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Application of encoder-based motion analysis and machine learning 

for knee osteoarthritis detection: A pilot study  

Abstract 

Osteoarthritis (OA) is the most common joint disease and a leading cause of disability, most commonly 

affecting the knee. Conventional diagnostics rely primarily on imaging, which often detects changes only 

in advanced stages. This pilot study explores an alternative approach - encoder-based motion analysis 

combined with machine learning - to support early functional assessment of knee OA. The study included 

90 subjects: 45 patients with radiographic evidence of OA and 45 healthy controls. A high-resolution rotary 

encoder integrated into a stabilizing knee orthosis recorded joint flexion-extension angles and velocities 

during open kinetic chain (OKC) and closed kinetic chain (CKC) tasks. Each subject performed five 

repetitions for each condition. Statistical analyses (Mann-Whitney U-test) revealed significant differences 

between groups, particularly in the CKC condition, where OA patients consistently required more time to 

complete movements. Machine learning classifiers were trained on cycle duration features. For OKC, 

accuracy remained modest (Naive Bayes: 65.6%), whereas CKC-based features provided stronger 

discrimination, with a narrow neural network achieving 80% accuracy and balanced sensitivity/specificity. 

The results demonstrate the feasibility of wearable encoder-based systems for objective, non-invasive 

assessment of knee function. CKC tasks showed higher diagnostic value, highlighting their potential for 

integration into clinical protocols. Future research should expand data sets, incorporate multimodal 

sensors, and use advanced algorithms to improve diagnostic performance and support real-world 

monitoring. 

1. INTRODUCTION 

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of disability in older adults 

worldwide (Karpiński et al., 2025a). The condition is characterized by progressive cartilage degradation and 

degenerative changes throughout the joint, resulting in pain, stiffness, and decreased mobility (Allen et al., 

2022; Gelber, 2024). According to the World Health Organization, approximately 528 million people will be 

affected by OA in 2019 (a 113% increase since 1990), with women accounting for nearly 60% of cases. Current 

estimates suggest that the disease affects more than 7% of the world's population, and the number of cases 

continues to rise as populations age (Steinmetz et al., 2023). The knee joint is the most commonly affected, 

with degenerative changes reported in hundreds of millions of people worldwide (Bryliński et al., 2025; 

Courties et al., 2024). For example, epidemiologic studies show that nearly 80% of people over the age of 65 

have radiographic evidence of OA (Mohammadi et al., 2024). Demographic changes, particularly the aging of 

the population, along with risk factors such as obesity and mechanical injuries, indicate that the burden of OA 

will continue to increase in the coming decades (Steinmetz et al., 2023). In advanced stages, when conservative 

and minimally invasive treatments are no longer effective, joint replacement surgery (arthroplasty) often 

remains the last therapeutic option for patients with severe OA (Karpiński et al., 2024a, 2024b, 2024c). OA is 

already recognized as a major factor impairing physical function and quality of life, contributing to substantial 

social and economic costs (De Tocqueville et al., 2021). 

The diagnosis of osteoarthritis is currently based primarily on clinical assessment (history and physical 

examination) and imaging techniques, most commonly radiography (x-ray), sometimes supplemented by 

magnetic resonance imaging (MRI) or ultrasound (Karpiński et al., 2025b). However, radiologic features such 
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as joint space narrowing or osteophyte formation typically appear only in advanced stages of the disease 

(Mohammadi et al., 2024). Clinical symptoms such as pain, crepitus, and limitation of movement may precede 

clear radiographic changes, highlighting the need for methods that allow earlier and more sensitive functional 

assessment of the joints (Karpiński, 2022). Numerical methods, including analytical approaches, Finite 

Element Method (FEM) calculations, and artificial intelligence algorithms, are widely used in the detailed 

description of pathological changes in biological structures, enabling a better understanding and prediction of 

degenerative processes, as well as the development of hybrid diagnostic tools to aid in clinical assessment and 

early disease detection (Matthews et al., 2020; Sbriglio et al., 2025; Zalzal et al., 2004). 

In recent years, there has been a growing interest in vibroacoustic diagnostics of joints, also known as 

vibroarthrography (VAG). In particular, vibroacoustic diagnostics originated in mechanical engineering, 

where it was widely used to evaluate the technical condition of machines and devices through the analysis of 

vibrations and noise (Jedliński et al., 2022; Jedliński & Jonak, 2017; Litak et al., 2010). Over time, these 

methods have been adapted for biomedical applications, allowing them to be used to assess the function of the 

human musculoskeletal system, particularly the knee joints (Kręcisz, 2023; Łysiak et al., 2025; Machrowska 

et al., 2024a). 

In this method, vibrations and sounds generated by the joint during movement (knee flexion and extension) 

are recorded using sensors attached to the skin directly over the joint being examined (Bączkowicz & 

Majorczyk, 2014; Cai et al., 2013; Machrowska et al., 2025). More than a century ago, auscultation of the knee 

joint was described as a means of detecting abnormalities, and today the technique has advanced through the 

use of piezoelectric sensors and high-sensitivity accelerometers (Befrui et al., 2018; Rangayyan et al., 1997; 

Shark et al., 2011; Tanaka & Hoshiyama, 2012; Whittingslow et al., 2020). Research has shown that knees 

affected by degenerative changes produce acoustic signals of greater amplitude and longer duration during 

movement compared to healthy joints (Krakowski et al., 2021; Machrowska, 2024b; Wu et al., 2016). Cartilage 

degeneration and increased intra-articular friction result in characteristic vibrations that can be recorded and 

analyzed. Importantly, vibroacoustic diagnostics are non-invasive, rapid, repeatable, and free of radiation 

exposure, while providing information on the dynamic function of the joint that cannot be captured by static 

MRI or radiographic images (Karpiński et al., 2025b; Khokhlova et al., 2021). Reports in the literature are 

promising, with preliminary preclinical studies indicating that the accuracy of this method in detecting cartilage 

defects exceeds 90% (Rangayyan & Wu, 2009; Wang et al., 2021). However, despite the development of 

numerous prototype systems, vibroacoustic diagnostics is not yet clinically standardized. Ongoing work 

focuses on optimizing sensor placement, measurement protocols, and signal processing techniques to minimize 

artifacts and inter-individual variability. 

In light of these advances, a promising research direction is to combine innovative wearable sensors with 

advanced signal analysis and machine learning techniques. This study presents an original experimental 

approach to the diagnosis of knee osteoarthritis using data acquired from an encoder integrated into the 

rotational axis of a knee brace. The encoder allows precise measurement of knee joint angles and velocities 

during flexion and extension under dynamic conditions. The underlying assumption is that analysis of such 

motion signals can reveal subtle abnormalities in joint function - such as increased resistance, micro-vibrations, 

or altered motion fluidity - that reflect early cartilage damage and structural joint changes. Incorporating an 

encoder into an orthosis also opens the possibility of continuous, real-world monitoring of joint performance, 

providing in vivo functional information that cannot be obtained from a single imaging study. This article 

outlines the global context of OA, reviews the current state of knowledge on vibroacoustic diagnostics and 

machine learning applications, and introduces the concept of using orthotic encoder signals to detect 

degenerative changes. The aim of the study is to evaluate the feasibility and diagnostic potential of this 

approach and to determine whether knee motion parameters recorded by a sensor-equipped orthosis can serve 

as valuable digital biomarkers of knee osteoarthritis. 

2. MATERIALS AND METHODS 

Within the framework of cooperation between the Lublin University of Technology, the Independent Public 

Health Center in Łęczna and the Medical University of Lublin, experimental research was conducted to collect 

the data analyzed in this study. The primary data set was obtained from workplace investigations using a 

proprietary measurement system, conducted both in the orthopedic ward and in the laboratory facilities of the 

Lublin University of Technology. 
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2.1. Study participants 

The study group consisted of 90 subjects: 45 patients with knee osteoarthritis (OA) and 45 healthy 

volunteers (HC). Patients with OA had radiographic and clinical evidence of advanced degenerative changes 

in the knee joint and were scheduled for surgical treatment (e.g., arthroscopy or endoprosthetic implantation). 

Control subjects reported no history of knee pain or injury. 

The mean age of the OA patients was 56.1 ± 14.9 years, which was significantly higher than that of the 

control group (29.3 ± 12.6 years). Body weight and BMI were also higher in the OA group (85.5 ± 16.7 kg; 

BMI 29.3 ± 3.7) compared to the HC group (67.4 ± 15.1 kg; BMI 20.9 ± 5.0). The control group was 

predominantly female (29 females, 16 males), whereas the OA group had a balanced gender distribution (24 

females, 21 males).  

In the present study, all patients included in the OA group had radiographically and clinically confirmed 

knee osteoarthritis, with disease severity classified according to the Kellgren–Lawrence (K–L) grading system 

(Kohn et al., 2016; Olsson et al., 2021), most frequently grades III–IV. The K–L system distinguishes four 

main stages: grade I (doubtful OA – minimal osteophytes, no joint space narrowing), grade II (mild OA – 

definite osteophytes, possible joint space narrowing), grade III (moderate OA – multiple osteophytes, definite 

joint space narrowing, possible subchondral sclerosis), and grade IV (severe OA – large osteophytes, marked 

joint space narrowing, severe sclerosis, and possible bone deformity). Intraoperative assessment further 

confirmed advanced degenerative changes and cartilage damage, which were additionally categorized using 

the Outerbridge classification (Slattery & Kweon, 2018). This dual grading approach ensured a reliable and 

reproducible definition of disease stage in the OA cohort. 

It should be emphasized that the osteoarthritis (OA) and healthy control (HC) groups differed significantly 

in terms of age, BMI, and sex distribution. However, these differences reflect the natural clinical characteristics 

of knee osteoarthritis, which predominantly affects individuals over the age of 50. The inclusion of younger 

volunteers in the control group was intended to minimize the risk of asymptomatic cartilage lesions, which are 

common in older populations. Full matching with respect to age and body weight was not feasible due to 

clinical eligibility criteria for surgical treatment and organizational constraints (including those related to the 

COVID-19 pandemic). 

Both groups nevertheless underwent a comprehensive clinical and orthopedic evaluation, and in the OA 

group the presence of cartilage damage was intraoperatively confirmed and classified according to the 

Outerbridge grading system, thereby strengthening the reliability of group assignment. Although demographic 

differences may represent a potential confounding factor, the adopted measurement protocol—covering the 

full range of knee motion—helped to mitigate their impact on signal analysis. Future studies will include better 

age-, BMI-, and sex-matched control groups to further minimize the risk of confounding effects. 

All participants were fully informed about the study’s objectives, procedures, and potential risks, and 

provided written informed consent. The study protocol was approved by the Bioethics Committee of the 

Medical University of Lublin (No. KE-0254/261/2019) and conducted in accordance with the principles of 

Good Clinical Practice. Additionally, each participant underwent a standard clinical examination of the knee 

joint, and knee function was assessed using the Lysholm questionnaire. The results in the OA group (mean 

~45 points) indicated significant functional impairment, whereas healthy individuals achieved nearly 

maximum values (mean ~95 points).  

2.2. Measurement system and test protocol 

The knee mobility measurement station was based on a digital rotary encoder. A high-precision encoder 

(EMS22A50, Bourns) with a resolution of 1024 pulses per revolution was integrated into the axis of the 

stabilizing knee brace, allowing continuous measurement of joint flexion angles and calculation of angular 

velocity during motion. The signals were recorded with a sampling frequency of 1400 Hz and a resolution of 

10 bits, ensuring sufficient temporal resolution and accuracy in mapping the knee kinematics. The orthosis 

provided both stabilization and structural support for the sensor, ensuring repeatability and safety of the 

measurements. 
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Fig. 1. Block diagram of the measurement system 

Signals from the encoder were transmitted to a measurement card connected to a PC equipped with 

dedicated software for real-time data acquisition and processing. The complete measurement system is 

presented in Fig. 1, which shows, in sequence: the tested joint with the brace and encoder, the signal acquisition 

track, the measurement card, and the computer unit. 

The protocol involved active knee extension and flexion within a range of 90° to 0° and back, performed 

under both open kinetic chain (OKC) and closed kinetic chain (CKC) conditions. In OKC, participants sat with 

the lower limb hanging freely and executed extension from 90° to 0°, followed by flexion back to 90°. In CKC, 

participants performed a sit-to-stand movement (knee flexion from approximately 90° to 0°) and then returned 

to sitting, with feet firmly supported on the ground. Each participant completed five repetitions of both 

movement variants, maintaining a consistent pace of ~2 seconds per full cycle, which ensured repeatable and 

comparable recordings. 

2.3. Statistical analysis and machine learning approach 

Statistical analyses were performed to compare task completion times between the healthy control (HC) 

and osteoarthritis (OA) groups. For each test condition (open chain, OKC; closed chain, CKC) and each of the 

five cycles, between-group comparisons were made using the nonparametric Mann-Whitney U test. This test 

was chosen because it does not assume normally distributed data and is appropriate for independent samples. 

A significance level of α = 0.05 was used. In addition to the descriptive statistics (box plots), detailed results 

of the statistical comparisons are presented in Tables 1 and 2. 

In addition to statistical testing, the measured durations of individual cycles were pre-processed and 

formatted into an input dataset for machine learning models. The goal was to perform a binary classification 

(HC vs. OA) based on the test performance. The training process used a 5-fold cross-validation scheme to 

ensure robust evaluation of model performance and to minimize the risk of overfitting. 

Six classifiers available in the MATLAB Classification Learner Toolbox were used in this study. Each 

model represents a different family of machine learning methods, allowing the data to be analyzed from 

different methodological perspectives. 

The first algorithm used was Naive Bayes, a probabilistic classifier based on Bayes' theorem that assumes 

conditional independence of input features. Due to its simplicity and computational efficiency, Naive Bayes is 

widely used in text classification and tabular data analysis (Machrowska et al., 2020a; Messaoudene & Harrar, 

2022; Mitchell, 2013; Szabelski et al., 2022). 

The second model was k-Nearest Neighbors (KNN), an instance-based learning algorithm that assigns a 

class label according to the majority vote of the k nearest neighbors in the feature space. While intuitive and 

nonparametric, KNN can be sensitive to redundant features and noise (Cover & Hart, 1967; Kulisz, et al., 

2024; Machrowska et al., 2020b). 
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Another classifier used in the experiments was the Support Vector Machine (SVM). This method constructs 

a hyperplane that maximizes the margin of separation between classes. Due to its margin-maximization 

principle, SVM performs effectively in both linear and nonlinear classification tasks, especially in high-

dimensional spaces (Cortes & Vapnik, 1995; Falkowicz & Kulisz, 2024). 

The study also applied logistic regression (GLM), which is a special case of generalized linear model with 

logit link function and Bernoulli distribution. Logistic regression is a classical statistical method that is widely 

used for both binary and multiclass classification (Hosmer et al., 2013). 

In addition, two neural network architectures available in the Classification Learner Toolbox were used: 

Narrow Neural Network and Wide Neural Network. Both models are feedforward multilayer perceptrons with 

a single hidden layer, differing in the number of hidden neurons - narrow networks use a relatively small 

number (e.g. 10), while wide networks use significantly more (e.g. 100). The broader architecture allows for 

greater capacity to approximate nonlinear patterns in the data, but increases the risk of overfitting (Bishop, 

1995; Goodfellow et al., 2016; Kulisz et al., 2024; Kulisz, et al., 2024; Kwiatkowski et al., 2023). 

3. RESULTS 

The duration of 5 repetition cycles (analyzed as single cycles) was examined and compared for each 

participant in both tests, in the control group (45 individuals) and in the patient group (45 individuals). This 

approach primarily allowed us to assess the stability of the repetition dynamics over time and to compare them 

between groups and test types. Figure 2 shows a graphical summary of the basic statistics (box plots) for the 

individual cycles and sequences. 

 

Fig. 2. Statistical comparison of the duration of individual cycles 

Analysis of the box plots comparing the duration of each cycle indicates that the results are stable and 

repeatable over time. As expected, participants in the control group (HC) completed each repetition faster in 

both tests (OKC and CKC) compared to the osteoarthritis group (OA). The differences between the two test 

types were generally consistent across the test scenarios, with the largest discrepancies observed in the closed 

chain condition. This may be explained by the increased biomechanical demands and greater load transfer 

through the affected joints during closed-chain tasks, which may disproportionately slow performance in 

patients with osteoarthritis. We compared task completion time between healthy controls (HC) and patients 

with osteoarthritis (OA) using the nonparametric Mann-Whitney U test (also known as the Wilcoxon rank-
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sum test). The results of the statistical analyses for the open chain (OKC) and closed chain (CKC) conditions 

are shown in Tables Tab. 1 and Tab. 2, respectively. 

Tab. 1. Open-Chain Kinematic Test (OKC) – comparison of cycle durations 

Cycle Comparison N (HC) N (OA) 
Mean 

HC (s) 

Mean 

OA (s) 

Mean 

Diff (s) 
p-value Significant 

Cycle 1 HC vs OA 45 45 1.246 1.528 -0.283 0.0688 No 

Cycle 2 HC vs OA 45 45 1.297 1.501 -0.204 0.1005 No 

Cycle 3 HC vs OA 45 45 1.302 1.607 -0.305 0.0070 Yes 

Cycle 4 HC vs OA 45 45 1.305 1.589 -0.284 0.0044 Yes 

Cycle 5 HC vs OA 45 45 1.292 1.563 -0.272 0.0062 Yes 

Tab. 2. Close-Chain Kinematic Test (CKC) – comparison of cycle durations. 

Cycle Comparison N (HC) N (OA) 
Mean 

HC (s) 

Mean 

OA (s) 

Mean 

Diff (s) 
p-value Significant 

Cycle 1 HC vs OA 45 45 1.514 2.211 -0.697 3.91e-06 Yes 

Cycle 2 HC vs OA 45 45 1.691 2.211 -0.520 3.07e-05 Yes 

Cycle 3 HC vs OA 45 45 1.695 2.202 -0.507 3.42e-05 Yes 

Cycle 4 HC vs OA 45 45 1.695 2.252 -0.556 1.78e-06 Yes 

Cycle 5 HC vs OA 45 45 1.610 2.225 -0.616 2.21e-07 Yes 

 

In the open-chain condition, the mean completion time was consistently lower in the healthy control group 

(HC) compared with the osteoarthritis group (OA). However, the differences between groups were not 

statistically significant in the first two cycles (p = 0.069 and p = 0.101, respectively; Tab.1). From the third 

cycle onward, significant group differences were observed, with HC completing the repetitions faster than OA 

(p-values ranging from 0.004 to 0.007). These findings suggest that performance disparities between groups 

become more evident over time, indicating that the open-chain condition may reveal cumulative differences 

in motor control and endurance. In the closed-chain condition, the differences between groups were more 

consistent and robust (Tab.2). Across all five cycles, HC participants performed significantly faster than OA 

participants, with mean differences ranging from –0.51 to –0.70 seconds (all p < 0.001). These results indicate 

stable and reproducible performance across cycles and highlight that patients with osteoarthritis experience 

consistently longer execution times under the closed-chain condition compared with healthy controls. The 

greater biomechanical load and higher joint demands in closed-chain movements likely contribute to the 

observed performance gap. 

Using the cycle duration data as input features, several machine learning classifiers were trained in 

MATLAB R2025a to distinguish between healthy controls (HC) and osteoarthritis patients (OA). Model 

performance was evaluated using a 5-fold cross-validation procedure. The three best-performing classifiers for 

each test condition (OKC and CKC) are summarized in tables Tab. 3 and Tab.4 respectively. For each 

classifier, key performance metrics (accuracy, sensitivity, specificity, and F1-score) are reported. 

Tab. 3. Classification results for OKC condition (5-fold cross-validation, MATLAB R2025a) 

Classifier Accuracy (%) Macro Precision (%) Macro Recall (%) Macro F1-score (%) 

Naive Bayes 65.6 69.9 65.6 63.6 

KNN 65.6 67.5 65.6 64.6 

SVM 63.3 67.0 63.3 61.2 

Tab. 4. Classification results for CKC condition (5-fold cross-validation, MATLAB R2025a) 

Classifier Accuracy (%) Macro Precision (%) Macro Recall (%) Macro F1-score (%) 

Narrow Neural Network 80.0 80.0 80.0 80.0 

Logistic Regression (GLM) 77.8 78.3 77.8 77.7 

Wide Neural Network 77.8 77.8 77.8 77.8 

 

In the open chain condition (OKC), classification based on cycle duration features achieved moderate 

accuracy across models (Table 3). The best performance was obtained using a Naive Bayes classifier with an 

accuracy of 65.6%, macro precision of 69.9%, macro recall of 65.6% and macro F1 score of 63.6%. Similar 
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results were obtained with the K-Nearest Neighbors (KNN) classifier, while the Support Vector Machine 

(SVM) performed slightly worse with an accuracy of 63.3% and a macro F1-score of 61.2%. 

These results indicate that although the models were able to capture differences between HC and OA 

participants in the OKC condition, classification accuracy remained modest, suggesting that the discriminative 

power of open-chain performance measures alone is limited. 

In the closed-chain condition (CKC), machine learning classifiers showed significantly higher performance 

than in the open-chain setting (Table 4). The best results were obtained with a narrow neural network, which 

achieved 80% accuracy, macro precision, recall and F1 score, reflecting a balanced classification between HC 

and OA groups. Logistic regression (GLM) and a wide neural network model yielded slightly lower but 

comparable performance (accuracy ~77.8%). 

Overall, these results indicate that cycle duration features from the CKC condition have stronger 

discriminative power for distinguishing HC from OA than those from the OKC condition, confirming the 

higher sensitivity of the closed-chain test to group differences. 

To further illustrate the classification performance, confusion matrices were generated for the best model 

in each condition (OKC and CKC), as shown in Figure 3. These matrices provide a detailed overview of true 

positive, true negative, false positive, and false negative classifications, highlighting the ability of the models 

to correctly identify group membership. 

 

Fig. 3. Confusion matrices for the best-performing classifiers in the open-chain (OKC, left) and closed-chain (CKC, right) 

conditions 

In the OKC condition (Naive Bayes classifier), the model correctly identified 40 HC subjects and 19 OA 

subjects. However, misclassification was frequent in the OA group, with 26 OA subjects misclassified as HC, 

which lowered the overall sensitivity for detecting OA cases. 

In contrast, the CKC condition (neural network classifier) showed a more balanced classification 

performance, with 36 correctly identified HC and 36 correctly identified OA subjects. Only 9 subjects from 

each group were misclassified, resulting in higher accuracy and more stable performance across classes. 

Overall, the confusion matrices confirm that CKC features provide greater discriminative power and lead 

to more reliable classification between HC and OA compared to OKC features, where OA subjects were more 

often misclassified. 

4. DISCUSSION 

Statistical analyses confirmed significant differences in task completion times between healthy controls 

(HC) and patients with osteoarthritis (OA). In the OKC condition, the differences between groups were less 

consistent: no significant effects were observed in the first two cycles, whereas cycles three to five showed 

clear differences between groups. This suggests that open-chain tasks may only partially capture functional 

impairments in OA, becoming more sensitive as the test progresses and fatigue or reduced endurance 

manifests. In contrast, the CKC condition consistently showed highly significant differences across all five 

cycles, with OA participants taking significantly more time to complete the tasks. This suggests that closed-

loop movements, which involve greater biomechanical stress and more complex neuromuscular control, 

provide a more robust measure of functional impairment. 
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Machine learning results support these findings. Classification based on OKC features achieved only 

moderate accuracy, with a tendency to misclassify OA participants as healthy controls, reflecting the weaker 

discriminative signal in open-chain tasks. In contrast, classifiers trained on CKC features achieved 

significantly higher accuracy and more balanced performance, as demonstrated by the confusion matrices. The 

superior discriminative power of the CKC features is likely due to the higher mechanical demands and joint 

loading associated with closed chain conditions, which exacerbate the performance gap between OA patients 

and healthy individuals. 

Taken together, both the statistical and machine learning analyses indicate that the CKC state is a more 

reliable and clinically meaningful test for detecting functional impairment in osteoarthritis. These findings 

suggest that incorporating closed-loop assessments into clinical evaluation protocols could improve diagnostic 

accuracy and provide a stronger foundation for machine learning-based decision support systems. 

Recent advances have applied machine learning and deep learning to biomechanical gait data for OA 

assessment, demonstrating high accuracy in early detection of knee osteoarthritis (KOA) (Bandara et al., 2025; 

McPherson et al., 2024; Wipperman et al., 2024). For example, markerless vision-based approaches have 

significantly improved KOA classification from gait kinematics, and reviews note that the integration of 

computational models with wearable sensor data and ML holds great promise for understanding the 

biomechanics of OA (Ben Hassine et al., 2024; Diamond et al., 2024). These methods typically use detailed 

biomechanical characteristics, parameters such as swing phase angular velocity or jerk-based smoothness 

indices, which are sensitive to subtle joint changes even in early OA (Bandara et al., 2025; Castro Mejia et al., 

2024). 

5. LIMITATIONS AND FUTURE PLANS 

This pilot study has several limitations that should be acknowledged. First, the relatively small sample size 

and the inclusion of patients with advanced stages of knee osteoarthritis may limit the generalizability of the 

findings to earlier disease stages. Second, the encoder-based measurement system focused primarily on 

movement duration and angular velocity, without incorporating additional biomechanical or physiological 

parameters such as ground reaction forces, electromyography (EMG), or pain-related functional scales, which 

could provide a more comprehensive assessment. An additional limitation is the imbalance in age, BMI, and 

sex distribution between OA and HC groups, which may have partially influenced the observed differences. 

Future research should therefore prioritize recruitment of more demographically matched cohorts to strengthen 

the robustness and generalizability of the findings. Moreover, the machine learning models were trained on a 

limited feature set derived from cycle durations, which, while informative, may not fully capture the 

complexity of joint kinematics. Finally, as data collection was performed in controlled laboratory and clinical 

settings, it remains uncertain how well this approach will translate to continuous monitoring under real-world 

conditions. 

Future work will focus on expanding the participant pool to include individuals at different stages of knee 

osteoarthritis, as well as at-risk populations, to evaluate the method’s diagnostic sensitivity across disease 

progression. The integration of multimodal sensor data—combining encoders with inertial measurement units 

(IMUs), EMG, or acoustic sensors—will allow for richer biomechanical characterization and more robust 

machine learning models. Additionally, advanced algorithms such as deep learning and ensemble methods will 

be explored to improve classification accuracy and generalizability. A long-term goal is to develop a clinically 

validated, wearable smart orthosis capable of real-time, at-home monitoring, thereby supporting early 

detection, personalized treatment planning, and rehabilitation progress tracking in patients with knee 

osteoarthritis. 

6. CONCLUSIONS 

This pilot study demonstrated that encoder-based motion analysis combined with machine learning offers 

a promising approach for functional assessment of knee osteoarthritis. The results confirmed that closed-chain 

(CKC) tasks provided more robust differentiation between healthy controls and OA patients compared with 

open-chain (OKC) movements, both in statistical analyses and in classification performance. Machine learning 

models trained on CKC-derived features achieved accuracy levels up to 80%, indicating the diagnostic 

potential of this approach. 
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These findings highlight the feasibility of integrating wearable encoder-based systems into clinical and 

rehabilitation practice. Such solutions may support early diagnosis, personalized treatment planning, and long-

term monitoring of joint function. However, the encoder signal alone is not sufficient for precise diagnosis and 

should be regarded as an auxiliary source of information. It can serve as an additional feature input for machine 

learning models, complementing other biomechanical or clinical data. 

Further research with larger and more diverse cohorts, enriched sensor modalities, and advanced 

computational methods is warranted to validate and extend the clinical applicability of this method. 
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ML – Machine Learning 
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