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Abstract: The great usefulness of uniaxial visco-elastic models, especially in
highway engineering pavement theory, composites and other civil engineering disci-
plines were the reason for undertaking the trial to find a complete solution for the
generalization of Kelvin-Voigt body. Here the elements of higher rank than veloci-
ties of strain and stress are considered. Carson’s transformation simultaneously with
residuum theorem are used for solutions derivation. The introduced procedure can
be also used for more complicated differential or integral forms of constitutive equa-
tions, as well as for non homogenous initial conditions. The Burgers’ body is exam-
ined. Finally, as an example the vibration of simple beam is shown.
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1. Introduction

The origins of this treatise come from [1-6]. The list of scientific and appli-
cation works concerning elementary visco-elastic models probably include more
than thousand titles, due to that we limit the bibliography only to Reiner [7] and
Nowacki [8] monographs in which the authors made a survey of rheological prob-
lems and models. It is important to note that Reiner made a full survey of rheologi-
cal models in relation to physical rules, while Nowacki showed solving methods of
rheological problems by means of Laplace transform and generalized functions.

The recalled monographs are rather old, but their contents has being repeated
in many contemporary papers and can be treated as a rheology foundation. The
advancement of formulated earlier problems are to find at [9].

Recently many of such models were refined by enhancing some aspect related
to current problems [10], [11]. Especially the road and bridge engineering are the
field of such models applications [12], [13].

In this approach we focus on benefits, which come from mathematical formal-
ism, i.e. from admissible solutions’ forms for assumed constitutive equation.
Although the model was used in many works, the below results have been not
noticed earlier and only due to that it seems to be interesting to present them.

On the basis of Hohenemser and Prager [7] postulate is assumed a general
linear body, which is linear in Boltzmann sense. We confine our analyses to linear
visco-elasticity, excluding inner constrains of Saint-Venant type used in Schwedoff
model, for example. Only the differential form of constitutive relations are consid-
ered. For elementary models we have:

ga, +oa, =éb, — Maxwell, (1.1)
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oa, = eb, +éb, — Kelvina-Voigt, (1.2)
Ga, +ca, +ca, = éb, +Eb, — Burgers, (1.3)
oa, +oa, =eb, +<b, — Zener; (1.4)

where ao, a1, az, bo, b1, b, — are visco-elastic material constants, o, & — are tensors of
stress and strain, reduced here for analyzed one dimensional problem, number of
dots over character means the rank of it’s time derivative.

Additionally we assume that initial conditions are homogenous, i.e. at time
moment f, = 0 we adopt

0(0)=0 4(0)=0 £(0)=0 £(0)=0 (2)
In mathematical sense (1.1-4) are a cutting of the following formula
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Generalizing, (1.1-4) models could be derived from (3) when m = 0, 1, 2 and
n=0,1,21ie -
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Z b , furthermore ao = 1. (4)
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For recognizing the properties of created constructive relation (4), the Carson
transform is applied in the following form

1—00

clr@)=p [ rt)erdi=7(p) (5)

2. The solution of the problem

Operating with (5) onto (4) we arrive at

. Gayp +pa+l G ap +pa+1
E = — = — (6)
b, p, +ppB + 5, b, (p_p1)(p_p2)
where
bl bO
[ — = — 6.1
b=y By (6.1)

D1, p2 — are the roots of the denominator at (6), where

pvz:%(_ﬁoi‘/z) A:(ﬂl)z_‘lﬁo (7)

We have to analyze the set of following cases —
HA>0 — p=p, =0ER

I A<0 — p=Dp,€C, Doy = Tiey
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) A=0 — pm:—%io

V) A=0 —  p,=0

Looking for original ¢(7)=C"'[¢] we modify the relation (6) to the appropri-
ate form, adequate to apply convolution theorem —

., 0 L(p)

b, =Z|p— 8

T (p—n)(p—p,) (®)
where

L(p>:p2a2+pa1+1 (8.1)

By virtue of Carson transformation we have

Clf|==pf(O)+pf—rf 9)
which is valid in the case of homogenous initial conditions. Denoting
. L (p)

C =p——~+—— and 10

0] Pop)o—rp) 1o
- L(p)

— _ 11
! (p=p)(p—p,) =

we can directly use the convolution form

T=t T=t

EbZ:f U(T)f(t—T)dT:f U(I—T)f(T)dT (12)

7=0 7=0
when the load function o(t) is a known one.

To find the original f(¢)C'|f| the method based on residuum theorem
connected with Jordan’s lemma is adopted as follows

(13)

where N(p) and D(p) mean respectively — numerator and denominator of rational
expression.

The results obtained below are illustrated by using the load function which has a
constant stress value oy # 0 in the time interval t e {(f, ;) and is zero outside of the
interval

o=0,[H(t—t,)—H(t—1)] (14.1)

where H(?) is step function. Excluding infinitesimal time interval surrounding ¢, and
- time moments the stress o has constant value and this implies

a, =a, =0 in the relation (4). (14.2)
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3. Solutions in particular variants
3.1. Ad. (I)

Two roots of denominator in (6) are real and non zero. The values of these
roots are singular points for relation (6), as well as for (8). Using (11) and (13) we
arrive at

e” L(p)
=) Res| ——F—— 15
=2 p (p—n)(p—p,) 1
Additionally we have to consider the singular point p = 0.
We obtain
t L(p
po — |€” <—> (16.1)
(p=pr)(p—1)|
LN p
neler f>) (162)
p p2 P=nr
LN § p
p, — e’ ( ) (16.3)
(p N pl ) P=pr
The sought for function and its time derivative are read
1 1 ePlf L ePz[ L
f(/) _ 1 (pl)_ (pz) (17)
B p—p| P P
P 1
f — ePﬂL P 7€pzlL p 18
0= e Lp) = L) (18)

By virtue of (12) and on the basis of assumption (14.1) the strain process has
form of functions —

b26(1> = L[M[l_ el’l(t—lo)] _M[l o epz(tto)]} .
P, — D )z P,
o [—enlt) ] _ ppa(iio)
2 a (19.1)
42 p —p, P »,

when ty <t <t and

b2€(1> __ % Melnt (efpm _e i ) _ L(p2) o (efp"‘ P ) .
pz _pl p] pz
- % ilt e_p]ll — efplto ) _ eplt (e—le| _ e*!’ztﬂ ) (19.2)
U2 p=p P P,

for t> t;.
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3.2. Ad. (II)

When the denominator (6) roots are conjugated complex, they could be
presented in an alternative algebraic or exponential form

)2 :1_72 =q, :I:jal :e(yﬂi”ﬁ) =0, e(iin) = /_1 (201)

Together with po = O the roots form the set of singular points necessary to get
the original f;. Appropriately for: po, p1 and p, the residua are -

1
p=0 — —- (20.2)
B
(iu,t) L(Oé +lOé)
o . (apt) © 0 1
=q, tix — € S
P 0 1 2ia, o +ia, (20.3)
b el Lo, —ia
p,=a,—ia, — eloo) £ (o . ) (20.4)
—2iay, oy —iq
Applying exponential form we can write
Llw*ia) 1 e (20.5)

/ 14.2 [
o, iy 42 ) Eiqy

Using Euler’s formulae, (20.4) and summing (20.1-20.3) we find the sought
for function

1 e(a[,ero) 1 e(a0r+An)
=—+ shii(oyt+ 4, )|=—+
=y + ey e+ A=

sin oyt + 4,) (21)
and its time derivative

%Sin(a,t + 4, )+ cos(oyt + 4,)

f.(.n) =)
&

The load function (14.1) yield the strain process as follows

bye, %sin(a, (t—ty)+B,)+cos(cy (t—1,)+B,)|—
1

)

=0, e(Bo) {e“u("o)

a”sin(B,)JrCOS(BI)” (23.1)

@

forty<t<t;and whent>t

byg ) = 0, eloorthl {e““" Z—‘:sin (o (t=1)+B,)+cos(a, (t—1,)+B, )‘ +
—g b %sin(al (t—1y)+B,)+cos(a, (t—1,)+ B, )] (23.2)
1
where the simplifying symbols By, B; mean
olAokid) . 1 _ BB (23.3)

. K 2
ay Tiay (142 (ozo :I:lOél)
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3.3. Ad. (III)

In this variant we have double real non null root p; = p» = -f,/2 which, together
with po = 0, are also singularity points for (13). The residuum for po we obtain, as
previously,

Py =0— L 24.1
0 /60 ( . )
To find residuum for a double root we use the following rule
B, d |e” e .
_ o, __ P haly § =——|L r—1 L
R Il e L RS

The sought for fuy, - function is read

Bot

et B,y B[ B
f(’”)_ﬁoH(ﬁo)ziL[ 2]<t Y 2L[ 2]] 29
and its time derivative
Foy =4S (0 +9,) (26)
(1r) <ﬂ0)
where we denoted
_ By B B
9, = 2L[ 2](]4'2) 5 (26.1)
190:[& L[—&]—FL[—& &—H — &—H (26.2)
2 2 2 2 142) 2

The strain process for the load function (14.1-2) and (26) implies the follow-
ing result

40_ 2 7ﬂ1)("’0) ]
b,y =—>1———4e 2 |—+(t—1, (27.1)
2 (1) (ﬁo )2{ ,30 60 ( 0)
when ¢, <t<t; and
4g, -S| Gufo CiN o) ]
be, =—2>2e 21e? | =+ (t—t,)|—e? | =+(t—t (27.2)
2=(m) (/60 )2 { ,80 ( 0) ,80 ( l)

when t > t;.

3.4. Ad. (IV)

Similar as above we have double real, but in this case its value is zero p; = p,= 0.
Taking into account po = 0 we have a triple singularity point, this implies the resid-
uum value as
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d2
dez

[ew L(p)}} = {%[tzL(p)—i-ZtL'(p)]—l—i(p)} (28)

p=0

p():pl:pz:()—){

p=0

The functions f;v, and its time derivative f< ) have the forms

1
Sy = E(tz +2ta, +2a, ) (29)

f(lV) =1+aq (30)

Assuming (14.1-2) and (30) we arrive at

by =0y £on +(t—t))a,| = o, Loty (31.1)
fortp<t<t and

by =00 = (= 1,) 420 ] = T2 =i ) 41 -1, (31.2)
since t > ti.

4. Burgers model

Treating the above results as a generalization we can obtain a particular models,
here the Burgers model. In the case of (I), setting up

B, =0 (32)
we obtain
bl
p=0 and p,=—f=—~ (33)
2

Again, we have a double singularity point, now for
py=p =0 (34)

the second one, non zero, is p,. The values of residua are

o p—0 i[eﬂ’L(p)] B el”{[;L(p)+L(p)](p+ﬁl)—L(p)} o1
oo dp p+06 | (p+5) :0( 1)
PIL
p,=—0 - [e—fp)} (35.2)
p p==0
The above results in
fiBA):%[(I+al)6l71+e_ﬁ]ll’(7ﬂl)] and (36)

()
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Jiny = 5%[1 —e M L(-4) (37)

Considering the load function (14.1) we arrive at

bye = (;0)2 {(e=1)8 ~[1-" (-5} (38.1)
when #, <t <t and

by = (/;%")2[—@ (6 —1,)+e ¥ (e™—e™)L(-4)) (38.2)
if t > t1; now, taking into account (14.2) we get the Burgers model

€y = 00 (:2)2 ll;_l<t_t°)_l +e7%(H°) th<t<t (39.1)

) =07 :12)2 {Z_l(tl —1,)+ ey ] (39.2)

for t > t;.

5. Example - Maxwell model - simple beam vibration

That subject was investigated by many authors, for example Nowacki [8], look-
ing for common effects comparing elasticity and viscoelasticity in Maxwell and
Kelvin-Voigt models. Now the topic of consideration is to examine the vibration
process at time limit at infinity.

The dynamical equilibrium equation for elastic infinitesimal beam element is
as follows —

4 2
EJ 9 +ﬂ8_

o g o w(x, 1) = q,(x,1) (40)

where: w — beam deflection, A — constant beam cross-section, EJ — bending rigidity,
¢1— load linear density.

Denoting beam span by L, we introduce dimensionless coordinates —
x=¢6L w=wL t=tr71 (41)

where £, - positive constant with time units, that involves —

EJ YyAL .
S (&) ——50(6T)=¢, (&) (25)
(L) g(z,)

where: vy - material weight density, g — gravity acceleration, o'V - four order derivative
according to &, & - the second rank dimensionless time parameter derivative.

Assuming:
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yA(L)' Ly
(t,) = ‘;g and q::qlgjl- (26. 1-2)
we obtain —
EW" +o=gq (27)

With the help of Carson transformation according to t, and involving Alfrey’s
analogy we can turn into viscoelastic problem -

Eo" +(p)o=4 (28)

since the initial conditions are homogenous. In the case of Maxwell model we
obtain —
~ 1 1
E=p—+—
Py ” (29)

where E is not Young modulus (E) transformation.
Let the load function be Dirac’s impulse —

1
q%%éFﬂﬁ&n) (30)
that yield
4=4q4, (31)

We look for the solution expanding the unknowns and load function into
Fourier sine series according to § —

= > @ (p)sinjné §(&p)= }: (g ) sin jré (32.1-2)
J=1.2,... j=12
1
1) . .
(qf)/_ :2f 6[§—§]smj7r§d§:25m% (33)
! 0
By virtue of series properties, we have —
~ q" (qf)/ qT (qf),' [jT (qf),'
12v w; = 2~ N4 4 VI — (34)
J=t2i0 (p) +E(jm) » () () fp)=(p—p)(P—p))
(p) +p - +
n
The roots of f(p)=0 are as follows —
Proy=— (35)

Applying convolution theorem we can find Fourier coefficients w; —
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B 1 . —1 )4 _— _
- _<q£)j[ 6(9 ”) ¢ (,U—pl)<[7—p2) ( 9) 0
= —T P T—T
=(q) H(r—7,)C (prXp*pJ( ) (36)

where C™'[] is the symbol of retransformation.

Both roots (35) are j index function. Having in mind that E and n are positive
we arrive at —

lim VA = lim (37)
Jj—00 Jj—00
and in consequence for large enough j value the roots are real and equal to -
()
Pu =0 Poe =—"F (38.1-2)

We have to analyze three potential variants —

2
L. A>0—1> 1 2E — the roots are real and negative, p; < p»,
n (]W)
2
1| 2E . . _ =
II. A<O—1<—|——=| — the roots are conjugative complex P, = p, when
n (jw)
Re(p,)<0
1] 26 | (jm)’
. A=0—1=— ~| — we have dual real root p, = p, =— , it could
n (jﬂ') 2F

be only for one j index value.

The complexity of the problem consists in simultaneous occurrence of all (I-I1I)
variants. Simplifying, let us assume that we found j. by solving Ill and Jj. € N . J.
is dividing j domain into two parts where -

e Variant I is valid for _j < j. and

e Variant Il when .Jj> J-.

Additionally, we can state j, is not large and we can neglect the condition
(38.1-2) which obeys j — co.

Variant [ is associated with hard viscous damping. Variant II describes decay-
ing beam vibration.

In our problem the Jordan’s lemma is fulfilled and we can apply residual theo-
rem. The original for the variant I has the form -
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| p | S (avBr) (3
(p=n)(r—p) {p—a(l—ﬂ)] {p—a(l—i—\/Z)] a\/—
For variant II, with the help of Euler’s formulae, we arrive at —
Cfl P — Cfl p =
ppdle=pall_afi—i )| [p-af1+1 )
ol sin (aﬂr)
:ZRes =e" (40)
[pfoz(lfl |A|) p a(l+i |A|)} oz\/m
where i=+v-1 .
In case of large j values we have —
) ' sin(a\/ZT)
fimA =1 and i { I (4”
On the basis of (36) we get —
, po70)
w7j=2sin%H(T—T) = shla/A (7 -7,)] (42)
and
. (Y(T*T,,)
. T e .
= H(t—7 )—— Al(T—
w, (=75 T sin|ayfa[(r—7, ) (43)
The solution of the problem has the following form —
G, x
wigr)= Do wsin(m)+ 0w sin(, ) (44)
_j=12,... =t (g )+,
Now we can find the limit of (44) for £=1/2 and t —o0 arriving at
[ntG.) Y
7_]A —
11m E 211m sin —— sh|+ A- +
Aot 5 [ ol
(L AP M o
+ > [sm *2 ————sin [i((A—A%)] =0. (45)

L =0t )L, + |” |

The obtained result has proved that Maxwell model is reversible.
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Rozwiazanie uogolnionego modelu Kelvina-Voigta
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Streszczenie: Uzyteczno$¢ jednowymiarowych modeli lepko-sprezystych,
szczegblnie w zagadnieniach nawierzchni drogowych, kompozytach i innych dzie-
dzinach inzynierii ladowej stata sie przyczyng podjecia proby znalezienia komplet-
nego rozwigzania uogoblnionego modelu Kelvina-Voigta, przy czym w modelu
uwzgledniono takze przyspieszenia tak naprezen jak i odksztatcen. Do uzyskania
rozwigzan wykorzystano transformacje Carsona oraz twierdzenie o residuach.
Zastosowana procedura moze by¢ takze uzyta w przypadkach bardziej ztozonych
zwigzkow konstytutywnych w formie r6zniczkowej lub catkowej, jak rowniez przy
niejednorodnych warunkach poczatkowych. Rozpatrzono szczegdlny przypadek
analizowanego uogodlnienia tj. model Burgersa. Jako aplikacje zamieszczono przy-
ktad analizy drgan belki swobodne;j.

Stowa kluczowe: reologia, modele lepko-sprezyste.



