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The simple method of dynamic visco-elastic analysis 
of road structure on rheological foundation

Sławomir Karaś, Magdalena Sawecka

Road and Bridge Department, Lublin University of Technology

Abstract: In contrast to computationally advanced methods of road pavement 
dynamic analysis, the one-dimensional, simple method is derived on the basis of 
visco-elastic simple beam lying on generalized Winkler visco-elastic foundation. By 
virtue of least square method the visco-elastic constants could be estimated with 
technically admissible accuracy. The introduced method is useful enough to predict 
any pavement deformation process in the range of linear visco-elasticity.
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1. Introduction
The presented here range of investigation is limited to the theoretical part of 

the task, i.e. the calibration to real load and structures is not yet covered. 
The aim of the paper is a proposal of a simple procedure for estimating the 

visco-elastic characteristics by means of initial-boundary problem of a simple beam 
laid on flexible foundation, where both beam and foundation, have visco-elastic 
properties. The simplicity of the approach is crucial, which is in contrast to the 
computationally intensive method, i.e. for example Veroad [1, 2].  

The research of the material constants in road engineering has an extended 
bibliographical background, including hundreds of papers in which both theoreti-
cal and experimental studies were undertaken. Historically, the first step could be 
given for those who applied the Burmister method [2, 3], which obeys the multi-
layered elastic semi-space subjected to concentrated load. This involves the axially 
symmetric problem in cylindrical coordinates. On this basis the so called ‘back-
calculating methods’ of pavement modulus are still in use [4-14]. As an example 
of such work, and as an example of almost exact accuracy, the paper of S. Firlej 
should be recalled [15]. 

The effective visco-elastic approaches to the pavement mechanics are not scarce 
[16-17] but, on the other hand, not intensive enough. An extension to visco-elastic 
Boussinesq problem could be found in [8]. The survey of visco-elastic foundation 
types and an original concept of elastic beam on Maxwell foundation is analyzed 
in Szcześniak’s work [19], where the concentrated force moves with the constant 
velocity along the beam. 

2. The formulation of the problem
The mineral-asphalt materials of road pavements have elastic, viscous and 

plastic properties, but due to the serviceability of the road structures the first two of 
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them are of great importance. Although, the plastic behavior is taken into consider-
ation, its effect generates the development of disadvantageous deflections and wheel 
tracks. The value of complex modulus is the basic criterion to classify the pavement 
material in the range of its usability for the road structure. Optionally, one can 
assume that the live service of the pavement is connected with its elastic and viscous 
properties. The analyzed here pavement model obeys the generalized Kelvin-Voigt 
relation:

s e e e= + +E E Eˆ
  ,						                (1)

where E  – is an elastic modulus and Ê , E  are the viscous moduli, s  – stress, e  – 
strain and e , e  are rates of strain and rates of strain rate adequately.

The road embankment or, in detail the road subgrade, could be treated as a 
generalization of Winkler foundation extended for viscous properties, for which the 
no-unilateral i.e. negative as well as positive constrains, are admissible. The param-
eters of generalized Winkler model are: k  kN/m2] – elastic settlement coefficient 
and h  [Ns/m3] – the coefficient of viscosity.

The differential equation of the problem has the following form:
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where: u u x t= ( ),  – is the beam deflection, 0 £ £x L  – abscissa domain, t  – time 
parameter, EJ  – bending stiffness of the beam, r  – beam mass per unit length 
distribution, q q x t= ( ),  – is linear density of loads, constants: 

ˆ ˆ /y = E E , y = E E/ . 						                (3)

Introducing the dimensionless description by means of 
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we arrive at:
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To simplify the task, the initial conditions are uniform and for each function 
at a moment t = 0  are zeros.

In technical sense the influence of beam boundary conditions, when the beam 
laid on flexible foundation, could be neglected when its supports are localized far 
from the analyzed cross-section. Due to this the length of a beam is considerably 
greater than the vehicle length. According to this the simple beam is used for prob-
lem modeling.
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3. Green function
Assuming now that we are looking for Green function of the problem the 

following form of the load is analyzed:

q Q Q G
1 0 0 0 0

: : , , ,= = -( ) -( ) ® ( ) = ( )d x x d t t w x x t tw ,		            (6)
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where: d  – is the symbol of Dirac impulse function.
Using operational calculus, i.e. finite Fourier transformation according to 

geometrical parameter x  and Laplace transformation onto time parameter t , the 
solution is obtained in the form of the following sum 
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where Gw1

, Gw2

, Gw3

 have the appropriate forms depending on the value of D D= ( )n  
indicator as follows:

D = -B AC2 4 ,

	

A n

B n c

C n c

= ( ) +

= ( ) +

= ( ) +

c p

c p

p

4

4

4

1

ˆ ˆ,	
a

B

A
=

-
2 ,

b
AC B

A
=

-4

2

2

,
	

d
B AC

A
=

-2 4

2
,				             (9)

D n c
t

n c
t

n
o o

, ,̂ , ˆ
ˆ

ˆy y
y

p
y

p( ) = ( ) +
æ

è
çççç

ö

ø

÷÷÷÷÷
- ( ) +

æ

è

çççç
4

2

2

4
4 1

çç

ö

ø

÷÷÷÷÷
( ) +

æ
è
ççç

ö
ø
÷÷÷n cp

4

,		          (10)

and for: 
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4. The concentrated load
The Green function directly corresponds to the case of concentrated load, as 

it is shown in Fig. 1.
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Fig. 1.	 The load in the form of concentrated force and its localization.

The load satisfies the following definition:
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Hence, the beam displacement process is described in form (8) by means of 
sum elements:
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3. D < 0 :
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The constants a, b, d, A, B, C – are given by (9) formulae.

5. Axial load 
In computational practice the action of a single wheel is basic, Fig. 2. For 

this variant the load contact area has the length of 30 cm, and is relatively small 
comparing to the beam span. 
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Fig. 2.	 Sectorially uniformly distributed movable load.

The terminal abscissas have the following form:
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The load function fulfills the expression:
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The solution has the form (8), while sum elements are listed below:
1. D > 0 :
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Supplementing the above visco-elastic solution, an elastic variant obeying the 
wheel setting in the middle of the span at a time moment t = 0  is derived, hence 
we arrive at:
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if:	 b pn n c= +4 4 ,   c
kL
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.					          (18.1)

6. Numerical examples
The dynamical and visco-elastic characteristics of the road structure are 

unknown in general. However, on the basis of different bibliographical sources or 
carried out tests, it is possible to estimate those values as good enough approxima-
tions. We can also search them in an exact procedure applying least square methods 
additionally aided with robust procedures, or get them treating elastic constants as 
an initial approximation in iteratively refining loops. 

In this paper such approximating values are assumed to demonstrate the effi-
ciency of the introduced theory only. 

The input values (for two asphalt-concrete pavement layers we have):
•	upper layer of a thickness 5 cm, E = 18500 MPa,
•	bottom layer of the thickness 7 cm, E = 18000 MPa,
•	base of 20 cm crushed stone E = 400 MPa; 

•	those together give Σ 32 cm, and weighted average modulus E
av.

» 7080  
MPa.

The elastic modulus value obtained by means of Burmister method [4], when 
the subgrade modulus is E0 = 100 MPa, for such layers set has the magnitude of 
1700 MPa. The equivalent modulus value is equal to Eeq. @ 450 MPa, and then the 
elastic maximum flexure attain uB e- @ 0 41,  mm. 

For further computation, for the beam the value E = 1700 MPa is assumed.
Geometrical characteristics of a beam are as follows:
•	span – L = 30 m,
•	height – h = 0,32 m,
•	breath – b = 1 m,

•	principal second moment of area J bh m= 3 412/ .
Material visco-elastic characteristics:

•	 ˆ ,y = 0 01 , y = 0 001, ,

•	beam material weighted average density r0
32200= kg m/ ,

•	and its linear density r r= =
0
bh 6875 kg/m .

Load characteristics:
•	velocity: V km h m s= =50 13 89/ , / ,

•	load magnitude q
P

0
0

2

0 3

0 65 0 3

4 0 3
= =

( )
×,

, ,

,

p
 MN/m,

•	Winkler elastic ground parameter k MN m= 150 3/ ,
•	ground viscous coefficient h = 0 .
Let us start with the comparison of Burmister method to the one introduced 

here. In conformity to elasticity, the zero values of ŷ y= = =k 0   are necessary. 
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Using (17) we can obtain the elastic deformation of beam midspan cross-section for 
any time moment, starting from the beginning of the process, i.e. from the moment 
when the wheel is put down in the midspan.  The result for t = 0.0005  is shown 
below in Fig. 3. 

0.2

x0

-0.2

-0.4

0 0.2 0.4 0.6 0.8 1

-0.43

Fig. 3.	 The elastic displacement value u u
B e

= » -0 43,  mm.

From now on the results will concern the visco-elastic properties of beam 
material i.e. ˆ ,y = 0 01 , y = 0 001, , for q l

0  uniform load distribution. The history of 
midspan cross-section vertical displacement is shown in Fig. 4.

0  k  k

 = 0

-u [mm]

-0.3

-0.2

0.2

q lo

q lo



 k L

0,5

Fig. 4.	 The graph of the beam midspan point displacement from 0 to tk  of q l
0  movement.

The graphs of beam deformation states are shown in Fig. 5–7 for t t= 0 25,
k , 

t t= 0 75,
k , t t= 1 1,

k .

k 25.0

0 0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1

0.2



[mm]

Fig. 5.	 Deflection at t t= 0 25,
k .



The simple method of dynamic visco-elastic analysis of road structure... 81

k 75.0

0 0.2 0.4 0.6 0.8 1
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0

0.1

0.2



[mm]

Fig. 6.	 Deflection at t t= 0 75,
k

.

k 1,1

0 0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1

0.2



[mm]

Fig. 7.	 Deflection at t t= 1 1,
k .

As a result of carried out comparative calculations it is possible to notice that 
the difference between q l

0  and P
0  actions is negligible and as a consequence 

instead of (16) the (13) formulae could be used as a model of vehicle wheel. 

7. Conclusions
Comparatively simple one-dimensional model of road pavement visco-elastic 

flexion process has been derived, and its usefulness is shown. The numerical exam-
ples were executed by Mathematica.

The linear visco-elastic theory is assumed by virtue of statement that the 
plastic behavior, and as an effect the disqualifying deformations are caused due to 
inadmissible overloading of road structure. Mathematical linearity converges with 
superposition in mechanics. This allows summing on both actions and effects sides. 
Further this implies that an arbitrary type of vehicle could be chosen to the experi-
mental test. 

On the basis of existing bibliography or the results of elastic approaches [20], 
the elastic constants could be taken as known, the other viscous material constants 
i.e. h , ŷ , y  could be found by means of least square method or its variants. 
Disposing of a set of experimental data: 

u u x t
m m m m m m m m( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= ( ) ® = ( )w w x t

				            
(19)

we can write down:
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where: w x t
m m( ) ( )( )  is taken in (13) or (16) form. The necessary conditions of S  

extremum are as follows: 
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¶
¶
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which form the three non-linear equation system for h , ŷ , y  determination. 
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