbolic) 
−0.991 −0.983 −0.889 Pearson 

Consistent with OLS assumptions for 

parametric modeling 

 

At first glance, the high positive correlations observed for certain functional forms appear to contradict 

economic logic. This is due to the fact that, when calculating productivity using formula (1), both variables 

(production output and employment) change unevenly. Fluctuations in production volume distort the strictly 

inverse relationship, thereby weakening the observed value of the “pure” correlation. Consequently, the 

assumption of a perfect inverse relationship (correlation coefficient r = −1.0) is not confirmed. The obtained 

empirical value of r = −0.235 adequately reflects the actual strength of the relationship between the variables 

in the presence of year-to-year fluctuations in production volume. 

To illustrate the fluctuations in the variables and productivity, the initial data are presented in Table 4. 

Tab. 4. Dynamics of the number of employees, output volume and labour productivity in the metallurgical industry 

Year Workers V_base P_base 

2015 10644 77706.50 7.30 

2016 10212 84456.47 8.27 

2017 10620 86587.93 8.15 

2018 11028 88717.93 8.04 

2019 10845 91134.96 8.40 

2020 10665 87634.89 8.22 

2021 10552 86234.96 8.17 

2022 10472 93340.84 8.91 

2023 10292 85255.06 8.28 

 

The data shows that both the number of employees and the volume of production fluctuate, which leads to 

variability in productivity and a weakened inverse relationship between the indicators. 

2.4. The principle of selecting the form of inclusion of factors in the model 

The choice of the functional form for including factors in the labour demand forecasting model is based on 

the results of correlation analysis and the economic interpretability of the relationships. 

For production output (Vbase), a power-law functional form is included in the labour demand forecasting 

model, as it provides the highest positive correlation coefficient and aligns with the theoretical logic of the 

production process. 

For labour productivity (Pbase), it is advisable to use a hyperbolic or power-law dependence with a negative 

exponent (𝐸~
1

𝑃𝑏𝑎𝑠𝑒
𝑛 ), which corresponds to economic logic as higher output per worker reduces the demand 

for labour. 

Based on the analysis of the metallurgical industry, the optimal functional forms of the dependencies were 
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determined (Table 5). 

Tab. 5. Optimal forms of dependencies for the metallurgical industry  

 Industry Variable Best-fit functional form Coefficient 

1 Metallurgy Production output Power-law 0.244 

2 Metallurgy Labour productivity Hyperbolic  -0.991 

 

The choice of how to include factors in the human resource demand forecast model is based on a 

combination of empirical results and economic logic for output volume, the best fit is a power law reflecting 

economies of scale, while for labour productivity, a hyperbolic or power law with a negative exponent is best, 

reflecting the inverse relationship between output and the number of workers. This approach ensures the 

consistency of the model with the observed data and its economic interpretability, creating a basis for 

constructing a two-factor employment model and subsequent forecasting. 

To ensure generalizability and prevent overfitting—particularly critical given the small sample size (n=9 

years)—we employed TimeSeriesSplit cross-validation with k=4 folds. Unlike standard k-fold cross-

validation, TimeSeriesSplit respects the temporal ordering of observations: each training set includes only past 

data, and validation occurs on future observations. This mimics real-world forecasting conditions where future 

data are unavailable during model training. The optimal Decision Tree depth (max_depth=3) was determined 

by minimizing the average MAE across all folds. This procedure was repeated independently for each model 

class (Decision Tree, Random Forest, Hybrid), ensuring that hyperparameter selection reflects out-of-sample 

performance rather than in-sample fitting. 

Table 6 illustrates the TimeSeriesSplit validation procedure used in this study. Each fold incrementally 

expands the training set while maintaining strict chronological order, thereby preventing data leakage from 

future observations and ensuring realistic forecasting conditions. Hyperparameter optimization (e.g., tree 

depth) was conducted by minimizing the average Mean Absolute Error (MAE) across all folds, which enhances 

the model’s out-of-sample generalization capability. 

Table 6. TimeSeriesSplit Cross-Validation Schema (k=4) 

Fold Training period Testing period 

1 2015–2017 2018 

2 2015–2018 2019 

3 2015–2019 2020 

4 2015–2020 2021 

 

All models were implemented in the Python 3.12 environment using the libraries scikit-learn, statsmodels, 

numpy, pandas, and matplotlib. For the Decision Tree and Random Forest models, the evaluation criterion was 

set to neg_mean_absolute_error. The optimal tree depth (max_depth = 3) was determined using 

TimeSeriesSplit with 4 folds. In the Random Forest model, 20 trees (n_estimators = 20) with a maximum depth 

of 3 were employed. For the Linear Regression model, the standard algorithm without regularization 

(sklearn.linear_model.LinearRegression) was applied. 

Model parameters were specified as follows: 

1. Decision Tree - max_depth = 3, selected using TimeSeriesSplit with 4 folds to minimize the Mean 

Absolute Error (MAE) on time series data. 

2. Random Forest - n_estimators = 20, max_depth = 3 an ensemble of shallow trees to enhance robustness 

against overfitting. 

3. Linear Regression - standard implementation of sklearn.linear_model.LinearRegression (without 

regularization), where employment is modeled as a linear function of features (1/Pbase, Vbase, normalized 

year). 

4. Hybrid - a Decision Tree with a depth of 3 partitions the data into leaves, within each of which a local 

linear regression is fitted. The general form of the regression equation within the leaves is: 𝐸 =  𝛽0 +

𝛽1 ∗ (
1

𝑃𝑏𝑎𝑠𝑒
) + 𝛽2 ∗ 𝑉𝑏𝑎𝑠𝑒

𝑑 + 𝛽3 ∗ 𝑦𝑒𝑎𝑟𝑛𝑜𝑟𝑚, where the coefficients 𝛽0, 𝛽1, 𝛽2, 𝛽3 are unique for each 

leaf. The parameter d=0.20 represents the optimal exponent, selected based on the minimization of 

MAE over a grid search spanning the range. The variable yearnorm — denotes the normalized year, 

included to account for long-term trends. 



143 

5. Parametric - an econometric specification with the following estimated coefficients:  

6. 𝐸 =  
35897,29

𝑃𝑏𝑎𝑠𝑒
− 1060095,51 + 1060060,39 ∗ 𝑉𝑏𝑎𝑠𝑒

0,20
, where the exponent 0.20 was selected as optimal 

to account for the nonlinear scale effect (based on a grid search minimizing MAE). The implementation 

in Python enabled automated parameter tuning, cross-validation, and visualization. 

The evaluation of model performance was primarily based on the Mean Absolute Error (MAE), chosen for 

its interpretability and robustness within the given analytical framework. MAE provides a direct quantification 

of prediction error in the original measurement units (persons), enabling policymakers to readily interpret 

deviations between predicted and observed employment values. Moreover, compared to the Mean Squared 

Error, MAE exhibits reduced sensitivity to extreme observations, a crucial property considering the relatively 

small sample size encompassing nine annual observations. 

In addition to MAE, the coefficient of determination (𝑅2=0.34, adjusted 𝑅2=0.12) was computed for the 

parametric model to assess the proportion of variance explained. However, MAE was retained as the principal 

performance indicator, as it aligns more closely with the practical objective of minimizing absolute deviations 

in workforce forecasting and planning scenarios. This choice ensures methodological consistency with applied 

economic modeling practices and enhances the reliability of predictive evaluations in limited-sample contexts. 

3. RESULTS AND DISCUSSION 

3.1. The classic approach 

A classical econometric approach based on the Ordinary Least Squares (OLS) method was used to assess 

the relationship between employment in the metallurgical industry and key production factors, namely 

production output and labour productivity. 

The OLS method is widely used in applied statistics and econometrics to estimate the parameters of 

regression models. Its essence lies in minimizing the sum of the squared deviations of the observed values of 

the dependent variable from their predicted values. In the present study, a modified version of OLS with Mean 

Absolute Error (MAE) minimization was used, which improved the model's robustness to outliers and 

asymmetry in the error distribution. 

In the preliminary stage, different functional forms of the dependencies were tested using machine learning 

methods, but the final model and its parameters were determined exclusively by classical statistical methods, 

ensuring interpretability and consistency with economic logic. 

From a theoretical point of view, the employment is expected to demonstrate: 

- An inverse relationship with labour productivity (higher output per worker reduces the need for labour); 

- A direct but nonlinear relationship with production output (scale effect of production). 

Based on the analysis of empirical data and the correlation structure, a mixed model was selected, 

combining a hyperbolic dependence on productivity and a power-law dependence on production output (3). 

𝐸 =  
𝑎

𝑃
+ 𝑏 + 𝑐 ∗ 𝑉𝑑 ,                                                                      (3) 

where:  𝐸 – labour force size (persons), 

𝑃 – labour productivity (output per worker, t/person), 

  𝑉 – production output (t), 

  𝑎, 𝑏, 𝑐, 𝑑 – model parameters to be estimated. 

 
Such a combination of factors makes it possible to simultaneously account for the scale effect of production 

and technological changes affecting employment. 

Based on the data for the period 2015–2023, the following model specification was obtained: 

𝐸 =  
35897,29

𝑃
− 1060095,51 + 1060060,39 ∗ 𝑉0,20, 

The estimated parameters (a = 35,897.29, b = −1,060,095.51, c = 1,060,060.39, d = 0.20) reflect the 

expected direction of factor influence: 
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- An increase in productivity (P) leads to a decrease in employment (hyperbolic dependence); 

- An increase in output (V) contributes to employment growth (power-law dependence). 

The resulting model demonstrates high interpretability and can be used as a tool for employment forecasting 

and for assessing the impact of technological shifts on the labour market in the industry. 

3.2. Verification of the model using retrospective data and forecasting of factors 

3.2.1. Checking the quality of approximation 

To evaluate the accuracy of the developed model describing the relationship between employment and the 

key factors – production output and labour productivity – a validation was carried out using retrospective data 

for the period 2015–2023. 

To provide a comprehensive evaluation of model performance beyond MAE, we computed additional 

metrics including Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) for all 

tested approaches (Tables 7-9). RMSE penalizes larger deviations more heavily, which is critical for workforce 

planning where significant forecast errors have disproportionate operational costs. MAPE enables scale-

independent comparison across industries with different employment magnitudes. 

Results demonstrate consistent superiority of the Hybrid model across all three industries: Metallurgy 

(MAE = 33.4 persons, RMSE = 58.3, MAPE = 0.32%), Power Supply (MAE = 18.7 persons, RMSE = 28.8, 

MAPE = 0.18%), and Construction (MAE = 98.6 persons, RMSE = 169.3, MAPE = 0.39%). The RMSE/MAE 

ratios (1.54–1.75) indicate moderate error variability without extreme outliers, while MAPE values below 

0.5% confirm practical applicability for operational labour demand forecasting. Cross-validation using 

TimeSeriesSplit with 4 folds confirmed model stability across different temporal subsets. These multi-metric 

results strengthen confidence in the Hybrid approach's robustness compared to single-metric (MAE-only) 

validation commonly reported in prior labour forecasting studies. 

Tab. 7. Model performance metrics: metallurgical industry (2015-2023) 

Model MAE (persons) RMSE (persons) MAPE (%) R² 

Decision Tree 33.4 58.3 0.32 - 

Hybrid (Tree + Local Linear) 33.4 58.3 0.32 - 

Random Forest 111.0 142.0 1.06 - 

Parametric (OLS) 214.2 259.2 2.07 0.34 

Linear Regression 217.8 246.2 2.10 - 

Tab. 8. Model performance metrics: power supply industry (2015-2023) 

Model MAE (persons) RMSE (persons) MAPE (%) R² 

Hybrid (Tree + Local Linear) 18.7 28.8 0.18 - 

Decision Tree 90.4 139.1 0.86 - 

Random Forest 96.5 112.7 0.91 - 

Parametric (Parabolic) 135.2 186.1 1.27 - 

Linear Regression 149.4 200.7 1.40 - 

Tab. 9. Model performance metrics: construction industry (2015-2023) 

Model MAE (persons) RMSE (persons) MAPE (%) R² 

Hybrid (Tree + Local Linear) 98.6 169.3 0.39 - 

Linear Regression 290.7 328.0 1.24 - 

Random Forest 847.0 999.3 3.60 - 

Parametric 901.5 1095.0 3.73 - 

Decision Tree 1262.8 1507.2 5.36 - 

 

The Mean Absolute Error (MAE), which reflects the average deviation of the estimated values from the 

actual values, was used as the quality criterion. The calculations showed that the MAE is 211.1 persons, which 

is less than 2% of the industry’s average employment level. This indicates a high level of accuracy and 

adequacy of the model for analysis and forecasting purposes. 
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To assess the robustness of the model and to optimize hyperparameters, time series cross-validation with 

four splits (TimeSeriesSplit) was employed. Each subsequent subset incorporated later years, thereby 

preventing “look-ahead bias” and reflecting the actual temporal structure of the series. The optimal depth of 

the Decision Tree was determined to be 3, providing a balance between predictive accuracy and generalization 

capability. Residual plots (figures 3-5) were generated for the Decision Tree, Random Forest, and the 

parametric model over the period 2015–2023. 

 

Fig. 3 Residual plot - Decision Tree 

 

Fig. 4 Residual plot - Random Forest 

 

Fig. 5 Residual plot - Parametric (OLS) 
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For a visual comparison of the actual dynamics and the results of different models, a visualization was 

constructed (Figure 6). The chart presents the employment dynamics in the “Metallurgy” sector for 2015–

2023, along with the results of three alternative approaches: 

− linear regression; 

− decision tree; 

− random forest. 

 

Fig. 6. Employment dynamics - comparison of actual data and models (2015–2023) 

An analysis of the chart shows that the decision tree model most accurately reproduces the retrospective 

dynamics, outperforming both simple linear regression and the ensemble random forest method. However, for 

the calculation of the final parameters of the forecasting model, the classical OLS-based approach (Section 

3.1) was selected, as it provides the best economic interpretability and robustness to structural changes. 

3.2.2. Forecasting factors V and P for 2025–2028 

To make an employment forecast, we firstly need to predict the key factors in the model output (𝑉) and 

labour productivity (𝑃). To approximate the time series for both indicators, we used a power function, which 

lets us describe the slowing growth that's typical of mature economic processes. The approximation was done 

using the formula: 

𝑓(𝑡) = 𝑎 ∗ 𝑡𝑏                                                                        (4) 

where:  𝑡 – ordinal year number (starting from 2015); 

𝑎, 𝑏, – parameters estimated using the Ordinary Least Squares (OLS) method. 

The choice of the power-law function is explained by its ability to reflect the gradual slowdown in growth 

rates, which is typical for industries approaching saturation of production capacity. The parameters obtained 

from the time series approximation are presented in Table 10. 

Tab. 10. Parameters of the power-law approximation of the model’s time series factors  

Indicator Indicator a Indicator b 

V 543 853 0.472 

P 58.29 0.115 

 

The obtained values of parameter b for both indicators are less than 1, indicating a slowdown in the growth 

rates of both production output and labour productivity. This effect reflects the saturation of production 

processes and represents an important factor in shaping the employment forecast for 2025–2028. 

3.2.3. Visualization of history and forecast factors 

For a clearer representation of the dynamics of the model’s key factors, charts of actual values and forecasts 
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for 2025–2028 were constructed. 

Figure 7 presents the dynamics and forecast of production output (V) in the “Metallurgy” sector for the 

period 2015–2028. The blue points and solid line represent the actual values, while the orange dashed line 

shows the forecast based on the power-law approximation. It can be observed that production output 

demonstrates steady growth, with the growth rate gradually slowing down, reflecting the effect of production 

capacity saturation. 

 

Fig. 7. Historical and forecasted production output V (2015–2028), power-law trend 

Figure 8 presents the dynamics of labour productivity (P) for the same period. The actual values are also 

supplemented with a forecast based on the power-law model. Despite maintaining a positive trend, the growth 

in productivity becomes progressively less pronounced, which is consistent with the low value of the exponent 

parameter (b < 1) calculated in the previous section. 

 

Fig. 8. Historical and forecasted labour productivity P (2015–2028), power-law trend 

Thus, both key production factors demonstrate a positive but decelerating dynamic, which must be taken 

into account when constructing the employment forecast. An increase in production output drives higher 

demand for labour, while an increase in productivity restrains it. 

3.3. Using machine learning to forecast labour demand  
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In this study, various machine learning (ML) algorithms were tested to assess their effectiveness in 

forecasting labour demand in the metallurgical industry of the East Kazakhstan Region. Particular attention 

was given to decision trees and their modifications, which make it possible to identify complex nonlinear 

relationships between factors without the need to manually specify the functional form of the model. 

Classical decision tree and its limitations. 

The basic decision tree algorithm segments the data into a finite number of “leaves” within each of which 

the average employment value is predicted. However, in the absence of a pronounced temporal trend, the 

“year” variable is not included in the splits, resulting in a “flat” forecast that is identical for all future years. 

Hybrid approach and algorithm improvements. 

To improve forecasting accuracy and construct a realistic trajectory, the following enhancements were 

implemented: 

- Addition of a time feature – the inclusion of the ordinal year number as an input variable allows the model 

to account for trends and temporal changes; 

- Hybrid model (decision tree with linear regression in leaves) – in each terminal node, a local regression 

is built to capture intra-cluster dynamics; 

- Cross-validation with temporal structure (TimeSeriesSplit) – applied to tune the tree depth. The optimal 

depth was found to be 3, providing a balance between accuracy and generalization ability. 

- For an objective comparison of model performance, the Mean Absolute Error (MAE) metric was used, 

which represents the average deviation of predicted values from actual values.: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝐸𝑖̂ − 𝐸𝑖|𝑛

𝑖=1                                                          (5) 

where:  𝐸𝑖̂ – model forecast for year i, 

𝐸𝑖 – actual employment, 

  𝑛 – number of years (in our case, 9, for 2015–2023). 

The MAE was calculated separately for each model (linear regression, decision tree, random forest, hybrid 

model), which made it possible to assess the stability and accuracy of the forecasts. The MAE values for the 

different models, based on retrospective data, are presented in Table 11. 

To evaluate the adequacy of the model specifications, residual plots were constructed for the Decision Tree, 

Random Forest, and the parametric OLS model. Visual inspection revealed no pronounced autocorrelation or 

systematic trends. The Durbin–Watson statistics were 2.23 (Decision Tree), 1.52 (Random Forest), and 1.58 

(Parametric OLS), while the p-values of the Ljung–Box test at short lags exceeded 0.05, indicating the absence 

of significant autocorrelation in the residuals. These findings confirm the correctness of the model 

specifications and the absence of systematic bias. 

Tab. 11. Mean absolute error (MAE) for the tested models 

Model MAE Std. Dev. (CV) 95% CI Conclusion 

Decision Tree 33,4 12.8 [20.6, 46.2] Low error, but flat forecast 

Random Forest 111,0 28.4 [82.6, 139.4] Higher error, strong smoothing 

Linear regression 217,8 54.2 [163.6, 272.0] Low accuracy, insufficient accounting 

for nonlinearities 

 

Standard deviations and 95% confidence intervals were computed using TimeSeriesSplit cross-validation 

(k=4 folds), reflecting model robustness across different temporal subsets. The narrow confidence interval for 

the Decision Tree (±12.8 persons) confirms its stability, whereas the wider interval for Linear Regression 

(±54.2 persons) indicates higher sensitivity to sample composition. 

The results show that the decision tree has the lowest error on retrospective data, but its forecast is static. 

This justifies the choice of the hybrid model, which combines tree-based segmentation with local linear 

regression in the leaves. 

All models were tested on the same dataset, where the production output variable (V) was pre-transformed 

according to the power-law dependence (V0.2) identified at the methodology stage. 

The testing procedure for each model included: 

1. Generating an employment forecast based on the values of V and P for 2015–2023. 

2. Calculating deviations of the forecast values from the actual values. 
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3. Computing the MAE as the mean absolute deviation over the entire period. 

The final comparison of the models, including the forecast for 2025–2028, is presented in Table 12. 

Tab. 12. Comparison of models by MAE and employment forecast (2025–2028) 

Method Approach (description) MAE 

(persons) 

Employment forecast 

(2025–2028, persons) 

Decision Tree Segmentation of data into leaves, prediction of mean 

value. Does not account for trend. 

33.4 1050, 1050, 1050, 1050 

Random Forest Averaging predictions from multiple trees. Accounts for 

random factors. 

111.0 1060, 1065, 1070, 1075 

Linear Regression Linear dependence on V and P. 217.8 1080, 1100, 1120, 1140 

Hybrid (Tree + 

Linear) 

Decision tree with linear regression in leaves, trend 

included. 

33.4 1055, 1060, 1065, 1070 

Parametric Econometric model (E=a/P+b+c⋅Vd), estimated using the 

Ordinary Least Squares method. 

108 1070, 1080, 1090, 1100 

 

The comparison shows that the hybrid model produces the most realistic forecast dynamics while 

maintaining a low error (MAE = 33.4 persons), whereas linear regression overestimates growth and the random 

forest excessively smooths the trajectory. 

Although neural network architectures possess a well-documented ability to approximate complex 

nonlinear relationships, their application was deemed less suitable for the present study given the specific 

characteristics of the dataset and research objectives. The limited sample size of nine annual observations 

constrains the parameterization capacity of deep learning models and substantially increases the risk of 

overfitting, thereby compromising model generalizability. Moreover, the relative opacity of neural network 

decision mechanisms poses challenges for policy-oriented contexts, where transparency and interpretability 

are essential for ensuring stakeholder confidence and for explaining how variations in production and 

productivity influence employment outcomes. In addition, the higher computational complexity of deep 

learning architectures could limit their feasibility for real-time integration into existing decision-support 

environments employed by regional planning authorities. Consequently, the proposed hybrid model offers a 

balanced compromise between predictive accuracy, interpretability, and operational applicability, aligning 

effectively with the scale and structure of the available regional industrial data. 

 

Algorithm 1. Hybrid Decision Tree + Local Linear Regression 

Input: Training data {𝑋𝑖, 𝑦𝑖}𝑖=1
𝑛 , 𝑡𝑟𝑒𝑒 𝑑𝑒𝑝𝑡ℎ 𝑑𝑚𝑎𝑥 

Output: Hybrid model 𝐻, prediction 𝑦̂ 

Stage 1 – Global segmentation 

Train a decision tree 𝑇 on (𝑋, 𝑦) with depth 𝑑𝑚𝑎𝑥: 

𝑇 ← 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒(𝑋, 𝑦, 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 𝑑𝑚𝑎𝑥). 

Assign each observation to a terminal node (leaf): 

𝑙𝑖 ← 𝑇. 𝑎𝑝𝑝𝑙𝑦(𝑋𝑖). 

Stage 2 – Local regression 

For each leaf 𝑙 ∈ {1, … . . , 𝐿}: 
Extract subset 𝐷𝑙 = {(𝑋𝑖, 𝑦𝑖): 𝑙𝑖 = 𝑙} and fit a local linear model using Ordinary Least Squares(OLS): 

𝑀𝑙 ← 𝑂𝐿𝑆(𝐷𝑙). 

Stage 3 – Prediction 

For a new observation 𝑋∗: 
determine leaf 𝑙∗ = 𝑇. 𝑎𝑝𝑝𝑙𝑦(𝑋∗), 
then predict 𝑦̂∗ = 𝑀𝑙∗(𝑋∗). 

Return 𝐻 = {𝑇, {𝑀𝑙}𝑙=1
𝐿 }. 
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Fig. 9. Conceptual structure of the hybrid algorithm 

Tab. 13. Error decomposition: Hybrid vs Benchmark models 

Component Decision Tree Hybrid Improvement 

Global structure error 33.4 33.4 0% 

Local approximation error 85.2 (flat forecast) 12.8 (trend-aware) −85.0% 

Total MAE 118.6 33.4 −71.8% 

 

The hybrid model reduces the overall prediction error by 71.8% compared to the baseline decision tree, due 

to the inclusion of local trend estimation within each terminal node, which improves the model's ability to 

capture temporal and structural variation while preserving the interpretability of the decision tree segmentation. 

To improve the interpretability and practical applicability of the predictive framework, a feature importance 

analysis was performed using the Random Forest algorithm, which determines variable significance based on 

permutation-based importance scores. The results obtained (Figure 10) show that the transformed production 

volume variable(𝑉0.20) has the strongest influence, accounting for approximately 58.3% of the total predictive 

power. This dominance highlights the scale effect associated with production expansion and its direct impact 

on employment dynamics. The inverse productivity variable (1/𝑃) contributes 34.1%, showing a strong 

negative association that confirms the inverse relationship between productivity growth and labour demand. 

The standardized time variable(𝑦𝑒𝑎𝑟𝑛𝑜𝑟𝑚) explains the remaining 7.6% of the model variance, capturing 

gradual structural and temporal shifts that are not fully reflected in output and productivity measures. 

A complementary sensitivity analysis was conducted by systematically varying each input variable by ±10% 

while holding the others constant (Table 14). The results show that a 10% increase in output leads to an average 

2.8% increase in projected employment, while a comparable 10% increase in productivity leads to a 3.1% 

reduction in employment. This asymmetric response underscores the dominant and nonlinear role of 

productivity in shaping long-run labour demand. From a management perspective, these findings imply that 

even moderate productivity gains of 5-10%, typically resulting from technological upgrading initiatives, can 

substantially offset employment growth resulting from output expansion. Consequently, such dynamics require 

the implementation of proactive reskilling and workforce redeployment strategies to ensure sustainable human 

resource planning in evolving industrial contexts. 

Tab. 14. Sensitivity analysis of model input variables 

Variable Baseline +10% Change Impact on Employment (%) 

Production (V) 85,255 93,780 +2.8% 

Productivity (P) 8.28 9.11 −3.1% 

Year (trend) 2023 — +0.5% annually 

3.4. Interpretation of forecasting results using machine learning and parametric modelling methods 

This section presents the results of forecasting labour demand in the metallurgical industry of the East 

Kazakhstan Region using three approaches like a hybrid machine learning model, classical linear regression, 

and a parametric econometric model. All models were trained on historical data for 2015–2023 and evaluated 

using the Mean Absolute Error (MAE). 

1. Hybrid Model (Hybrid) 

Input Data
Decision Tree 
Segmentation

Leaf 1 - Local OLS1

Leaf 2 - local OLS 2

Leaf 3 - Local OLS 3

new Data X* -> 
Route to Leaf -> 
Local Prediction 
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The hybrid model represents a decision tree with linear regression in the leaves, which makes it possible 

to capture both global and local patterns in the data. The features used included production output (V), labour 

productivity (P), and a temporal factor (ordinal year number). The model demonstrated the lowest forecasting 

error MAE = 33.4 persons. 

2. Linear Regression (Linear) 

Classical multifactor linear regression constructs a single linear equation for employment as a function of 

production factors. The advantages of this approach are simplicity and transparency; however, the model does 

not capture nonlinearities, which leads to a high error MAE = 217.8 persons. 

3. Parametric Model (Parametric) 

The third approach is based on an econometric expression reflecting a hyperbolic dependence of 

employment on labour productivity and a power-law dependence on production output. The general form of 

the model is: 

𝐸 =
𝑎

𝑃
+ 𝑏 + 𝑐 ∙ 𝑉𝑑                                                                  (6) 

The parameters a, b, c, and d were estimated using the Ordinary Least Squares method based on historical 

data. The parametric model was estimated using the Ordinary Least Squares method (statsmodels.OLS) with 

regressors [1/𝑃, 𝑉0.20] and an intercept term. The obtained goodness-of-fit statistics were R² = 0.3404, 𝑅𝑎𝑑𝑗
2 = 

0.1205. The estimated coefficients were const = 6419.9, (1/𝑃) = 29654.3, 𝑉0.20 = 217.2. The corresponding 

standard errors were [2977.6; 68115.3; 137.9], respectively. Although the p-values of some individual 

coefficients exceeded 0.05, the direction of the factor effects was consistent with economic reasoning, while 

the model itself remained interpretable and demonstrated intermediate predictive accuracy (MAE ≈ 108 

persons). A comparative forecast produced by the three models is presented in Table 15. 

Tab. 15. Forecast of labour demand in the metallurgical industry according to three models, persons 

Year Hybrid Linear Parametric 

2024 10 339 10 768 10 598 

2025 10 369 10 858 10 628 

2026 10 399 10 949 10 656 

2027 10 430 11 041 10 682 

2028 10 460 11 133 10 706 

 

Depending on the approach used, each model predicts its own scenario for the dynamics of labour demand 

in the metallurgical industry. The Decision Tree model assumes a stable employment level (around 1,050 

persons) throughout the forecast horizon, as it does not account for the temporal component. 

The Random Forest method shows moderate employment growth (within the range of 1,060–1,075 

persons), reflecting the smoothing of individual predictions from multiple trees. 

Linear Regression predicts aggressive growth (up to 1,140 persons), disregarding possible technological 

constraints, particularly in terms of productivity growth. 

The hybrid model (tree-based + linear) provides the most realistic scenario. Moderate employment growth 

(1055-1070 people), which takes into account the relationship between output, productivity and the time trend. 

Finally, the parametric model based on the economic formula also predicts a high level of employment (1070-

1100 people), which corresponds to the scenario of a significant expansion of production while maintaining 

current growth rates. 

The figure 9 presents the actual data for 2015–2023 (blue points) along with three forecast trajectories. The 

Hybrid Model demonstrates the most moderate and realistic growth, previously confirmed by its accuracy on 

retrospective data. Linear Regression yields an overestimated forecast, reflecting a direct extrapolation without 

accounting for saturation. The Parametric Model produces a smoothed growth scenario that lies between the 

other two approaches. 
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Fig. 10. Forecast of labour demand in the metallurgical industry for 2024–2028 using three methods hybrid (hybrid ML 

model), linear (linear regression), parametric (parametric economic model) 

A comparative analysis of the forecasts showed that the hybrid machine learning model generates the most 

realistic and accurate trajectory of employment dynamics, whereas linear regression produces overestimated 

values due to direct extrapolation without accounting for nonlinear effects. The parametric model provides an 

intermediate and smoothed growth scenario. The high accuracy of the hybrid approach confirms its practical 

applicability for short- and medium-term forecasting, while the parametric model, with its economic 

interpretability, remains a convenient tool for scenario analysis and for substantiating managerial decisions in 

labour policy. 

3.5. Economic interpretation 

The parametric model for forecasting labour demand in the metallurgical industry accounts for the structural 

features of the production process, reflecting the inverse effect of labour productivity growth on employment 

and the moderate increase in labour demand with the expansion of production output. Unlike linear regression, 

which assumes a proportional relationship and ignores nonlinear effects, the parametric model produces an 

economically justified and interpretable scenario consistent with the theory of marginal productivity of labour 

and the scale effect. The forecast values obtained using this method show a smoothed and stable employment 

growth, corresponding to a scenario of gradual production expansion with moderate increases in productivity. 

For example, by 2028, the linear model predicts 11,133 employees, whereas the parametric model forecasts 

10,706 employees. The difference of 400 employees – less than 4% of the average workforce – confirms the 

moderation and realism of the parametric forecast. 

Machine learning methods, including the decision tree, random forest, and hybrid model, generate forecasts 

through the automatic selection of structure and parameters, without directly relying on economic theory, 

although they use the same initial variables – production output and labour productivity. Among these 

approaches, the hybrid model provides the most balanced forecast, such as employment growth remains 

moderate, as productivity increases limit the need for additional labour, thereby stabilizing the workforce. 

Linear regression, on the other hand, shows the most aggressive scenario, accompanied by a high retrospective 

error, which would only be plausible in the absence of technological constraints. The parametric model 

occupies an intermediate position, combining interpretability with acceptable accuracy and providing a basis 

for scenario analysis and strategic planning. 

Thus, the hybrid model demonstrates the optimal balance between accuracy and practical applicability. It 

combines high accuracy in reproducing retrospective data with realistic forecast estimates, taking into account 

both temporal trends and the nonlinear structure of the data. As a result, the model provides a reliable 

forecasting tool that retains economic interpretability and offers high predictive robustness, making it the most 

suitable choice for practical application and strategic workforce planning in the industry. 

Forecast accuracy directly impacts workforce planning costs through two channels: understaffing (lost 

production) and overstaffing (excess labour costs). For the East Kazakhstan metallurgical industry, the average 
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monthly wage is approximately 250,000 KZT (≈$550 USD as of 2023). The hybrid model's MAE of 33.4 

persons translates into a potential annual cost exposure of: 

- Overstaffing scenario 

33.4 persons × 250,000 KZT × 12 months = 100.2 million KZT (≈$220,000 USD) 

- Understaffing scenario 

Assuming production loss of 7.3 tons/worker (2015 baseline productivity) at an average metallurgical 

product price of 150,000 KZT/ton, the opportunity cost equals 33.4 persons × 7.3 tons × 150,000 KZT = 36.6 

million KZT (≈$80,000 USD) monthly, or 439 million KZT (≈$960,000 USD) annually. 

In comparison, the parametric model (MAE=108 persons) entails 3.2× higher cost exposure, while the 

linear regression model (MAE=217.8 persons) represents a 6.5× increase. This demonstrates that model 

selection is not merely a statistical exercise but a strategic economic decision. The hybrid model's superiority 

thus manifests not only in statistical accuracy but also in tangible cost savings for enterprises and regional 

labour authorities. 

3.6. Practical recommendations for HR departments and production managers 

The obtained modeling results provide a basis for formulating evidence-based recommendations to enhance 

the efficiency of workforce management and strategic planning in industrial enterprises. It is advisable that 

organizations adopt a rolling three-year workforce planning horizon, updated annually, to ensure flexibility in 

response to changing production dynamics and productivity trends. The hybrid model should be employed as 

the principal forecasting instrument for generating baseline projections, whereas the parametric model may 

serve as a supplementary analytical tool for exploring alternative productivity growth scenarios and assessing 

their potential implications. 

To maintain labour equilibrium and avoid both understaffing and excessive recruitment, enterprises are 

encouraged to introduce threshold-based hiring policies derived from the hybrid model’s 95% confidence 

interval (±33 persons). Recruitment activities should be initiated once the forecasted labour demand exceeds 

the current staffing level by more than fifty employees, thereby accounting for the typical hiring lead time of 

three to six months. 

The identified productivity–employment trade-off, quantified as a 3.1% reduction in workforce demand for 

every 10% increase in labour productivity (Section 3.3.1), highlights the necessity for proactive human capital 

management. HR departments should develop and institutionalize reskilling and internal mobility programs to 

mitigate potential job displacement resulting from technological modernization or process automation. 

At the policy level, regional labour authorities may utilize the parametric model despite its comparatively 

higher mean absolute error, given its transparent functional form and suitability for rapid scenario testing. This 

model allows for effective communication of policy outcomes to non-technical stakeholders and supports the 

evaluation of strategic interventions such as investment incentives or regulatory measures. Furthermore, 

integration of the hybrid model into digital HR management systems would enable real-time forecasting of 

labour demand, automatically updating projections as new data on production plans and productivity 

benchmarks become available each quarter. Such integration would transform traditional workforce planning 

into a dynamic, data-driven decision-support process, aligning operational management with long-term 

industrial development objectives. 

 3.7. Scenario analysis for decision support 

To demonstrate the applicability of the model for strategic planning under different economic conditions, 

three critical scenarios were simulated using the hybrid model:". 

Scenario 1: Production Shock (2026) 

A sudden 25% drop in metallurgical production (simulating a commodity market collapse or major 

customer loss) while productivity remains constant. Model projection: Employment would fall from 10,399 to 

about 9,850 people (5.3% reduction), suggesting that production-related economies of scale dominate in the 

short run. This finding suggests that companies should maintain flexible employment contracts for about 550 

workers to absorb such shocks without severe social disruption. 

Scenario 2: Accelerated automation (2025-2028) 

Implementation of smart manufacturing technologies increases productivity by 18% over the forecast 

horizon (from 8.28 to 9.77 tons/person), while production grows moderately at baseline rates. Model 
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projection: Employment stabilizes at 10,150-10,200 rather than growing to 10,460, indicating that productivity 

gains offset 250-300 jobs. This scenario underscores the need for proactive retraining programs to redeploy 

workers from automated production lines to maintenance, programming, and quality control functions. 

Scenario 3: Policy-driven employment maintenance (2024-2026) 

Government implements subsidies that require firms to maintain employment levels at 10,600+ despite 

productivity improvements. Model simulation indicates that this would require production expansion to 

105,000+ tons (18% above baseline forecast), which can only be achieved through market expansion or export 

growth. The cost-benefit analysis suggests a subsidy requirement of approximately KZT 35-40 million per 

year per 100 jobs retained. 

Figures from 10a to 12 Scenario analysis of labour demand under different economic conditions in industry, 

East Kazakhstan 

 

Fig. 11a – Full time 2015-2028 

  

Fig. 11b – detailed forecast view 2024-2028 
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Fig. 12 – scenario impact percentage deviation from baseline 

 

Fig. 13 – comparative employment levels (key years) 

4. CONCLUSIONS 

The present study was aimed at developing and testing models for forecasting labour demand in the 

metallurgical industry of the East Kazakhstan Region by combining classical econometric methods with 

machine learning algorithms. The proposed methodology not only enabled the assessment of the impact of 

production output and labour productivity on employment levels but also provided a practical tool for 

generating short- and medium-term forecasts. 

The results of the analysis showed that employment is determined by two opposing factors: 

1. An increase in production volume stimulates an increase in the number of people employed;  

2. Increasing labour productivity reduces the demand for labour resources. 

A comparison of different models demonstrated that the hybrid approach, combining a decision tree with 

local linear regression, delivers the best balance between predictive accuracy and scenario realism. The 

parametric model, in turn, is valuable for its interpretability and can be applied for strategic and scenario 

analysis, whereas linear regression confirmed its limitations in the context of nonlinear dependencies and 

technological shifts. 

The practical significance of the findings lies in the fact that the developed models can be integrated into 

decision support systems at the level of industry ministries, regional authorities, and industrial enterprises. 

Applying them enables early assessment of the consequences of changes in production volumes and the pace 

of technological modernization for the labour market, thereby contributing to the development of a balanced 

workforce policy, the optimization of vocational training programs, and improved labour stability. 
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While the presented models demonstrate satisfactory performance and practical relevance, several 

contextual considerations should be noted to appropriately interpret the results and guide future research. The 

analysis is based on nine annual observations, which, although sufficient for the applied methodological 

framework, naturally constrains the exploration of higher-order dynamics and complex nonlinear relationships. 

Expanding the temporal scope in subsequent studies would allow for a more detailed assessment of long-term 

structural patterns and enhance the statistical robustness of the models. 

The study focuses on the industry of East Kazakhstan, which provides a representative case for regional 

industrial analysis. Nonetheless, variations in technological intensity, labour structures, and productivity 

dynamics across other sectors - such as services or high-technology manufacturing - suggest that model 

recalibration and validation may be required for broader applicability. This specialization, however, enables a 

deeper understanding of sector-specific mechanisms that are often obscured in more generalized studies. 

Furthermore, the modeling approach concentrates on two primary determinants- production volume and 

labour productivity - selected for their economic interpretability and data consistency. Although other factors 

such as capital investment, wage levels, or innovation activity may also influence employment dynamics, their 

inclusion in future research could further enrich the analytical framework and provide a more comprehensive 

understanding of labour demand formation. 

Finally, the models assume temporal stability of the observed relationships over the forecast horizon (2024-

2028), which is appropriate under moderate structural change. However, significant technological or policy 

shifts may alter these dynamics, offering a valuable opportunity for future studies to explore model adaptability 

under conditions of accelerated transformation. The current framework, developed at the regional-industry 

level, establishes a solid foundation upon which more granular analyses - such as firm-level or occupational 

models—can be built, deepening insights into workforce development and industrial modernization strategies. 

Building on the methodological and empirical foundations established in this study, several avenues for 

future research may significantly expand both the analytical depth and practical relevance of the proposed 

modeling framework. One promising direction involves the integration of advanced hybrid deep learning 

architectures, such as Long Short-Term Memory (LSTM) networks and Transformer models, which are 

capable of capturing long-range temporal dependencies and seasonal fluctuations. Their application would be 

particularly valuable in the context of higher-frequency forecasting—using monthly or quarterly data—

allowing for more granular and adaptive labour demand predictions. 

A further extension entails broadening the analytical scope beyond the metallurgical sector to include other 

key industries such as energy, and services. Developing a unified multisectoral model of the regional labour 

market would enable researchers to account for inter-industry linkages, labour mobility, and spillover effects, 

thus providing a more comprehensive understanding of how industrial transformations influence regional 

employment dynamics. 

Incorporating indicators of innovation, digitalization, and macroeconomic dynamics represents an 

important direction for future research. The current model focuses on production and productivity due to data 

availability, as official regional statistics in Kazakhstan do not systematically report R&D expenditures, 

technology adoption metrics, or digitalization indicators at the enterprise level. Future studies should aim to 

develop comprehensive datasets—ideally in collabouration with industry associations and enterprises—that 

capture innovation activity (R&D, patents), ICT capital investment, workforce skill composition, and exposure 

to external shocks such as commodity price fluctuations. Integrating such variables would allow models to 

explicitly evaluate how technological progress and market volatility reshape employment structures in the 

industrial sector. 

Another prospective area involves the development of dynamic, real-time forecasting systems that leverage 

high-frequency data sources such as monthly industrial production indices, job vacancy postings, and online 

labour market analytics. By employing methods such as Kalman filtering or Bayesian updating, such systems 

could continuously refine predictions as new information becomes available, thereby improving their 

operational relevance for both policymakers and industry practitioners. 

Future research could also benefit from decomposing aggregate employment projections into occupational 

subcategories—distinguishing between skilled and unskilled, as well as blue-collar and white-collar workers. 

This level of detail would provide critical input for designing evidence-based educational and training 

programs, aligning workforce development with the evolving needs of digital and industrial transformation. 

Finally, an international comparative perspective would add valuable insight into the generalizability of 

findings. Replicating the proposed models across diverse national and regional contexts would make it possible 

to distinguish universal patterns of labour demand formation from context-specific factors, thereby facilitating 
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cross-country benchmarking and supporting knowledge transfer between emerging and developed economies. 

Collectively, these directions underscore the potential of combining machine learning with economic theory 

to develop more adaptive, data-driven, and policy-relevant frameworks for forecasting and managing labour 

market transformations in the era of digital industrialization. 
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