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Abstract: The purpose of this paper is to present methods of vibrations 
damping coefficient determination. The methods, such as collocation method, two 
energetic methods and half-power bandwidth method concern composite struc-
tures. The verification of methods has been taken into account in this work. Two 
real compound models and two numerical models have been created. Time series of 
vibrations of these models have been measured and calculated. The comparison of 
four methods has been made on the basis of obtained results. 
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1.	Introduction
While designing bridges, footbridges and viaducts - these are structures having 

greater spans and at the same time being less stiff - it is important  to determine 
the dynamic response of structure in the correct way. One of the main parameters 
describing behaviour of such a structure is damping coefficient of vibrations.

Several methods of determining the damping level are well known, for 
instance:

•	energetic methods [8], in which it is possible to determine damping coef-
ficient on the basis of defining changes in vibration of potential or kinetic 
energy;

•	half-power bandwidth method [9], in which it is possible to determine 
damping coefficient on the basis of spectral processing of time series of 
vibration;

•	collocation method [4], in which damping coefficients are achieved by using  
spectrum analyses of vibration.

While determining damping coefficients of a structure vibration it is necessary 
to remember its complexity (multi-material structures) as well as the type of work  
of its particular structural elements.

The aim of the work is to present and assess methods of damping determination 
in structures. The verification of the methods is performed on the basis of  theoretical 
structure calculations consisting of three materials as well as on research carried out 



Andrzej Flaga, Jacek Szulej, Piotr Wielgos54

on two two-material composite structure models. Time series of displacements are 
achieved by two methods: by test and using mechanical transmittance.

2.	Application of mechanical transmittance to determine 
the structure response

The elementary motion equation n-degree-of-freedom (n-DOF) linear time-
invariant system can be written in a matrix form as:

My Cy Ky p + + = ,						                (1)
where: M, C, and K are nxn mass, damping and stiffness matrices; y and p are nx1 
displacement and force vectors.

Solution of the system defined by equation (1) can be expressed as:
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where h(τ) is impulse response vector; p is force vector expressed as  
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Mechanical transmittance is a matrix H(f) whose elementary element Hik(f) is 
Fourier transform of impulse response hik(τ):
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,... ,... ; the impulse response hik(τ) is i‑th response of a k‑th 
excitation by single impulse function applied on starting time τ=0. 

Using Fourier transformation of equation of motion (1) results in:
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Hik is complex number in general and can be defined as:
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where : H
ik ik

,Q  are modulus and argument of Hik.
Using equations (6) the equation (7) is obtained:
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The realization of single impulse excitation for all DOFs in sequence results in 
full matrix of mechanical transmittance H(f):
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Using Fourier transform on equation (2) results in:
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where: Y(f), P(f) are Fourier transform of structure response and applied excitation. 
H(f) is mechanical transmittance [m/N]). 

Knowing matrix of transmittance H(f) and Fourier transform P(f), structure 
response can be defined in a simple way through determination of inverse Fourier 
transform[2]: 
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3.	Description of methods used to determine damping level

3.1.	Method based on potential energy calculations  
of vibrating structure

The method of the damping level determination based on potential energy 
was described by Yamaguchi and Ito [8], for structure consisting of different struc-
tural parts (eg. platforms, pillars and hangers in bridges). Logarithmic decrement 
of damping d

i
 is defined for i‑th mode, just like for single DOF, according to the 

equation:
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where Di denotes dissipated energy per cycle of the i‑th mode, Ui is potential energy 
per one cycle of the i‑th mode.

For structure consisting of different structural parts at different dissipated 
energy values, dissipated energy and total potential energy can be written as:
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where Dij denotes dissipated energy share of the j‑th material in structure with refer-
ence to i‑th mode shape; Uij - potential energy part of the j‑th material in structure 
with reference to i‑th mode.

Potential energy Uij is a sum of strain energy Vij at small deformation domain 
and energy Uij

0 coming from initial stress or large deformation (non-linear mechanic 
domain):

U V U
ij ij ij

= + 0 .							               (13)

Dissipated energy per cycle for single material can be expressed as:

D V
ij j ij

= 2py ,							               (14)

where yj is coefficient of absorption (specific damping) for given material.
Finally, logarithmic decrement of damping value with reference to i‑th mode of 

vibration, taking equation (11-14) into account results in:
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Strain energy Vij  is determined from equation: 

V
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j jK ,							               (16)

where ji denotes normalized eigenvector of the i‑th mode; Kj is stiffness matrix  of 
the j‑th material in structure.

3.2.	Method based on the kinetic energy calculations  
of vibrating structure

Owing to the basic assumptions of energetic method, depicted in p. 3.1. damp-
ing value was determined, on the basis of kinetic energy structure [4]. This method 
allows to determine damping more precisely than other with use of methods based 
on potential energy, because various layers are taken into account, whose stiffness 
is usually omitted. The layers have considerable kinetic energy and damping proper-
ties (eg. asphalt concrete in the surface of a viaduct, finishing materials).

The difference of defining the damping coefficient is based on including maxi-
mum of kinetic energy Eij, instead of maximum of potential energy, described by 
formula (17). Kinetic energy can be expressed by the following formula:
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where Mj are inertial matrices of the j th material in structure, V
i i i

= j w  is maxi-
mum vibration velocity vector of the i‑th mode, wi is natural circular frequency of 
the i‑th mode.

Kinetic energy can be expressed as:

E
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Finally, logarithmic damping decrement value with reference to i‑th mode of 
vibration, taking into account equation (12-15) results in:

d y
i j

ij

ij

n E

U
=

=
å1

2 1
.							               (19)

3.3. Collocation method

Collocation method [3] is based on the spectrum analysis of time series of free 
vibrations of investigated structures and consists in identification of parameters of 
special approximate function. If used, the function allows for precise calculation of 
damping level (damping coefficient β).

The order of activities while defining damping of the examined construction:
• 	Accelerations in free vibration of structure are measured (using sensors accel-
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erometers) and  on the basis of these measurements it is possible to achieve 
time processes f(t).

• 	Carrying out spectral analysis of time processes f(t) with the use of FFT (fast 
Fourier transform); as a result the function F = FFT{f(t)} is determined and 
natural circular frequency wi, corresponding to local extremes FFT.

• 	It is assumed that vibrations of examined structure are the sum of harmonic 
damped vibrations of different frequency (damping is described by substi-
tute viscous model), as in the following equations:
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	 where: wi, is  i‑th natural circular frequency for undamped system; Ai, Bi are 
amplitudes of natural vibrations, βi is damping parameter with reference to 
i‑th circular frequency.

•	Approximation of function F2 by function Y2, where Y is defined by:
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3.4. Half-power bandwidth method

The method was described in [9]. Damping coefficient of the i‑th mode is 
achieved by using spectrum analysis of time processes of vibration. It is based on 
interpreting three values of frequency, of which there are three characteristic points 

corresponding to extreme of function and points lying at the height of 2 2/  
extreme. On the basis of interpreted frequency, logarithmic decrement of damping 
is calculated by:
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w w

wi
=

-
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Fig. 1.	 Reading out method of values on half power bandwidth method.
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4.	Comparison of methods determination damping  
coefficients 

4.1.	Analytical example – theoretical three-materials cantilever 
model 

The cantilever model (height 80  m), consisting of three different materials 
and whose scheme is depicted in the Fig. 2, has been taken into consideration. The 
damping matrix of the main structure C has been bold in the indirect way, using 
the mass-stiffness damping model (Reyleigh’s model). It has been assumed that the 
same damping values of particular materials was identical for the first two natural 
frequencies of a structure. Values of damping coefficients are determined according 
to literature [5,6,7] (reinforced concrete δż=0,15, steel δs=0,05, wood δd=0,1).

Impulse load has been applied to the model at subsegment discrete points 
along the height of the model. By the fully determined transmittance matrix of the 
structure (Fig. 4) and Fourier transform of excitation, the responses of each points 
of the structure have been determined (Fig. 3). Damping coefficients of the analyzed 
structure are compared in the Tab. 1 and Tab. 2.

Fig. 2.	 Scheme of the structure.
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 Fig. 3.	 Time history series (excitaion at 80m).
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Fig. 4.	 Modulus of mechanical transmittance.

Table 1.	 Damping coefficient values d obtained with use of collocation method and half power 
bandwith method.

High DOF
Eigenvalue d Eigenvalue d Eigenvalue d[m] Excitation/response

70 13/13

0.16Hz

0.126

0.28Hz

0.098

0.87Hz

0.249
60 11/11 0.129 0.113 0.255
50 9/9 0.129 0.115 0.229
40 7/7 0.131 0.118 -
70 15/13 0.133 0.121 0.213
60 15/11 0.133 0.121 0.213
50 15/9 0.134 0.118 0.261
40 15/7 0.130 0.118 0.246

Table 2.	 Damping coefficients values obtained with use of potential and kinetic energy 
method.

Energy Eigenvalue d Eigenvalue d
Potencial Energy 0.16Hz 0.126 0.28Hz 0.098
Potencial Energy 0.129 0.113

4.2.	Model investigation – complex cantilever model

Investigations of vibrations of models have been carried out by usage of 
HBM equipment: accelerometers B200, analyzer Spider  8 and steering program 
Catman 4.0. Experiments have been performed on cantilever models. Bending and 
torsional vibrations had been excited. Vibrations had been excited by bending or 
torsion and sudden release of the end of the model.

Two series of measurement have been performed:
•	First series (complex model, I120, a pine board 80mm x 48mm, length. 

1.72m – (Fig. 5)) accelerometers had been fixed in the middle, in the 3/4 and 
at the end of the model.

•	Second series (complex model, a flat 80mm x 8mm, pine board 120mm x 
25mm, length-1.12m (Fig. 6)) accelerometers had been fixed in the 1/3, the 
2/3 and at the end of the model.

Series of accelerations in time are the results of the measurements. It has been 
sampled with the frequency from 100 Hz to 3200 Hz for every model. On the basis 
of  time processes, spectral analysis of vibrations have been performed by Catman 
program 4.0 (FFT). Natural circular frequencies obtained from investigation have 
been verified by performing calculations with use Algor program (FEM program), 
which confirmed the outcomes of investigation.
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Fig. 5.  Model 1. Fig. 6.  Model 2.

Two methods have been used: the energetic method and the collocation 
method for determination of damping coefficient of vibrations in correspondence 
to modes of free vibrations. Both of them have been applied to real processes and 
obtained by mechanic transmittance. Matrices of stiffness of model, diagonal matri-
ces of masses and modes of this model have been used for calculations. Damping 
coefficient values have been obtained on the basis of literature [5, 6, 7]. The values 
δs=0,05 for steel and δd=0,1 for wood have been assumed.

The comparison of obtained values δ is depicted in Tab. 3 and Tab. 4.

Table 3.	 Damping coefficients values d - model 1.

Eigenvalue Number and modes of 
free vibrations

Potencial 
Energy

Kinetic 
Energy

Collocation 
method  

(investigation)

Collocation 
method 
(FEM)

[Hz]         d
5.09 1 bending – horizontal 0.067 0.052 - 0.037
31.8 2 bending – horizontal 0.067 0.052 0.050 0.042
39.08 1 bending – vertical 0.044 0.067 0.060 0.038

Table 4.	 Damping coefficients values d - model 2.

Eigenvalue Number and modes of 
free vibrations

Potencial 
Energy

Kinetic 
Energy

Collocation 
method  

(investigation)

Collocation 
method 
(FEM)

[Hz]         d
7.3 1 bending – vertical 0.080 0.068 0.130 0.048
43.5 2 bending – vertical 0.080 0.070 - 0.046

5. Conclusions
The investigation of dynamic structure properties with the aid of Fourier 

transform allows examination of transmittances changes (and what follows also 
the responses of a building) depending on the changes in damping parameters of 
particular fragments of structure.

For the analyzed model, fixing mass-stiffness damping at the same parameters 
as for the first frequencies of proper vibrations, leads to overestimated damping 
parameters for higher frequencies (modified mass-stiffness damping model will be 
developed in the following stage of research). 
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