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Application of encoder-based motion analysis and machine learning
for knee osteoarthritis detection: A pilot study

Abstract

Osteoarthritis (OA) is the most common joint disease and a leading cause of disability, most commonly
affecting the knee. Conventional diagnostics rely primarily on imaging, which often detects changes only
in advanced stages. This pilot study explores an alternative approach - encoder-based motion analysis
combined with machine learning - to support early functional assessment of knee OA. The study included
90 subjects: 45 patients with radiographic evidence of OA and 45 healthy controls. A high-resolution rotary
encoder integrated into a stabilizing knee orthosis recorded joint flexion-extension angles and velocities
during open kinetic chain (OKC) and closed kinetic chain (CKC) tasks. Each subject performed five
repetitions for each condition. Statistical analyses (Mann-Whitney U-test) revealed significant differences
between groups, particularly in the CKC condition, where OA patients consistently required more time to
complete movements. Machine learning classifiers were trained on cycle duration features. For OKC,
accuracy remained modest (Naive Bayes: 05.6%), whereas CKC-based features provided stronger
discrimination, with a narrow neural network achieving 80% accuracy and balanced sensitivity/specificity.
The results demonstrate the feasibility of wearable encoder-based systems for objective, non-invasive
assessment of knee function. CKC tasks showed higher diagnostic value, highlighting their potential for
integration into clinical protocols. Future research should expand data sets, incorporate multimodal
sensors, and use advanced algorithms to improve diagnostic performance and support real-world
monitoring.

1. INTRODUCTION

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of disability in older adults
worldwide (Karpinski et al., 2025a). The condition is characterized by progressive cartilage degradation and
degenerative changes throughout the joint, resulting in pain, stiffness, and decreased mobility (Allen et al.,
2022; Gelber, 2024). According to the World Health Organization, approximately 528 million people will be
affected by OA in 2019 (a 113% increase since 1990), with women accounting for nearly 60% of cases. Current
estimates suggest that the disease affects more than 7% of the world's population, and the number of cases
continues to rise as populations age (Steinmetz et al., 2023). The knee joint is the most commonly affected,
with degenerative changes reported in hundreds of millions of people worldwide (Brylinski et al., 2025;
Courties et al., 2024). For example, epidemiologic studies show that nearly 80% of people over the age of 65
have radiographic evidence of OA (Mohammadi et al., 2024). Demographic changes, particularly the aging of
the population, along with risk factors such as obesity and mechanical injuries, indicate that the burden of OA
will continue to increase in the coming decades (Steinmetz et al., 2023). In advanced stages, when conservative
and minimally invasive treatments are no longer effective, joint replacement surgery (arthroplasty) often
remains the last therapeutic option for patients with severe OA (Karpinski et al., 2024a, 2024b, 2024c). OA is
already recognized as a major factor impairing physical function and quality of life, contributing to substantial
social and economic costs (De Tocqueville et al., 2021).

The diagnosis of osteoarthritis is currently based primarily on clinical assessment (history and physical
examination) and imaging techniques, most commonly radiography (x-ray), sometimes supplemented by
magnetic resonance imaging (MRI) or ultrasound (Karpinski et al., 2025b). However, radiologic features such
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as joint space narrowing or osteophyte formation typically appear only in advanced stages of the disease
(Mohammadi et al., 2024). Clinical symptoms such as pain, crepitus, and limitation of movement may precede
clear radiographic changes, highlighting the need for methods that allow earlier and more sensitive functional
assessment of the joints (Karpinski, 2022). Numerical methods, including analytical approaches, Finite
Element Method (FEM) calculations, and artificial intelligence algorithms, are widely used in the detailed
description of pathological changes in biological structures, enabling a better understanding and prediction of
degenerative processes, as well as the development of hybrid diagnostic tools to aid in clinical assessment and
early disease detection (Matthews et al., 2020; Sbriglio et al., 2025; Zalzal et al., 2004).

In recent years, there has been a growing interest in vibroacoustic diagnostics of joints, also known as
vibroarthrography (VAG). In particular, vibroacoustic diagnostics originated in mechanical engineering,
where it was widely used to evaluate the technical condition of machines and devices through the analysis of
vibrations and noise (Jedlinski et al., 2022; Jedlinski & Jonak, 2017; Litak et al., 2010). Over time, these
methods have been adapted for biomedical applications, allowing them to be used to assess the function of the
human musculoskeletal system, particularly the knee joints (Krecisz, 2023; Lysiak et al., 2025; Machrowska
et al., 2024a).

In this method, vibrations and sounds generated by the joint during movement (knee flexion and extension)
are recorded using sensors attached to the skin directly over the joint being examined (Baczkowicz &
Majorczyk, 2014; Cai et al., 2013; Machrowska et al., 2025). More than a century ago, auscultation of the knee
joint was described as a means of detecting abnormalities, and today the technique has advanced through the
use of piezoelectric sensors and high-sensitivity accelerometers (Befrui et al., 2018; Rangayyan et al., 1997;
Shark et al., 2011; Tanaka & Hoshiyama, 2012; Whittingslow et al., 2020). Research has shown that knees
affected by degenerative changes produce acoustic signals of greater amplitude and longer duration during
movement compared to healthy joints (Krakowski et al., 2021; Machrowska, 2024b; Wu et al., 2016). Cartilage
degeneration and increased intra-articular friction result in characteristic vibrations that can be recorded and
analyzed. Importantly, vibroacoustic diagnostics are non-invasive, rapid, repeatable, and free of radiation
exposure, while providing information on the dynamic function of the joint that cannot be captured by static
MRI or radiographic images (Karpinski et al., 2025b; Khokhlova et al., 2021). Reports in the literature are
promising, with preliminary preclinical studies indicating that the accuracy of this method in detecting cartilage
defects exceeds 90% (Rangayyan & Wu, 2009; Wang et al., 2021). However, despite the development of
numerous prototype systems, vibroacoustic diagnostics is not yet clinically standardized. Ongoing work
focuses on optimizing sensor placement, measurement protocols, and signal processing techniques to minimize
artifacts and inter-individual variability.

In light of these advances, a promising research direction is to combine innovative wearable sensors with
advanced signal analysis and machine learning techniques. This study presents an original experimental
approach to the diagnosis of knee osteoarthritis using data acquired from an encoder integrated into the
rotational axis of a knee brace. The encoder allows precise measurement of knee joint angles and velocities
during flexion and extension under dynamic conditions. The underlying assumption is that analysis of such
motion signals can reveal subtle abnormalities in joint function - such as increased resistance, micro-vibrations,
or altered motion fluidity - that reflect early cartilage damage and structural joint changes. Incorporating an
encoder into an orthosis also opens the possibility of continuous, real-world monitoring of joint performance,
providing in vivo functional information that cannot be obtained from a single imaging study. This article
outlines the global context of OA, reviews the current state of knowledge on vibroacoustic diagnostics and
machine learning applications, and introduces the concept of using orthotic encoder signals to detect
degenerative changes. The aim of the study is to evaluate the feasibility and diagnostic potential of this
approach and to determine whether knee motion parameters recorded by a sensor-equipped orthosis can serve
as valuable digital biomarkers of knee osteoarthritis.

2. MATERIALS AND METHODS

Within the framework of cooperation between the Lublin University of Technology, the Independent Public
Health Center in Leczna and the Medical University of Lublin, experimental research was conducted to collect
the data analyzed in this study. The primary data set was obtained from workplace investigations using a
proprietary measurement system, conducted both in the orthopedic ward and in the laboratory facilities of the
Lublin University of Technology.
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2.1. Study participants

The study group consisted of 90 subjects: 45 patients with knee osteoarthritis (OA) and 45 healthy
volunteers (HC). Patients with OA had radiographic and clinical evidence of advanced degenerative changes
in the knee joint and were scheduled for surgical treatment (e.g., arthroscopy or endoprosthetic implantation).
Control subjects reported no history of knee pain or injury.

The mean age of the OA patients was 56.1 £ 14.9 years, which was significantly higher than that of the
control group (29.3 + 12.6 years). Body weight and BMI were also higher in the OA group (85.5 + 16.7 kg;
BMI 29.3 + 3.7) compared to the HC group (67.4 = 15.1 kg; BMI 20.9 £+ 5.0). The control group was
predominantly female (29 females, 16 males), whereas the OA group had a balanced gender distribution (24
females, 21 males).

In the present study, all patients included in the OA group had radiographically and clinically confirmed
knee osteoarthritis, with disease severity classified according to the Kellgren—Lawrence (K-L) grading system
(Kohn et al., 2016; Olsson et al., 2021), most frequently grades III-IV. The K-L system distinguishes four
main stages: grade [ (doubtful OA — minimal osteophytes, no joint space narrowing), grade II (mild OA —
definite osteophytes, possible joint space narrowing), grade III (moderate OA — multiple osteophytes, definite
joint space narrowing, possible subchondral sclerosis), and grade IV (severe OA — large osteophytes, marked
joint space narrowing, severe sclerosis, and possible bone deformity). Intraoperative assessment further
confirmed advanced degenerative changes and cartilage damage, which were additionally categorized using
the Outerbridge classification (Slattery & Kweon, 2018). This dual grading approach ensured a reliable and
reproducible definition of disease stage in the OA cohort.

It should be emphasized that the osteoarthritis (OA) and healthy control (HC) groups differed significantly
in terms of age, BMI, and sex distribution. However, these differences reflect the natural clinical characteristics
of knee osteoarthritis, which predominantly affects individuals over the age of 50. The inclusion of younger
volunteers in the control group was intended to minimize the risk of asymptomatic cartilage lesions, which are
common in older populations. Full matching with respect to age and body weight was not feasible due to
clinical eligibility criteria for surgical treatment and organizational constraints (including those related to the
COVID-19 pandemic).

Both groups nevertheless underwent a comprehensive clinical and orthopedic evaluation, and in the OA
group the presence of cartilage damage was intraoperatively confirmed and classified according to the
Outerbridge grading system, thereby strengthening the reliability of group assignment. Although demographic
differences may represent a potential confounding factor, the adopted measurement protocol—covering the
full range of knee motion—helped to mitigate their impact on signal analysis. Future studies will include better
age-, BMI-, and sex-matched control groups to further minimize the risk of confounding effects.

All participants were fully informed about the study’s objectives, procedures, and potential risks, and
provided written informed consent. The study protocol was approved by the Bioethics Committee of the
Medical University of Lublin (No. KE-0254/261/2019) and conducted in accordance with the principles of
Good Clinical Practice. Additionally, each participant underwent a standard clinical examination of the knee
joint, and knee function was assessed using the Lysholm questionnaire. The results in the OA group (mean
~45 points) indicated significant functional impairment, whereas healthy individuals achieved nearly
maximum values (mean ~95 points).

2.2. Measurement system and test protocol

The knee mobility measurement station was based on a digital rotary encoder. A high-precision encoder
(EMS22A50, Bourns) with a resolution of 1024 pulses per revolution was integrated into the axis of the
stabilizing knee brace, allowing continuous measurement of joint flexion angles and calculation of angular
velocity during motion. The signals were recorded with a sampling frequency of 1400 Hz and a resolution of
10 bits, ensuring sufficient temporal resolution and accuracy in mapping the knee kinematics. The orthosis
provided both stabilization and structural support for the sensor, ensuring repeatability and safety of the
measurements.
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Fig. 1. Block diagram of the measurement system

Signals from the encoder were transmitted to a measurement card connected to a PC equipped with
dedicated software for real-time data acquisition and processing. The complete measurement system is
presented in Fig. 1, which shows, in sequence: the tested joint with the brace and encoder, the signal acquisition
track, the measurement card, and the computer unit.

The protocol involved active knee extension and flexion within a range of 90° to 0° and back, performed
under both open kinetic chain (OKC) and closed kinetic chain (CKC) conditions. In OKC, participants sat with
the lower limb hanging freely and executed extension from 90° to 0°, followed by flexion back to 90°. In CKC,
participants performed a sit-to-stand movement (knee flexion from approximately 90° to 0°) and then returned
to sitting, with feet firmly supported on the ground. Each participant completed five repetitions of both
movement variants, maintaining a consistent pace of ~2 seconds per full cycle, which ensured repeatable and
comparable recordings.

2.3. Statistical analysis and machine learning approach

Statistical analyses were performed to compare task completion times between the healthy control (HC)
and osteoarthritis (OA) groups. For each test condition (open chain, OKC; closed chain, CKC) and each of the
five cycles, between-group comparisons were made using the nonparametric Mann-Whitney U test. This test
was chosen because it does not assume normally distributed data and is appropriate for independent samples.
A significance level of o = 0.05 was used. In addition to the descriptive statistics (box plots), detailed results
of the statistical comparisons are presented in Tables 1 and 2.

In addition to statistical testing, the measured durations of individual cycles were pre-processed and
formatted into an input dataset for machine learning models. The goal was to perform a binary classification
(HC vs. OA) based on the test performance. The training process used a 5-fold cross-validation scheme to
ensure robust evaluation of model performance and to minimize the risk of overfitting.

Six classifiers available in the MATLAB Classification Learner Toolbox were used in this study. Each
model represents a different family of machine learning methods, allowing the data to be analyzed from
different methodological perspectives.

The first algorithm used was Naive Bayes, a probabilistic classifier based on Bayes' theorem that assumes
conditional independence of input features. Due to its simplicity and computational efficiency, Naive Bayes is
widely used in text classification and tabular data analysis (Machrowska et al., 2020a; Messaoudene & Harrar,
2022; Mitchell, 2013; Szabelski et al., 2022).

The second model was k-Nearest Neighbors (KNN), an instance-based learning algorithm that assigns a
class label according to the majority vote of the k nearest neighbors in the feature space. While intuitive and
nonparametric, KNN can be sensitive to redundant features and noise (Cover & Hart, 1967; Kulisz, et al.,
2024; Machrowska et al., 2020b).
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Another classifier used in the experiments was the Support Vector Machine (SVM). This method constructs
a hyperplane that maximizes the margin of separation between classes. Due to its margin-maximization
principle, SVM performs effectively in both linear and nonlinear classification tasks, especially in high-
dimensional spaces (Cortes & Vapnik, 1995; Falkowicz & Kulisz, 2024).

The study also applied logistic regression (GLM), which is a special case of generalized linear model with
logit link function and Bernoulli distribution. Logistic regression is a classical statistical method that is widely
used for both binary and multiclass classification (Hosmer et al., 2013).

In addition, two neural network architectures available in the Classification Learner Toolbox were used:
Narrow Neural Network and Wide Neural Network. Both models are feedforward multilayer perceptrons with
a single hidden layer, differing in the number of hidden neurons - narrow networks use a relatively small
number (e.g. 10), while wide networks use significantly more (e.g. 100). The broader architecture allows for
greater capacity to approximate nonlinear patterns in the data, but increases the risk of overfitting (Bishop,
1995; Goodfellow et al., 2016; Kulisz et al., 2024; Kulisz, et al., 2024; Kwiatkowski et al., 2023).

3. RESULTS

The duration of 5 repetition cycles (analyzed as single cycles) was examined and compared for each
participant in both tests, in the control group (45 individuals) and in the patient group (45 individuals). This
approach primarily allowed us to assess the stability of the repetition dynamics over time and to compare them
between groups and test types. Figure 2 shows a graphical summary of the basic statistics (box plots) for the
individual cycles and sequences.
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Fig. 2. Statistical comparison of the duration of individual cycles

Analysis of the box plots comparing the duration of each cycle indicates that the results are stable and
repeatable over time. As expected, participants in the control group (HC) completed each repetition faster in
both tests (OKC and CKC) compared to the osteoarthritis group (OA). The differences between the two test
types were generally consistent across the test scenarios, with the largest discrepancies observed in the closed
chain condition. This may be explained by the increased biomechanical demands and greater load transfer
through the affected joints during closed-chain tasks, which may disproportionately slow performance in
patients with osteoarthritis. We compared task completion time between healthy controls (HC) and patients
with osteoarthritis (OA) using the nonparametric Mann-Whitney U test (also known as the Wilcoxon rank-
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sum test). The results of the statistical analyses for the open chain (OKC) and closed chain (CKC) conditions
are shown in Tables Tab. 1 and Tab. 2, respectively.

Tab. 1. Open-Chain Kinematic Test (OKC) — comparison of cycle durations

Cycle Comparison N (HC) N (0A) gg‘(r; ) I(\)/Iza(r; ) gli:'??s) p-value Significant
Cycle 1 HC vs OA 45 45 1.246 1.528 -0.283 | 0.0688 No
Cycle 2 HC vs OA 45 45 1.297 1.501 -0.204 | 0.1005 No
Cycle 3 HC vs OA 45 45 1.302 1.607 -0.305 | 0.0070 Yes
Cycle 4 HC vs OA 45 45 1.305 1.589 -0.284 | 0.0044 Yes
Cycle 5 HC vs OA 45 45 1.292 1.563 -0.272 | 0.0062 Yes

Tab. 2. Close-Chain Kinematic Test (CKC) — comparison of cycle durations.

Cycle Comparison N HC) | N(0A) géa(z ) 1(\)/123(1; ) Ih;li:'??s) p-value | Significant
Cyclel | HCvs OA 45 45 1.514 2211 -0.697 3.91e-06 | Yes
Cycle2 | HCvs OA 45 45 1.691 2211 -0.520 3.07e-05 | Yes
Cycle3 | HCvs OA 45 45 1.695 2.202 -0.507 3.42e-05 | Yes
Cycle4 | HCvs OA 45 45 1.695 2.252 -0.556 1.78¢-06 | Yes
Cycle 5 | HCvs OA 45 45 1.610 2.225 -0.616 2.21e-07 | Yes

In the open-chain condition, the mean completion time was consistently lower in the healthy control group
(HC) compared with the osteoarthritis group (OA). However, the differences between groups were not
statistically significant in the first two cycles (p = 0.069 and p = 0.101, respectively; Tab.1). From the third
cycle onward, significant group differences were observed, with HC completing the repetitions faster than OA
(p-values ranging from 0.004 to 0.007). These findings suggest that performance disparities between groups
become more evident over time, indicating that the open-chain condition may reveal cumulative differences
in motor control and endurance. In the closed-chain condition, the differences between groups were more
consistent and robust (Tab.2). Across all five cycles, HC participants performed significantly faster than OA
participants, with mean differences ranging from —0.51 to —0.70 seconds (all p <0.001). These results indicate
stable and reproducible performance across cycles and highlight that patients with osteoarthritis experience
consistently longer execution times under the closed-chain condition compared with healthy controls. The
greater biomechanical load and higher joint demands in closed-chain movements likely contribute to the
observed performance gap.

Using the cycle duration data as input features, several machine learning classifiers were trained in
MATLAB R2025a to distinguish between healthy controls (HC) and osteoarthritis patients (OA). Model
performance was evaluated using a 5-fold cross-validation procedure. The three best-performing classifiers for
each test condition (OKC and CKC) are summarized in tables Tab. 3 and Tab.4 respectively. For each
classifier, key performance metrics (accuracy, sensitivity, specificity, and F1-score) are reported.

Tab. 3. Classification results for OKC condition (5-fold cross-validation, MATLAB R2025a)

Classifier Accuracy (%) | Macro Precision (%) | Macro Recall (%) | Macro Fl1-score (%)
Naive Bayes 65.6 69.9 65.6 63.6
KNN 65.6 67.5 65.6 64.6
SVM 63.3 67.0 63.3 61.2

Tab. 4. Classification results for CKC condition (5-fold cross-validation, MATLAB R2025a)

Classifier Accuracy (%) | Macro Precision (%) | Macro Recall (%) | Macro F1-score (%)
Narrow Neural Network 80.0 80.0 80.0 80.0
Logistic Regression (GLM) | 77.8 78.3 77.8 77.7
Wide Neural Network 77.8 77.8 77.8 77.8

In the open chain condition (OKC), classification based on cycle duration features achieved moderate
accuracy across models (Table 3). The best performance was obtained using a Naive Bayes classifier with an
accuracy of 65.6%, macro precision of 69.9%, macro recall of 65.6% and macro F1 score of 63.6%. Similar
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results were obtained with the K-Nearest Neighbors (KNN) classifier, while the Support Vector Machine
(SVM) performed slightly worse with an accuracy of 63.3% and a macro F1-score of 61.2%.

These results indicate that although the models were able to capture differences between HC and OA
participants in the OKC condition, classification accuracy remained modest, suggesting that the discriminative
power of open-chain performance measures alone is limited.

In the closed-chain condition (CKC), machine learning classifiers showed significantly higher performance
than in the open-chain setting (Table 4). The best results were obtained with a narrow neural network, which
achieved 80% accuracy, macro precision, recall and F1 score, reflecting a balanced classification between HC
and OA groups. Logistic regression (GLM) and a wide neural network model yielded slightly lower but
comparable performance (accuracy ~77.8%).

Overall, these results indicate that cycle duration features from the CKC condition have stronger
discriminative power for distinguishing HC from OA than those from the OKC condition, confirming the
higher sensitivity of the closed-chain test to group differences.

To further illustrate the classification performance, confusion matrices were generated for the best model
in each condition (OKC and CKC), as shown in Figure 3. These matrices provide a detailed overview of true
positive, true negative, false positive, and false negative classifications, highlighting the ability of the models
to correctly identify group membership.

CKC: Confusion Matrix for Narrow Neural Network classifier

OKC: Confusion Matrix for Kernel Naive Bayes classifier
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Fig. 3. Confusion matrices for the best-performing classifiers in the open-chain (OKC, left) and closed-chain (CKC, right)
conditions

In the OKC condition (Naive Bayes classifier), the model correctly identified 40 HC subjects and 19 OA
subjects. However, misclassification was frequent in the OA group, with 26 OA subjects misclassified as HC,
which lowered the overall sensitivity for detecting OA cases.

In contrast, the CKC condition (neural network classifier) showed a more balanced classification
performance, with 36 correctly identified HC and 36 correctly identified OA subjects. Only 9 subjects from
each group were misclassified, resulting in higher accuracy and more stable performance across classes.

Overall, the confusion matrices confirm that CKC features provide greater discriminative power and lead
to more reliable classification between HC and OA compared to OKC features, where OA subjects were more
often misclassified.

4. DISCUSSION

Statistical analyses confirmed significant differences in task completion times between healthy controls
(HC) and patients with osteoarthritis (OA). In the OKC condition, the differences between groups were less
consistent: no significant effects were observed in the first two cycles, whereas cycles three to five showed
clear differences between groups. This suggests that open-chain tasks may only partially capture functional
impairments in OA, becoming more sensitive as the test progresses and fatigue or reduced endurance
manifests. In contrast, the CKC condition consistently showed highly significant differences across all five
cycles, with OA participants taking significantly more time to complete the tasks. This suggests that closed-
loop movements, which involve greater biomechanical stress and more complex neuromuscular control,
provide a more robust measure of functional impairment.
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Machine learning results support these findings. Classification based on OKC features achieved only
moderate accuracy, with a tendency to misclassify OA participants as healthy controls, reflecting the weaker
discriminative signal in open-chain tasks. In contrast, classifiers trained on CKC features achieved
significantly higher accuracy and more balanced performance, as demonstrated by the confusion matrices. The
superior discriminative power of the CKC features is likely due to the higher mechanical demands and joint
loading associated with closed chain conditions, which exacerbate the performance gap between OA patients
and healthy individuals.

Taken together, both the statistical and machine learning analyses indicate that the CKC state is a more
reliable and clinically meaningful test for detecting functional impairment in osteoarthritis. These findings
suggest that incorporating closed-loop assessments into clinical evaluation protocols could improve diagnostic
accuracy and provide a stronger foundation for machine learning-based decision support systems.

Recent advances have applied machine learning and deep learning to biomechanical gait data for OA
assessment, demonstrating high accuracy in early detection of knee osteoarthritis (KOA) (Bandara et al., 2025;
McPherson et al., 2024; Wipperman et al., 2024). For example, markerless vision-based approaches have
significantly improved KOA classification from gait kinematics, and reviews note that the integration of
computational models with wearable sensor data and ML holds great promise for understanding the
biomechanics of OA (Ben Hassine et al., 2024; Diamond et al., 2024). These methods typically use detailed
biomechanical characteristics, parameters such as swing phase angular velocity or jerk-based smoothness
indices, which are sensitive to subtle joint changes even in early OA (Bandara et al., 2025; Castro Mejia et al.,
2024).

5. LIMITATIONS AND FUTURE PLANS

This pilot study has several limitations that should be acknowledged. First, the relatively small sample size
and the inclusion of patients with advanced stages of knee osteoarthritis may limit the generalizability of the
findings to earlier disease stages. Second, the encoder-based measurement system focused primarily on
movement duration and angular velocity, without incorporating additional biomechanical or physiological
parameters such as ground reaction forces, electromyography (EMG), or pain-related functional scales, which
could provide a more comprehensive assessment. An additional limitation is the imbalance in age, BMI, and
sex distribution between OA and HC groups, which may have partially influenced the observed differences.
Future research should therefore prioritize recruitment of more demographically matched cohorts to strengthen
the robustness and generalizability of the findings. Moreover, the machine learning models were trained on a
limited feature set derived from cycle durations, which, while informative, may not fully capture the
complexity of joint kinematics. Finally, as data collection was performed in controlled laboratory and clinical
settings, it remains uncertain how well this approach will translate to continuous monitoring under real-world
conditions.

Future work will focus on expanding the participant pool to include individuals at different stages of knee
osteoarthritis, as well as at-risk populations, to evaluate the method’s diagnostic sensitivity across disease
progression. The integration of multimodal sensor data—combining encoders with inertial measurement units
(IMUs), EMG, or acoustic sensors—will allow for richer biomechanical characterization and more robust
machine learning models. Additionally, advanced algorithms such as deep learning and ensemble methods will
be explored to improve classification accuracy and generalizability. A long-term goal is to develop a clinically
validated, wearable smart orthosis capable of real-time, at-home monitoring, thereby supporting early
detection, personalized treatment planning, and rehabilitation progress tracking in patients with knee
osteoarthritis.

6. CONCLUSIONS

This pilot study demonstrated that encoder-based motion analysis combined with machine learning offers
a promising approach for functional assessment of knee osteoarthritis. The results confirmed that closed-chain
(CKC) tasks provided more robust differentiation between healthy controls and OA patients compared with
open-chain (OKC) movements, both in statistical analyses and in classification performance. Machine learning
models trained on CKC-derived features achieved accuracy levels up to 80%, indicating the diagnostic
potential of this approach.
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These findings highlight the feasibility of integrating wearable encoder-based systems into clinical and
rehabilitation practice. Such solutions may support early diagnosis, personalized treatment planning, and long-
term monitoring of joint function. However, the encoder signal alone is not sufficient for precise diagnosis and
should be regarded as an auxiliary source of information. It can serve as an additional feature input for machine
learning models, complementing other biomechanical or clinical data.

Further research with larger and more diverse cohorts, enriched sensor modalities, and advanced
computational methods is warranted to validate and extend the clinical applicability of this method.

ABBREVIATIONS
BMI — Body Mass Index
CKC - Closed Kinetic Chain
EMG - Electromyography
GLM - Generalized Linear Model
HC — Healthy Control
IMU — Inertial Measurement Unit
KNN — k-Nearest Neighbors
KOA — Knee Osteoarthritis
ML — Machine Learning
MRI — Magnetic Resonance Imaging
OA — Osteoarthritis
OKC — Open Kinetic Chain
PC — Personal Computer
SVM — Support Vector Machine
VAG - Vibroarthrography
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