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Abstract: This work concerns the dynamic similarity criteria of various phenomena 

occurring in the aerodynamics of buildings and structures, originally derived from the ratios 

of forces and force moments affecting these phenomena. This paper is a continuation of [12], 

which addresses the foundations of dynamic similarity criteria formulated in this manner. At 

the end of [12], an authorial method and procedure for determining dynamic similarity 

criteria in fluid-solid interaction issues are presented. This method serves as the basis for the 

formulations and considerations of dynamic similarity criteria discussed further for various 

practical problems encountered in simple cases of building and structure aerodynamics, 

including self-exciting vibrations and wind-induced vibrations. 
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1. Introduction  

The paper concerns the determination and analysis of dynamic similarity criteria for 

simple cases of wind-induced vibrations encountered in the aerodynamics of buildings and 

structures, including self-exciting vibrations and vibrations caused by turbulent wind.  

Dynamic similarity criteria were originally derived from the ratios of forces and force 

moments affecting the phenomena considered. This paper is a continuation of [12], which 

addresses the foundations of dynamic similarity criteria formulated in this way. At the end 

of [12], an authorial method and procedure for determining dynamic similarity criteria in 

fluid-solid interaction issues are presented. This method forms the basis for the formulations 

and considerations of dynamic similarity criteria discussed further for various practical 

problems encountered in simple cases of building and structure aerodynamics.  

The considerations related to these specific cases of building and structure 

aerodynamics are preceded by a relevant literature review. 
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2. Across-wind galloping 

The large-amplitude across-wind oscillation of iced power line conductors provides a 

classic example of galloping. It can also be a potential issue for tall, flexible prismatic towers 

and flexible cylinders or prisms with certain types of cross-sections (e.g., rectangular 

sections, D-sections). The amplitudes of aeroelastic galloping oscillations can reach 1 to 10 

or more times the cross-sectional dimensions of the body.  

The flow speeds required for galloping motions are typically much higher than those 

for vortex lock-in oscillations. Flow reattachment, which occurs in vortex lock-in and flutter 

phenomena, does not occur in the case of galloping. Instead, completely separated flows 

characterize galloping motion, resulting in the absence of vortex-induced effects on the body. 

The foundations of galloping theory appeared early in [19] and [21]. Novak and Tanaka 

[20] investigated the effect of turbulence on galloping instability, while Nakamura and 

Tomonari [18] provided a detailed study on the galloping of rectangular prisms in turbulent 

flow.  

Galloping is primarily governed by quasi-steady forces, which depend on the relative 

angle of wind attack to the structural cross-section, moving across the wind with velocity �̇�.  

Let us consider a section of a prismatic body in a smooth oncoming airflow with 

velocity 𝑉 (Fig. 1) 

 
Fig. 1. One-degree-of-freedom model of across-wind galloping (source: authors) 

The magnitude of the relative velocity of the flow with respect to the moving body is: 

𝑉𝑟𝑒𝑙 = √(𝑉2 + �̇�2) (1) 

The angle of wind attack 𝛽 is then: 

𝛽 = 𝑡𝑎𝑛−1(−�̇�/𝑉) (2) 
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The across-wind force 𝑊𝑦 in the analysed case is given by [5,8]: 

𝑊𝑦(𝛽) =
1

2
𝜌𝑉2𝐷𝐶𝑊𝑦(𝛽);       𝐶𝑊𝑦(𝛽) =

𝑉𝑟𝑒𝑙
2

𝑉2
[𝐶𝐿(𝛽)𝑐𝑜𝑠𝛽 + 𝐶𝐷(𝛽)𝑠𝑖𝑛𝛽] (3) 

where 𝜌 is the air mass density. 

If the body is treated as a one-degree-of-freedom system, its equation of motion can be 

written in the usual form: 

𝑚�̈� + 2𝑚𝛾𝑦𝜔𝑦�̇� + 𝑘𝑦𝑦 = 𝑊𝑦(𝛽) = 𝑊𝑦 (
�̇�

𝑉
) (4) 

where: 𝑚, 𝛾𝑦, 𝑘𝑦  and 𝜔𝑦
2 =

𝑘𝑦

𝑚
= 4π2𝑓𝑦

2 are the mechanical parameters of the system. For the 

linear case, the force 𝑊𝑦 (
�̇�

𝑉
) can be expressed as [5,8]: 

𝑊𝑦 (
�̇�

𝑉
) ≅

1

2
𝜌𝑉2𝐷 [𝐶𝐿|𝛽=0 + (

𝜕𝐶𝐿

𝜕𝛽
+ 𝐶𝐷)|

𝛽=0
(−

�̇�

𝑉
)] (5) 

where 𝐶𝐿 and 𝐶𝐷 are the steady lift and drag aerodynamic coefficients, respectively. Then, 

eq. (4) can be rewritten as: 

𝑚�̈� + 2𝑚𝜔𝑦 [𝛾𝑦 +
𝜌𝑉𝐷

4𝑚𝜔𝑦
(
𝜕𝐶𝐿

𝜕𝛽
+ 𝐶𝐷)|

𝛽=0

] �̇� + 𝑘𝑦𝑦 =
1

2
𝜌𝑉2𝐷𝐶𝐿|

𝛽=0
 (6) 

Assuming dimensional base of (𝜌, 𝑉, 𝐷), it can be expressed as: 

�̌� =
𝑉

𝐷
𝑡;        �̌�(�̌�) =

𝑦(�̌�
𝐷

𝑉
)

𝐷
;        

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑉

𝑑�̌�(�̌�)

𝑑�̌�
;        

𝑑2𝑦(𝑡)

𝑑𝑡2 =
𝑉2

𝐷

𝑑2�̌�(�̌�)

𝑑�̌�2  (7) 

Let us assume, moreover, the following similarity numbers:  

𝑆𝑟𝑦 =
𝑓𝑦𝐷

𝑉
 – called kinematic Strouhal number (8) 

𝑀𝜌𝑦 =
𝜌𝐷2

2𝑚
  – called dimensionless parameter of mass (9) 

Then eq. (6) can be rewritten in dimensionless form as: 

𝑑2�̌�

𝑑�̌�2 + 4π𝑆𝑟𝑦 [γ𝑦 +
1

4π

𝑀𝜌𝑦

𝑆𝑟𝑦
(
𝜕𝐶𝐿

𝜕𝛽
+ 𝐶𝐷)|

𝛽=0

]
𝑑�̌�

𝑑�̌�
+ 4π2𝑆𝑟𝑦

2�̌� = 𝑀𝜌𝑦𝐶𝐿|𝛽=0
 (10) 

The particular dimensionless factors occurring in the dimensionless eq. (10) can be 

interpreted as follows: 

4π𝑆𝑟𝑦 [𝛾𝑦 +
1

4π

𝑀𝜌𝑦

𝑆𝑟𝑦
(
𝜕𝐶𝐿

𝜕𝛽
+ 𝐶𝐷)|

𝛽=0

] (11) 
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a measure of the ratio of the total damping force (i.e., structural and aerodynamic damping 

force) to the inertial force: 

4π2𝑆𝑟𝑦
2 – a measure of the ratio of the elastic force to the inertial force (12) 

𝑀𝜌𝑦𝐶𝐿|𝛽=0
 – a measure of the ratio of the aerodynamic force to the inertial force (13) 

The quasi-steady aerodynamic coefficients 𝐶𝐷(𝛽) and 𝐶𝐿(𝛽) are typically determined 

in quasi-steady tests performed in wind tunnels as functions of the dimensionless parameters 

characterizing the oncoming airflow i.e., input parameters (𝐼�̌�) and the geometrical 

parameters of the body/object (�̌�). 

From eq. (10), it follows that the necessary condition for the onset of across-wind 

galloping instability is the well-known Glauert–Den Hartog criterion in the form: 

(
𝜕𝐶𝐿

𝜕𝛽
+ 𝐶𝐷)|

𝛽=0
< 0 (14) 

and that the critical velocity 𝑉𝑐
𝑔

 for the onset of across-wind galloping instability is given by 

[2,8]: 

𝑉𝑟𝑐
𝑔

=
1

𝑆𝑟𝑐
𝑔 =

𝑉𝑐
𝑔

𝑓𝑦𝐷
= −

4πγ𝑦

 𝑀𝜚𝑦
(
𝜕𝐶𝐿

𝜕𝛽
+ 𝐶𝐷)|

𝛽=0

 (15) 

where 𝑓𝑦 is the natural frequency of the system. 

3. Torsional divergence and torsional galloping 

In across-wind galloping, changes in the angle of wind attack induced by vibrations are 

a function of the across-wind displacement velocity. In torsional divergence and torsional 

galloping, the angle of wind attack changes with the angular position 𝜀 and also with the 

angular velocity 𝜀̇ =
𝑑𝜀

𝑑𝑡
 of the section of the body, treated as a one-degree-of-freedom system 

with respect to torsion (torque). Thus: 

𝛽 = 𝜀 − 𝑓(𝜀̇) ≅ 𝜀 −
𝑅�̇�

𝑉
 (16) 

where 𝑅 is the characteristic radius for the given cross-section and pivot position.  

According to the quasi-steady theory, the torsional moment 𝑊𝜀 acting on the section 

about the pivot is given by: 

𝑊𝜀(𝛽) =
1

2
𝜌𝑉2𝐷2𝐶𝑊𝜀(𝛽);        𝐶𝑊𝜀(𝛽) = 𝐶𝑊𝜀(𝜀, 𝜀̇, 𝑅) (17) 

In the analyzed case, the equation of motion for the torsional response of the section is 

(Fig. 2): 



Dynamic similarity criteria for simple cases of building and … 

45 

 

Fig. 2. One-degree-of-freedom model of torsional galloping (source: authors) 

𝐼𝜀𝜀̈ + 2𝛾𝜀𝐼𝜀𝛾𝜀𝜔𝜀𝜀̇ + 𝑘𝜀𝜀 =
1

2
𝜌𝑉2𝐷2𝐶𝑊𝜀(𝜀, 𝜀̇, 𝑅) (18) 

where: 𝐼𝜀 , 𝛾𝜀, 𝑘𝜀  and 𝜔𝜀
2 =

𝑘𝜀

𝐼𝜀
= 4π2𝑓𝜀

2 are the mechanical parameters of the system. 

For small angles of wind attack, the coefficient 𝐶𝑊𝜀 on the right-hand side of this 

equation can be linearized for 𝛽 ≪ 1, as [2,8]: 

𝐶𝑊𝜀(𝜀, 𝜀̇, 𝑅) =̃ 𝐶𝑀|𝛽=0 +
𝜕𝐶𝑀

𝜕𝛽
|
𝛽=0

(𝜀 −
𝑅�̇�

𝑉
) (19) 

where 𝐶𝑀 = 𝐶𝑊𝜀 is the steady aerodynamic moment coefficient. Then eq. (18) takes the 

form: 

𝐼𝜀𝜀̈ + (2𝐼𝜀𝛾𝜀𝜔𝜀 +
1

2
𝜌𝑉𝑅𝐷2 𝜕𝐶𝑀

𝜕𝛽
|
𝛽=0

) 𝜀̇ + (𝑘𝜀 −
1

2
𝜌𝑉2𝐷2 𝜕𝐶𝑀

𝜕𝛽
|
𝛽=0

) 𝜀 =  

  =
1

2
𝜌𝑉2𝐷2𝐶𝑀|𝛽=0 (20) 

This equation exhibits two modes of instability. The first, called torsional divergence, 

when the sum of the structural and aerodynamic torsional stiffness terms becomes zero, 

leading to static-type instability. The second, called torsional galloping, when the coefficient 

of the 𝜀̇ term crosses zero. The necessary condition for the onset of this phenomenon is: 

(𝑅𝜕𝐶𝑀/𝜕𝛽|𝛽=0) < 0. The critical velocities for torsional divergence 𝑉𝑐
𝑡𝑑 and torsional 

galloping 𝑉𝑐
𝑡𝑔

 are given, respectively, by: 

𝑉𝑐
𝑡𝑑 = √

2𝑘𝜀

𝜌𝐷2𝜕𝐶𝑀
𝜕𝛽

|
𝛽=0

 (21) 

𝑉𝑐
𝑡𝑔

= −
4𝐼𝜀(2𝜋𝑓𝜀)𝛾𝜀

𝜌𝐷2𝑅
𝜕𝐶𝑀
𝜕𝛽

|
𝛽=0

 (22) 

where 𝑓𝜀  is the natural frequency of the system. A more detailed analysis of these phenomena 

can be found in papers [5] and [17]. 
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Proceeding similarly as before, the equation of motion can be brought into 

dimensionless form: 

𝑑2𝜀̌(�̌�)

𝑑�̌�2
+ (4π𝛾𝜀𝑆𝑟𝜀 + 𝑀𝜌𝜀�̌�

𝜕𝐶𝑀

𝜕𝛽
|
𝛽=0

)
𝑑𝜀̌(�̌�)

𝑑�̌�
+ (4π2𝑆𝑟𝜀

2 − 𝑀𝜌𝜀

𝜕𝐶𝑀

𝜕𝛽
|
𝛽=0

) 𝜀̌(�̌�) = 

= 𝑀𝜌𝜀𝐶𝑀|𝛽=0 (23) 

where: 

𝑆𝑟𝜀 =
𝐷𝑓𝜀

𝑉
;       𝑀𝜌𝜀 =

𝜌𝐷4

2𝐼𝜀
;       �̌� =

𝑅

𝐷
 (24) 

The quasi-steady aerodynamic coefficient is generally a function of dimensionless 

parameters characterizing the input (𝐼�̌�) and object (�̌�) (e.g., turbulence intensity of the 

oncoming air 𝐼𝑣  and (�̌�) – set of geometrical object parameters). 

The factors in the respective terms of eq. (23) represent measures of the ratios of the 

corresponding moments of forces. 

4. Flutter 

Flutter is an aeroelastic phenomenon that occurs in flexible bodies with relatively 

elongated cross-sectional shapes in plan [26,27]. This phenomenon involves oscillations with 

amplitudes that increase over time, potentially leading to catastrophic structural failure. 

Flutter, like other aeroelastic phenomena, requires solving equations of motion that involve, 

in particular: inertial forces, mechanical damping, elastic constraints, and aerodynamic forces 

(including self-excited forces). These parameters depend on the structure of the oncoming 

airflow as well as the shape and motion of the body. Flutter is distinct from vortex-induced 

lock-in oscillations. The latter involves aeroelastic flow-structure interactions that occur only 

at characteristic resonant velocities – i.e., those at which the vortex shedding frequency 

matches or is close to the structure's natural frequency. For velocities higher than those at 

which lock-in occurs, oscillations are much weaker than during lock-in itself. In contrast, it 

is observed that for velocities exceeding those at which flutter occurs, the oscillation 

amplitude increases monotonically with velocity. 

The term "flutter" refers to a class of aeroelastic phenomena that can be further 

categorized using additional qualifying terms, such as classical flutter, single-degree-of-

freedom flutter, panel flutter, etc. These terms were originally used in aerospace engineering, 

though some are also applied in wind engineering.  

Classical flutter is a coupled motion in a system with at least two degrees of freedom, 

i.e., rotational (torsional) mode 𝜀 and across-wind displacement (bending) mode y, occurring 

at a single frequency different from the natural frequencies of the system. The coupling 

effects may arise from fluid force terms or from structural inertia or stiffness terms.  

Single-degree-of-freedom flutter concerns oscillations in either torsion or across-wind 

motion and can be referred to as torsional or across-wind instability (galloping). This 

category includes phenomena such as stall flutter of airfoils (similar to across-wind galloping 

in a hard oscillator form), stop-sign flutter of traffic signs, torsional vibrations of suspended 

bridge spans, and others. 
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The term "panel flutter" refers to sustained oscillations of panels – such as the sides of 

large rockets – caused by the high-speed airflow along the panel's surface. While panel flutter 

typically does not occur in wind engineering, it could appear in cases involving large-span, 

lightweight suspended roofs. Related phenomena include flutter of taut canvas covers and 

flag flutter.  

Let us consider the formulation of the two-dimensional bridge flutter problem in 

smooth flow as an example. The self-excited forces due to relatively small oscillations of the 

bridge deck can be characterized by fundamental functions known as flutter aerodynamic 

derivatives. As noted earlier, in the case of galloping, the self-excited forces are fully 

described by steady-state derivatives of aerodynamic coefficients of the type 
𝑑𝐶

𝑑𝛽
, which can 

be obtained from measurements on a fixed body. In contrast, flutter derivatives depend on 

the oscillation frequency and must be determined from measurements on an oscillating body.  

Bridge decks are typically symmetrical, meaning that their elastic and mass centers 

coincide. The dependence of flutter derivatives on the oscillation frequency f of the fluttering 

body can be expressed in terms of the non-dimensional reduced frequency. 

𝐾 =
2𝜋𝐵𝑓

𝑉
 (25) 

where B is the width of the deck and V is the mean wind flow velocity. If the horizontal 

displacement of the deck is also considered, the equations of motion for a two-dimensional 

section of a symmetrical bridge deck with linear viscous damping and elastic restoring forces 

in smooth flow can be expressed as [26,27]:  

𝑚�̈� + 𝑐𝑦�̇� + 𝑘𝑦𝑦 = 𝑤𝑦 (26) 

𝐼𝜀̈ + 𝑐𝜀𝜀̇ + 𝑘𝜀𝜀 = 𝑤𝜀 (27) 

𝑚�̈� + 𝑐𝑥�̇� + 𝑘𝑥𝑥 = 𝑤𝑥 (28) 

where y, 𝜀 and x are the vertical displacement, torsional angle, and horizontal displacement, 

respectively. A unit span is subjected to the aerodynamic lift 𝑤𝑦, moment 𝑤𝜀 and drag 𝑤𝑥 

and has mass m, moment of inertia I, vertical, torsional and horizontal restoring forces with 

stiffness 𝑘𝑦, 𝑘𝜀 , 𝑘𝑥  respectively, along with viscous damping coefficients 𝑐𝑦 , 𝑐𝜀 , 𝑐𝑥. The 

mathematical expressions for the aeroelastic actions are typically written as follows: 

𝑤𝑦 =
1

2
𝜌𝑉2𝐵 [

𝐾𝑌1
∗(𝐾)

�̇�

𝑉
+ 𝐾𝑌2

∗(𝐾)
𝐵�̇�

𝑉
+ 𝐾2𝑌3

∗(𝐾)𝜀 + 𝐾2𝑌4
∗(𝐾)

𝑦

𝐵
+

+𝐾𝑌5
∗(𝐾)

�̇�

𝑉
+ 𝐾2𝑌6

∗(𝐾)
𝑥

𝐵

] (29) 

𝑤𝜀 =
1

2
𝜌𝑉2𝐵2 [

𝐾𝐸1
∗(𝐾)

�̇�

𝑉
+ 𝐾𝐸2

∗(𝐾)
𝐵�̇�

𝑉
+ 𝐾2𝐸3

∗(𝐾)𝜀 + 𝐾2𝐸4
∗(𝐾)

𝑦

𝐵
+

+𝐾𝐸5
∗(𝐾)

�̇�

𝑉
+ 𝐾2𝐸6

∗(𝐾)
𝑥

𝐵

] (30) 

𝑤𝑥 =
1

2
𝜌𝑉2𝐵 [

𝐾𝑋1
∗(𝐾)

�̇�

𝑉
+ 𝐾𝑋2

∗(𝐾)
𝐵�̇�

𝑉
+ 𝐾2𝑋3

∗(𝐾)𝜀 + 𝐾2𝑋4
∗(𝐾)

𝑥

𝐵
+

+ 𝐾𝑋5
∗(𝐾)

�̇�

𝑉
+ 𝐾2𝑋6

∗(𝐾)
𝑦

𝐵

] (31) 
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Terms proportional to �̈�, 𝜀̈ and �̈� (i.e., added mass terms, reflecting the forces due to 

the body's motion that result in fluid accelerations around the body) do not appear in the 

equations above, as these terms are negligible in wind engineering applications. The terms 

involving y and x account for changes in the vibration frequency of the body due to 

aeroelastic effects, while the terms in 𝜀 reflect the influence of the angle of attack noted 

earlier. The quantities 
�̇�

𝑉
 and 

𝐵�̇�

𝑉
 correspond to the effective angle of wind attack and are non-

dimensional. The coefficients 𝑌𝑖
∗, 𝐸𝑖

∗ and 𝑋𝑖
∗ are known as Scanlan flutter derivatives and are 

also non-dimensional. In the case of the classical flutter phenomenon, the mathematical 

model of the problem is simpler.  

The basic relationships describing this case are as follows: consider a section of a 

slender structure treated as a two-degrees-of-freedom mechanically linear system, as shown 

in Fig. 3, subjected to the action of a smooth oncoming flow. The vertical displacement and 

the torsional angle are denoted by 𝑦 and 𝜀, respectively. The vertical aerodynamic force 𝑤𝑦 

and the torsional aerodynamic moment 𝑤𝜀 refer to the elastic axes 𝑦, 𝜀 which have their 

origin at the elastic centre (EC), also known as the shear centre or centre of torsion, i.e., the 

point about which a vertical static force produces displacement but no torsion. 

 

Fig. 3. Two-degrees-of-freedom model of classical flutter (source: authors) 

A unit span of the system has a mass 𝑚, mass moment of inertia 𝐼, static unbalance 𝑆 

(equal to the product of mass 𝑚 and the distance 𝑎 separating the centre of mass 𝑀𝐶 from 

the elastic centre 𝐸𝐶), along with vertical and torsional spring constants 𝑘𝑦 and 𝑘𝜀, 

respectively, and coefficients of vertical and torsional viscous damping 𝑐𝑦 and 𝑐𝜀, 

respectively. For such a system, the equations of motion can be expressed as [4]: 

𝑚�̈� + 𝑆𝜀̈ + 𝑐𝑦�̇� + 𝑘𝑦𝑦 = 𝑤𝑦 (32) 

𝑆�̈� + 𝐼𝜀̈ + 𝑐𝜀𝜀̇ + 𝑘𝜀𝜀 = 𝑤𝜀 (33) 

For small oscillations, the self-excited aerodynamic lift 𝑤𝑦 and moment 𝑤𝜀 on a bluff 

body may be treated as linear with respect to 𝑦 and 𝜀 and their first two derivatives. Under 

this assumption, it is possible to measure the aerodynamic coefficients, for example, through 

special wind tunnel tests. Such experiments show that, similar to the case of airfoils, the 

aerodynamic coefficients of a bluff body are functions of the reduced velocity 𝑉𝑟 = 𝑉/(𝑓𝐵) 

of the oncoming flow. 

Many different expressions for 𝑤𝑦 and 𝑤𝜀 can be found in the literature (see, for 

example, [26,27]). The most commonly used form of these expressions is given by: 



Dynamic similarity criteria for simple cases of building and … 

49 

𝑤𝑦 =
1

2
𝜌𝑉2𝐵 [𝐾𝑌1

∗(𝐾)
�̇�

𝑉
+ 𝐾𝑌2

∗(𝐾)
𝐵�̇�

𝑉
+ 𝐾2𝑌3

∗(𝐾)𝜀] (34) 

𝑤𝜀 =
1

2
𝜌𝑉2𝐵2 [𝐾𝐸1

∗(𝐾)
�̇�

𝑉
+ 𝐾𝐸2

∗(𝐾)
𝐵�̇�

𝑉
+ 𝐾2𝐸3

∗(𝐾)𝜀] (35) 

where the reduced frequency 𝐾 is defined by eq. (25); 𝐵 is the chord, deck width, or along-

wind dimension of the section; 𝑉 is a steady approaching wind speed; and 𝑓 is the frequency 

of oscillations. The aerodynamic coefficients 𝑌𝑖
∗ and 𝐸𝑖

∗ (𝑖 = 1, 2, 3) are non-dimensional, 

nonlinear functions of 𝐾. References [24,25] discuss various experimental techniques for 

obtaining aerodynamic coefficients 𝑌𝑖
∗ and 𝐸𝑖

∗. Taking into account eqs. (34) and (35) and 

noting that: 

𝑡 =
𝐵

𝑉
�̌�;      𝑑𝑡 =

𝐵

𝑉
𝑑�̌�;      𝑑𝑡2 = (

𝐵

𝑉
)
2

𝑑�̌�2 (36) 

𝑑2𝑦(𝑡)

𝑑𝑡2 =
𝑉2

𝐵

𝑑2�̌�(�̌�)

𝑑�̌�2 ;      
𝑑𝑦(𝑡)

𝑑𝑡
= 𝑉

𝑑�̌�(�̌�)

𝑑�̌�
;      𝑦(𝑡) = 𝐷�̌�(�̌�) (37) 

𝑑2𝜀(𝑡)

𝑑𝑡2 =
𝑉2

𝐵2

𝑑�̌�(�̌�)

𝑑�̌�2 ;      
𝑑𝜀(𝑡)

𝑑𝑡
=

𝑉

𝐵

𝑑�̌�(�̌�)

𝑑�̌�
;      𝜀(𝑡) = 𝜀̌(�̌�) (38) 

the equations of motion (32) and (33) can be rewritten in the following dimensionless form: 

𝑑2�̌�(�̌�)

𝑑�̌�2 +
𝑆

𝑚𝐵

𝑑2�̌�(�̌�)

𝑑�̌�2 +
𝑐𝑦𝐵

𝑚𝑉

𝑑�̌�

𝑑�̌�
+

𝑘𝑦𝐵2

𝑚𝑉2 �̌�(�̌�) =  

=
𝜌𝐵2

2𝑚
[𝐾𝑌1

∗(𝐾)
𝑑�̌�(�̌�)

𝑑�̌�
+ 𝐾𝑌2

∗(𝐾)
𝑑�̌�(�̌�)

𝑑�̌�
+ 𝐾2𝑌3

∗(𝐾)𝜀̌(�̌�)] (39) 

𝑆𝐵

𝐼

𝑑2�̌�(�̌�)

𝑑�̌�2 +
𝑑2�̌�(�̌�)

𝑑�̌�2 +
𝑐𝜀𝐵

𝐼𝑉

𝑑�̌�(�̌�)

𝑑�̌�
+

𝑘𝜀𝐵
2

𝐼𝑉2 𝜀̌(�̌�) =  

=
𝜌𝐵4

2𝐼
[𝐾𝐸1

∗(𝐾)
𝑑�̌�(�̌�)

𝑑�̌�
+ 𝐾𝐸2

∗(𝐾)
𝑑�̌�(�̌�)

𝑑�̌�
+ +𝐾2𝐸3

∗(𝐾)𝜀̌(�̌�)] (40) 

In eqs (39) and (40), the following dimensionless monomials or dimensionless 

functions appear:  

𝑆

𝑚𝐵
,
𝑐𝑦𝐵

𝑚𝑉
,
𝑘𝑦𝐵2

𝑚𝑉2 ,
𝜌𝐵2 

2𝑚
 𝐾𝑌1

∗(𝐾), 𝐾𝑌2
∗(𝐾), 𝐾2𝑌3

∗(𝐾) (41) 

𝑆𝐵

𝐼
,
𝑐𝜀𝐵

𝐼𝑉
,
𝑘𝜀𝐵

2

𝐼𝑉2 ,
𝜌𝐵4

2𝐼
, 𝐾𝐸1

∗(𝐾), 𝐾𝐸2
∗(𝐾), 𝐾2𝐸3

∗(𝐾) (42) 

These dimensionless quantities or functions, together with the dimensionless output 

quantities �̌�(�̌�), 𝜀̌(�̌�) and �̌�, constitute the similarity criteria for the analysed problem.  

Due to the dependence of the aerodynamic coefficients 𝑌𝑖
∗ and 𝐸𝑖

∗ upon 𝐾, the solution 

to the flutter problem can be obtained using an iterative procedure. A typical solution method 

is as follows: for a chosen value of 𝐾, with corresponding values of 𝑌𝑖
∗ and 𝐸𝑖

∗ taken from 

experimentally determined functions, the solution for 𝑦 and 𝜀 is sought in the form of 

quantities proportional to e𝑗𝜔𝑡 . As a result, the complex angular frequency is obtained in the 
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form 𝜔 = 𝜔1 + 𝑗𝜔2. If 𝜔2 ≠ 0, a new value of 𝐾 must be chosen, and the procedure is 

repeated until the imaginary part 𝜔2 =̃ 0, so that 𝜔 =̃ 𝜔1. Let 𝐾𝑐 be the value of 𝐾 for which 

𝜔 = 𝜔1. Then, the critical flutter velocity 𝑉𝑐
𝑓
 is given by: 

𝑉𝑐
𝑓

=
𝐵𝜔1

𝐾𝑐
 (43) 

The critical flutter velocity depends on the mass, damping, and stiffness parameters of 

the system, as well as on the geometrical relationships between the elastic centre 𝐸𝐶, mass 

centre 𝑀𝐶 and aerodynamic centre 𝐴𝐶. The aerodynamic centre is typically defined as the 

point of application of the resultant mean aerodynamic force and, for a given cross-section, 

is a function of the angle of wind attack. 

There is also an alternative approach for modelling the aerodynamic lift 𝑤𝑦 and moment 

𝑤𝜀: the quasi-steady approach. In this method, it is assumed that the expressions for 𝑤𝑦 and 

𝑤𝜀 are the same as in the steady case (i.e., without oscillations), provided that the steady angle 

of wind attack 𝜃 is replaced by the relative, instantaneous angle of wind attack 𝜃𝑟. This 

relative angle is defined as 𝜃𝑟 = 𝜃𝑟(𝜀, 𝜀̇, �̇�) =̃ 𝜀 + �̇�/𝑉 + 𝑅𝜀̇/𝑉 where 𝑅 is the characteristic 

radius for the given cross-section and the position of the 𝐸𝐶. In this case, flutter derivatives 

are independent of the oscillation frequency 𝑓. Moreover, similar to the cases of galloping 

and torsional galloping, the formulae describing 𝑤𝑦 and 𝑤𝜀 can be linearized (see, for 

example, papers [6-8] for motionless slender structures, moving slender structures, and real 

structures, respectively). 

A steady oncoming wind, especially under strong wind conditions, is a very rare 

phenomenon. Typically, unsteady wind conditions are observed. In such cases, apart from 

self-excited wind action resulting from positive feedback between the airflow and structural 

motion, buffeting wind action also occurs. If the oscillations of the structure in each 

responding mode are relatively small compared to its characteristic transverse dimension, it 

can be assumed that the resulting wind action, caused by incident turbulence and wind-

structure interaction, is a superposition of buffeting action and self-excited action. Naturally, 

the aerodynamic coefficients used in expressions describing the self-excited wind action must 

depend on the parameters of incident turbulence (e.g., turbulence intensity 𝐼𝑣 = 𝜎𝜐/𝑉, where 

𝜎𝜐 is the standard deviation of wind velocity fluctuations). 

Most wind-structure interactions are highly complex and remain poorly understood. 

The mathematical models describing these phenomena are usually semi-empirical, 

incorporating just enough parameters to capture their most significant observed 

characteristics. 

5. Critical vortex excitation of a slender cylindrical structure 

section in the case of lock-in phenomenon occurrence 

The shedding of vortices in the wake of a body generates fluctuating lateral forces. As 

long as the motions are sufficiently small, they do not influence the vortex shedding.  

When the Strouhal frequency of vortex shedding is: 

𝑓𝑣 =
𝑆𝑡∙𝑉

𝐷
 (44) 
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where: 𝑆𝑡 – the Strouhal number, 𝑉 – mean air onflow velocity, 𝐷 – characteristic 

aerodynamic width, e.g. the diameter of a cylinder. When the Strouhal frequency of vortex 

shedding approaches the natural frequency 𝑓𝑦 of the transverse oscillation of the cylinder, 

and the vibration amplitudes exceed a certain minimum level, an intensive interaction 

mechanism between the vibrations and vortex shedding is activated. This mechanism, in turn, 

controls the lateral forces on the cylinder. One of the primary effects of this feedback 

mechanism is the synchronization of the regular shedding frequency of the vortices with the 

oscillation frequency, known as the lock-in phenomenon. A corresponding critical velocity, 

close to the onset velocity of lock-in, is defined based on the resonance criterion as: 

𝑉𝑣𝑐 =
𝑓𝑦𝐷

𝑆𝑡
 (45) 

where 𝑓𝑦 is the eigenfrequency of the system. 

Experiments show that this condition occurs not only at the flow speed 𝑉𝑣𝑐 but also at 

any speed V within an interval 
𝑓𝑦𝐷

𝑆𝑡
− Δ𝑉 < 𝑉 <

𝑓𝑦𝐷

𝑆𝑡
+ Δ𝑉, where Δ𝑉/𝑉 depends on the cross-

sectional shape and mechanical damping and is typically on the order of a few percent. Within 

this interval, the vortex shedding frequency no longer follows the dependence in eq. (44) but 

instead aligns itself with the body’s frequency 𝑓𝑦. 

The aeroelastic effect occurs when the flow influences the motion of the body, and the 

body's motion, in turn, affects the flow, leading to synchronization of the vortex shedding 

frequency with the body's vibration frequency – commonly known as the lock-in effect. 

Oscillations of the cylinder induced by vortex shedding can trigger a second aeroelastic 

effect: increased correlation of lateral forces along the span. In the case of an infinitely rigid 

cylinder, the vortex-induced lateral forces per unit span at different points along the cylinder 

are imperfectly correlated. However, when the cylinder oscillates due to lateral forces 

induced by the vortices, these oscillations enhance the correlation between these forces, 

which, in turn, increases the amplitudes of the cylinder’s oscillations.  

A third aeroelastic effect characterizing vortex-induced oscillations is the development 

of aeroelastic forces associated with flow modifications induced by the oscillations.  

The required minimum amplitude levels are established, for example, in [10,11,30], to 

be around 0.01 𝐷 of the mean amplitude or 0.006 𝐷 of the standard deviation of lateral 

displacements. The critical across-wind actions are stochastic processes with a more or less 

narrow bandwidth, even in turbulent flow, depending mainly on the relative cylinder surface 

roughness 𝑘𝑟, the wind turbulence intensity 𝐼𝑣 , the aspect ratio of the cylinder, and the 

Reynolds number 𝑅𝑒. The bandwidth is narrower in the subcritical and transcritical range, 

but somewhat extended in the critical and subcritical range of 𝑅𝑒 due to intermittent 

instability of the phenomenon. In resonance, the increasing oscillations are found to be 

limited either by structural damping or by the apparent self-limiting nature of the aeroelastic 

mechanism itself, which complicates the development of a satisfactory analytical model. 

In general, the critical across-wind action caused by vortices on a slender structure with 

a circular cross-section in the lock-in region can be described by the following formula: 

𝑤𝑦𝑣𝑐 = 𝑤𝑦𝑣𝑐(𝑧, 𝑦, �̇�, �̈�, 𝑡) = 𝑞𝑣𝑐(𝑧)𝐷(𝑧)�̌�𝑦𝑣𝑐(𝑧, 𝑦, �̇�, �̈�, 𝑡) (46) 

where: 𝑧 is the along-axis coordinate of the structure; 𝑦, �̇�, �̈� are the lateral displacement, 

velocity, and acceleration of structural vibration, respectively; 𝑦 = 𝑦(𝑧, 𝑡) =̃ 𝛷(𝑧)𝛹(𝑡), 

where 𝛷(𝑧) is the vibration mode and 𝛹(𝑡) is the generalized coordinate; 𝑡 is time; 𝑞𝑣𝑐 =



Andrzej Flaga, Łukasz Flaga 

52 

1

2
𝜌𝑉𝑣𝑐

2  is the critical velocity pressure; 𝜌 is the air density; 𝐷(𝑧) is the structural diameter; 

�̌�𝑦𝑣𝑐 is the dimensionless critical across-wind action. It should be noted that, for brevity, only 

variables regarded as independent (𝑧, 𝑡) or dependent (𝑦, �̇�, �̈�) are explicitly presented. The 

following dimensionless variables, treated as parameters, are not explicitly shown: relative 

structural surface roughness 𝑘𝑟, Reynolds number 𝑅𝑒, fluctuation (turbulence) intensity of 

the oncoming airflow 𝐼𝑣 , Strouhal number 𝑆𝑡, and slenderness ratio 𝜆. 

We can express the general functional relationship for the frequency of vortex shedding 

𝑓𝑣 as: 

𝑓𝑣 = 𝑓𝑣(𝜌, 𝑉, 𝐷, 𝜈, 𝑘𝑟 , 𝐼𝑣) (47) 

where 𝜈 is the kinematic viscosity of air. 

Assuming the dimensional base to be (𝜌, 𝑉, 𝐷), this relationship can be rewritten in the 

dimensionless form as: 

𝑆𝑡 =
𝑓𝑣𝐷

𝑉
= 𝑓𝑣(𝑅𝑒, 𝑘𝑟 , 𝐼𝑣) (48) 

Taking this relationship into account, it can be stated that formula (46) is, all things 

considered, a very complex relation. By treating the structure for each vibration mode 𝛷(𝑧) 

and for the generalized coordinate 𝛹(𝑡) as a one-degree-of-freedom system, a differential 

equation for the lateral vibration of a mechanically linear structure can be written in the 

following general form: 

𝑀𝛷(�̈� + 2𝛾𝑦𝜔𝑦�̇� + 𝜔𝑦
2𝛹) = 𝑊𝛷(𝛹, �̇�, �̈�, 𝑡) = 𝑞𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐻�̌�𝛷(𝛹, �̇�, �̈�, 𝑡) (49) 

where 𝑀𝛷 = ∫ [𝛷(𝑧)]2
𝐻

𝑜
𝑚(𝑧)d𝑧 is the generalized mass, 𝑚(𝑧) is the mass per unit length of 

the structure, 𝐻 is the structural length (height), 𝛾𝑦 is the critical damping ratio 

(𝛾𝑦 =̃ 𝛥𝑦/(2𝜋), where 𝛥 is the logarithmic decrement of vibration damping), 𝜔𝑦 = 2𝜋𝑓𝑦; 

𝑞𝑟𝑒𝑓 = 𝑞𝑣𝑐,𝑟𝑒𝑓 is the reference velocity pressure, 𝐷𝑟𝑒𝑓  is the reference diameter, 𝑊𝛷 and �̌�𝛷 

are the dimensional and dimensionless generalized critical across-wind actions, respectively, 

with the actions related by the following relationships: 

𝑊𝛷(𝛹, �̇�, �̈�, 𝑡) = ∫ 𝛷(𝑧)
𝐻

0
𝑤𝑦𝑣𝑐(𝑧, 𝑦, �̇�, �̈�, 𝑡)d𝑧 =   

= 𝑞𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐻 (
1

𝐻
∫ 𝛷(𝑧)

𝐻

𝑜

𝑞𝑣𝑐(𝑧)𝐷(𝑧)

𝑞𝑟𝑒𝑓𝐷𝑟𝑒𝑓
�̌�𝑦𝑣𝑐(𝑧, 𝛷𝛹,𝛷�̇�, 𝛷�̈�, 𝑡)d𝑧) =   

= 𝑞𝑟𝑒𝑓𝐷𝑟𝑒𝑓𝐻�̌�𝛷(𝛹, �̇�, �̈�, 𝑡) (50) 

The dimensional and dimensionless critical across-wind actions 𝑤 and �̌� are, in 

general, space-time stochastic (random) processes of a very narrow-band nature in the 

subcritical and transcritical range of the Reynolds number 𝑅𝑒 (i.e., range 𝑎), or of a more or 

less narrow-band nature in the critical and supercritical range of 𝑅𝑒 (i.e., range 𝑏). This also 

applies to the stochastic processes 𝑊𝛷 and �̌�𝛷. 
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The complexity of the feedback phenomenon discussed means that, so far, no 

satisfactory and complete analytical models have been derived from the fundamental laws 

governing airflow around a vibrating cylinder. However, there are several semi-empirical 

models in which the parameters involved must be determined experimentally. For example:  

• Harmonic model with additional linear terms, including aerodynamic damping 

force (dependent on �̇�) and, very rarely, aerodynamic stiffness force (dependent on 

𝑦) and aerodynamic inertia force (dependent on �̈�) (e.g., Scanlan model [26]; 

Davenport model, Vickery model [32]);  

• Nonlinear models of autonomous (self-excited) systems (e.g., Scanlan model [26], 

Hartlen and Currie model [16]);  

• Wake-oscillator model [28,29];  

• Blevins and Burton model [2,3];  

• Vickery and Basu model [1,30,31];  

• Correlation length model [22,23];  

• Nonlinear generalized harmonic models, such as nonlinear amplitude-dependent 

self-limiting models of the lock-in phenomenon at vortex excitation, developed by 

A. Flaga [10,11]. 

The simplest case of the last models will be considered in more detail further. Let us 

assume that:  

(a) the airflow is steady (s) and uniform (i.e. 𝑉 = 𝑐𝑜𝑛𝑠𝑡.); (b) an undeformable cylinder, 

elastically supported (including damping) at its ends, represents the physical model of the 

system (i.e., a sectional model of a structure) (Fig. 4); (c) vortex shedding is periodic (i.e., it 

occurs in the subcritical or transcritical range of the Reynolds number, i.e., range a).  

 

Fig. 4. Sectional model of a slender cylindrical structure under vortex-induced excitation (source: 

authors) 

Due to the cross-flow velocity of the vibrating cylinder, both the magnitude and 

direction of the approaching airflow velocity change periodically. As a result, the position of 
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the separation points on the cylinder's boundary layer may also change periodically. 

Additionally, the movement of the cylinder boundary causes an apparent increase in the 

effective diameter – i.e., the characteristic transverse dimension of the vibrating cylinder. 

Thus, in the dimensional analysis of the vortex-shedding phenomenon, it is necessary to 

consider the width of the vortex street B, the frequency of vortex shedding 𝑓𝑣, and the velocity 

of vortex displacement 𝑉𝑣 , which lead to an increase in the effective diameter compared to 

the actual cylinder diameter D. This increase should also be directly related to the width of 

the vortex street (i.e. 𝐵𝑠𝑎𝑣in this context). The effective transverse dimension of the vibrating 

cylinder 𝐷𝑠𝑎  can then be described by the following relationships: 

𝐷𝑠𝑎

𝐷
=

𝐵𝑠𝑎𝑣

𝐵𝑠𝑎𝑜 = 1 + 𝛼𝑠𝑎 𝑌

𝐷
= 1 + 𝛼𝑠𝑎�̌� (51) 

where 𝐵𝑠𝑎𝑣, 𝐵𝑠𝑎𝑜 are the widths of the vortex street for a vibrating and non-vibrating 

cylinder, respectively; 𝛼𝑠𝑎 = 𝛼𝑠𝑎 (Re) is a parameter determined experimentally; and 𝑌, �̌� 

are the dimensional and dimensionless amplitudes of vibration, respectively. 

The investigation results by Griffin and others [13-15], conducted in the subcritical 

range of the Reynolds number, provide, for example, the following result: 

𝐵𝑠𝑎𝑣

𝐵𝑠𝑎𝑜 =  
𝐷𝑠𝑎

𝐷
≅ 1 +  0.70𝑌; ̌ ∝𝑠𝑎= 0.70 (52) 

Assuming the effective cylinder dimension 𝐷𝑠𝑎 , rather than its actual dimension D, as 

the basis for consideration leads to a different value for the critical velocity 𝑉𝑣𝑐
𝑠𝑎𝑣: 

𝑉𝑣𝑐
𝑠𝑎𝑣 = 

𝑓𝑦𝐷𝑠𝑎

𝑆𝑡
≠ 𝑉𝑣𝑐

𝑠𝑎𝑜 =
𝑓𝑦𝐷

𝑆𝑡
,

𝑉𝑣𝑐
𝑠𝑎𝑣

𝑉𝑣𝑐
𝑠𝑎𝑜 = 

𝐷𝑠𝑎

𝐷
= 1 + 𝛼𝑠𝑎𝑌 ̌ (53) 

The occurrence of an extremum in the transverse force due to vortices at the critical 

velocity 𝑉𝑣𝑐
𝑠𝑎𝑣 > 𝑉𝑣𝑐

𝑠𝑎𝑜 was confirmed by investigations (e.g., [9]), where 𝑉𝑣𝑐
𝑠𝑎𝑣 ∈ (1.2 −

1.35)𝑉𝑣𝑐
𝑠𝑎𝑜. 

Since the ratio 𝑉𝑣𝑐
𝑠𝑎𝑣/𝑉𝑣𝑐

𝑠𝑎𝑜 is bounded, the amplitude of vibration is also limited. For 

instance, if one assumes 𝑉𝑣𝑐
𝑠𝑎𝑣/𝑉𝑣𝑐

𝑠𝑎𝑜 = 1.3, 𝛼𝑠𝑎 = 0.7, then: 

𝑌 ̌ = (𝑉𝑣𝑐
𝑠𝑎𝑣/𝑉𝑣𝑐

𝑠𝑎𝑜  −  1)/𝛼𝑠𝑎 = 3/7 ≅ 0.43  (𝑖. 𝑒. Ymax ≅ 0.43𝐷) (54) 

Taking into account the effective transverse dimension of the cylinder 𝐷𝑠𝑎 , a 

mathematical model for the critical across-wind load 𝑤𝑦𝑣𝑐
𝑠𝑎𝑣 (Y, t) can be written in the form: 

𝑤𝑦𝑣𝑐
𝑠𝑎𝑣  (𝑌, 𝑡) = 𝑞𝑐

𝑠𝑎𝑣𝐷𝑠𝑎𝐶𝑠𝑎𝑜 𝑠𝑖𝑛(2𝜋𝑓𝑦𝑡 + 𝜑𝑠𝑎𝑣) =  

𝑞𝑐
𝑠𝑎𝑜𝐷(1 + 𝛼𝑠𝑎�̌�)3𝐶𝑠𝑎𝑜 𝑠𝑖𝑛(2𝜋𝑓𝑦𝑡 + 𝜑𝑠𝑎𝑣) = 𝑞𝑐

𝑠𝑎𝑜𝐷�̌�𝑦𝑣𝑐
𝑠𝑎𝑣(�̌�, �̌�) (55) 

where: 𝑞𝑐
𝑠𝑎𝑜 = 

1

2
 𝜌(𝑉𝑣𝑐

𝑠𝑎𝑜)2;  𝑞𝑐
𝑠𝑎𝑣 = 

1

2
 𝜌(𝑉𝑣𝑐

𝑠𝑎𝑣)2;  𝐶𝑠𝑎𝑜 = 𝐶𝑠𝑎𝑜( 𝑅𝑒) – the aerodynamic 

coefficient for a motionless cylinder; 𝜑𝑠𝑎𝑣the phase shift angle.  

For the analyzed physical model of the system, the dimensionless amplitude of 

vibration is given by: 
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𝑌 ̌ =  
𝑞𝑐

𝑠𝑎𝑜 𝐶𝑠𝑎𝑜

2𝛾𝑦𝑚𝜔𝑦
2  (1 + 𝛼𝑠𝑎�̌�)3,

�̌�

(1+𝛼𝑠𝑎�̌�)3
= 

𝑞𝑐
𝑠𝑎𝑜 𝐶𝑠𝑎𝑜

2𝛾𝑦𝑚𝜔𝑦
2 = 

𝑀𝜌𝐶𝑠𝑎𝑜

8𝜋2𝛾𝑦𝑆𝑡2 (56) 

This is a non-linear equation for determining �̌�. The function �̌�/(1 + 𝛼𝑠𝑎�̌�)3 (Fig. 5) 

has an extremum at the value 0.148/𝛼𝑠𝑎 for �̌� = 0.5/𝛼𝑠𝑎. Thus, 𝑌 < 𝑌𝑚𝑎𝑥 = 0.5𝐷/𝛼𝑠𝑎. 

Further analysis, supported by experimental results, confirms that in the adopted model of 

across-wind action, the feedback between cylinder vibration and vortex shedding is self-

limiting in nature. 

 

Fig. 5. Plot of the function 𝑓(𝑥) =  
𝑥

(1+𝑎𝑥)3
 (source: authors) 

6. Buffeting wind actions on slender structures 

In the design of many slender buildings and structures, wind-structure interactions (i.e., 

aeroelastic forces and force moment) can often be neglected, with buffeting wind actions 

caused by oncoming turbulent wind playing the most significant role. Buffeting action 

components are typically described using so-called quasi-steady models, which are 

commonly applied in structural aerodynamics (e.g., [6-8]).  

For instance, in the case of slender, tower-shaped structures with a longitudinal axis z, 

the buffeting actions per unit length can be expressed as follows: 

• wind velocity vector components  

�⃗� (𝑧, 𝑡) = (𝑉(𝑧) + 𝑢(𝑧, 𝑡); 𝑣(𝑧, 𝑡); 𝑤(𝑧, 𝑡)) (57) 

• dimensional component of mean wind action  

�̅�(𝑧) =  
1

2
𝜌𝑉2(𝑧)𝐷(𝑧) (58) 

• along-wind action (i.e. aerodynamic drag) 

𝑤𝑥𝑏 = �̅� (𝐶𝑥 + 2𝐶𝑥
𝑢

𝑉
+ 𝐶𝑥𝑦

𝑣

𝑉
) (59) 

• across-wind action 

𝑤𝑦𝑏 = �̅�(𝐶𝑦  + 2𝐶𝑦
𝑢

𝑉
+ 𝐶𝑦𝑥

𝑣

𝑉
) (60) 
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• torsional wind action 

𝑤𝑛𝑏 = �̅�𝐷(𝐶𝑚 + 2𝐶𝑚
𝑢

𝑉
+ 𝐶𝑚𝑚

𝑣

𝑉
) (61) 

where: 

𝐶𝑥𝑦 = 
𝜕𝐶𝐷

𝜕𝛽
|
𝛽=0

− 𝐶𝐿 (62) 

𝐶𝑦𝑥 = 
𝜕𝐶𝐿

𝜕𝛽
|
𝛽=0

+ 𝐶𝐷 (63) 

𝐶𝑚𝑚 = 
𝜕𝐶𝑚

𝜕𝛽
|
𝛽=0

 (64) 

In the case of a slender bridge span, the corresponding relationships can be expressed 

as follows: 

𝑤𝑥𝑏 = �̅�(𝐶𝑥 + 2𝐶𝑥
𝑢

𝑉
+ 𝐶𝑥𝑧

𝑤

𝑉
) (65) 

𝑤𝑧𝑏 = �̅�(𝐶𝑧 + 2𝐶𝑧
𝑢

𝑉
+ 𝐶𝑧𝑥

𝑤

𝑉
) (66) 

𝑤𝑚𝑏 = �̅�𝐷 (𝐶𝑚 + 2𝐶𝑚
𝑢

𝑉
+ 𝐶𝑚𝑚

𝑤

𝑉
) (67) 

Let us consider, as an example, only the along-wind action of turbulent wind on a 

slender, tower-shaped structure (Fig. 6). Assume it is a rectangular prism with height H, width 

B, and thickness D. We will consider the building's response as:  

𝜉(𝑧, 𝑡) = ∑ Φ̆𝑖
𝑥(𝑧)Ψ𝑖

𝑥(𝑡)𝑖  (68) 

 

Fig. 6. A tower-shaped structure subjected to buffeting wind action (source: authors) 
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where: �̌�𝑖
𝑥(𝑧) – i-th dimensionless form of bending free vibrations (eigenmode) in the x-

direction; 𝑧 – height above the ground, 𝛹𝑖
𝑥(𝑡) – i-th generalized (main, modal) coordinate in 

the x-direction. Moreover, we assume that the mean wind direction is perpendicular to the 

wall with dimensions D x H. Given suitable input assumptions, the motion equation of the 

structure, corresponding to the first vibration mode �̌�𝑥(𝑧) = �̌�1
𝑥(𝑧), can be approximated as 

[9]:  

𝑑2𝛹𝑥(𝑡)

𝑑𝑡2 + 2(2𝜋𝑓𝑥)𝛾𝑥
𝑑𝛹𝑥(𝑡)

𝑑𝑡
+ (2𝜋𝑓𝑥)

2𝛹𝑥(𝑡) =
1

(𝜌𝑏𝐷𝐵𝐻)𝑀𝑥
(
1

2
𝜌𝐶𝑥𝐷𝐻𝑉𝑟𝑒𝑓

2 )𝑊𝑥(𝑡) (69) 

where: 𝛹𝑥(𝑡) = 𝛹1
𝑥(𝑡); 𝑓𝑥 – fundamental free vibration frequency, 𝛾𝑥 – critical damping 

ratio; 𝜌𝑏 – mean mass density of the structure per unit volume; 𝜌 – air mass density; 𝑉𝑟𝑒𝑓  – 

mean wind velocity at the reference height; 𝑀𝑥– dimensionless generalized mass given by: 

𝑀𝑥 = ∫ [�̆�𝑥(𝜁)]
2
𝑑𝜁

1

0
 (70) 

𝜁 = 𝑧/𝐻;𝑊𝑥(𝑡) – dimensionless generalized force given by: 

𝑊𝑥(𝑡) ≅ ∫ [
𝑉2(𝜁)

V𝑟𝑒𝑓
2 + 2

𝑢(𝜁,𝑡)

𝑉𝑟𝑒𝑓
]

1

0
�̌�𝑥(𝜁)𝑑𝜁 (71) 

𝑉(𝜁) – mean wind velocity, 𝑢(𝜁, 𝑡) - wind velocity fluctuations in the x-direction. 

Now, we transform the motion equation (69) into a dimensionless form, taking into 

account the following substitutions and dependencies: 

�̆� = 𝑓𝑜𝑡 =
1

𝑡𝑜
𝑡;          𝑑𝑡 =

1

𝑓𝑜
𝑑�̆�;          𝛹𝑥(𝑡) =

𝛹𝑥(
�̆�

𝑓𝑜
)

𝐷
𝐷 = �̆�𝑥(�̆�)𝐷 (72) 

𝑑𝛹𝑥(𝑡)

𝑑𝑡
= 𝑓𝑜𝐷

𝑑�̆�𝑥(�̆�)

𝑑�̆�
;          

𝑑2𝛹𝑥(𝑡)

𝑑𝑡2 = 𝑓𝑜
2𝐷

𝑑2�̆�𝑥(�̆�)

𝑑�̆�2 ;        qo=½ρVref
2; m = ρbDB  (73) 

where the scaling parameter 𝑓𝑜 for the dimensionless frequency 𝑓(or 𝑡𝑜 = 1/𝑓𝑜 for the 

dimensionless time �̌�) is defined as: 

𝑓𝑜 =
1

𝑡𝑜
= {

𝑉𝑟𝑒𝑓

𝐷

𝑓𝑥
 (74) 

and 𝑚 is the mean mass density per unit height of the structure. 

After dividing both sides of eq. (69) by 𝑓𝑜
2𝐷, we obtain: 

𝑑2�̆�𝑥(�̆�)

𝑑�̆�2 + 2(2𝜋𝑓𝑥)𝛾𝑥 (
𝑓𝑥

𝑓𝑜
)

𝑑�̆�𝑥(�̆�)

𝑑�̆�
+ 4𝜋2 (

𝑓𝑥

𝑓𝑜
)
2

�̆�(�̆�) =
𝑞𝑜

𝑚𝑓𝑜
2 𝐶𝑥

�̆�𝑥(�̆�)

𝑀𝑥
 (75) 

Depending on the assumed reference frequency quantities 𝑓𝑜 or 𝑉𝑟𝑒𝑓/𝐷 or 𝑓𝑥, we will 

proceed accordingly: 
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𝑑2�̌�𝑥(�̌�)

𝑑�̌�2 + 2(2𝜋𝛾𝑥)𝑆𝑟𝑥
𝑑�̌�𝑥(�̌�)

𝑑�̌�
+ 4𝜋2𝑆𝑟𝑥

2�̌�(�̌�) =
𝑞𝑜𝐷2

𝑚𝑉𝑟𝑒𝑓
2 𝐶𝑥

�̌�𝑥(�̌�)

𝑀𝑥
= 𝑀𝜌𝑥𝐶𝑥

�̌�𝑥(�̌�)

𝑀𝑥
 (76) 

or 

𝑑2�̌�𝑥(�̌�)

𝑑�̌�2 + 2(2𝜋𝛾𝑥)
𝑑�̌�𝑥(�̌�)

𝑑�̌�
+ 4𝜋2�̌�(�̌�) =

𝑞𝑜

𝑚𝑓𝑥
2 𝐶𝑥

�̌�𝑥(�̌�)

𝑀𝑥
= 𝑀𝜌𝑥𝑉𝑟𝑥

2𝐶𝑥
�̌�𝑥(�̌�)

𝑀𝑥
 (77) 

where:  

𝑀𝜌𝑥 =
𝜌𝐷2

2𝑚
;     𝑆𝑟𝑥 =

𝑓𝑥𝐷

𝑉𝑟𝑒𝑓
;      𝑉𝑟𝑥 =

𝑉𝑟𝑒𝑓

𝑓𝑥𝐷
 (78) 

Dimensionless monomials 𝑀𝜌𝑥𝐶𝑥/𝑀𝑥 or 𝑀𝜌𝑥𝑉𝑟𝑥
2𝐶𝑥/𝑀𝑥 could be treated as a measure 

of the ratio of aerodynamic force to inertial force. Moreover, another ratio, namely: 

𝜌𝑜

𝑚𝑓𝑜
2

2𝜋𝛾𝑥
𝑓𝑥
𝑓𝑜

=
𝜌𝑉𝑟𝑒𝑓

2

2𝑚𝛥𝑥𝑓𝑥𝑓𝑜
=

𝜌𝐷2

2𝑚𝛥𝑥
∙

𝑉𝑟𝑒𝑓
2

𝑓𝑥𝑓𝑜𝐷2 =
𝑀𝜌𝑥

𝛥𝑥
∙

𝑉𝑟𝑒𝑓
2

𝑓𝑥𝑓𝑜𝐷2 =
1

𝑆𝑐𝑥
∙ {

𝑉𝑟𝑥;  𝑓𝑜 =
𝑉𝑟𝑒𝑓

𝐷

𝑉𝑟𝑥
2;  𝑓𝑜 = 𝑓𝑥

 (79) 

where: 𝑆𝑐𝑥 =
𝛥𝑥

𝑀𝜌𝑥
=

2𝑚𝛥𝑥

𝜌𝐷2  is a new, convenient dimensionless parameter for model 

investigations, called the Scruton number, which combines damping and mass effects.  

Similar considerations can be applied in the case of torsional response 𝜀(𝑧, 𝑡) caused 

by the aerodynamic moment with the aerodynamic moment coefficient 𝐶𝑚. By formally 

replacing the index 𝑥, with 𝜀, the respective relationships can be expressed as follows: 

𝜀(𝑧, 𝑡) = ∑ �̆�𝑖
𝜀(𝑧)𝑟 𝛹𝑖

𝜀(𝑡) (80) 

𝑑2�̌�𝜀(�̌�)

𝑑�̌�2 + 2(2𝜋𝛾𝜀)
𝑓𝜀

𝑓𝑜

𝑑�̌�𝜀(�̌�)

𝑑�̌�
+ 4𝜋2 (

𝑓𝜀

𝑓𝑜
)
2

�̌�𝜀(�̌�) =
𝑞𝑜𝐷2

𝑚𝜀𝑓𝑜
2 𝐶𝑚

�̌�𝜀(�̌�)

𝑀𝜀
 (81) 

𝑉𝑟𝜀 =
1

𝑆𝑟𝜀
=

𝑉𝑟𝑒𝑓

𝑓𝜀𝐷
;         

𝑞𝑜𝐷2

𝑚𝜀𝑓𝑜
2 = {

𝑀𝜌𝜀 =
𝜌𝐷4

2𝑚𝜀
;  𝑓𝑜 =

𝑉𝑟𝑒𝑓

𝐷

𝑀𝜌𝜀 ∙ 𝑉𝑟𝜀
2 =

𝜌𝐷4

2𝑚𝜀
∙ (

𝑉𝑟𝑒𝑓

𝑓𝜀𝐷
)
2

;  𝑓𝑜 = 𝑓𝜀 
 (82) 

2𝜋𝛾𝜀 ≅ 𝛥𝜀;         𝑆𝑐𝜀 =
𝛥𝜀

𝑀𝜌𝜀
=

2𝑚𝜀𝛥𝜀

𝜌𝐷4  (83) 

7. Aerodynamic vibrations of a complex structure susceptible to 

dynamic wind action: an example of cable-stayed or suspended 

bridge 

In the case of complex structures susceptible to dynamic wind action, especially when 

interference phenomena occur, reliable models of wind action on such structures are typically 

unknown. In these situations, model tests in wind tunnels become indispensable, and the 

corresponding similarity criteria must be determined and fulfilled. Let us examine this 
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scenario more closely using the example of cable-stayed or suspended bridges [9]. The 

following assumptions are to be accepted: 

A physical/mathematical model of the structure is defined in accordance with the 

procedures of the finite element method.  

The structure's response, expressed in generalized displacements (i.e., linear 

displacements or rotational angles), can be described by: 

𝐀(𝑡) = ∑ 𝛟𝑖𝜓𝑖(𝑡)𝑖  (84) 

where: 𝛟𝑖  – i-th mode of free vibrations; 𝛹𝑖  – i-th dimensionless generalized (modal) 

coordinate. In general, it may be assumed, that 

𝜓𝑖(𝑡) = 𝜓𝑖({𝑊}, {𝐺}, {𝑂}; 𝑡) (85) 

where: {𝑊}, {𝐺} – sets of dimensional or dimensionless parameters characterizing the 

oncoming airflow and geometrical features of the object; {𝑂} – sets of dimensional or 

dimensionless parameters characterizing the mechanical properties of the object (i.e., inertia, 

damping, stiffness).  

Within the mechanical parameters of the object {𝑂}, for example, the following groups 

can be distinguished: 

• case 1  

{𝑂} = {𝑀𝑛, 𝑀𝑏 , 𝑀𝑚, 𝐶𝑛, 𝐶𝑏 , 𝐶𝑚, 𝐾𝑛 , 𝐾𝑏 , 𝐾𝑚}; {𝛟𝑖}} (86) 

i.e., a set of generalized (modal) quantities: generalized mass 𝑀𝑘, generalized damping 𝐶𝑘, 

and generalized stiffness 𝐾𝑘; where 𝑘 = 𝑛, 𝑏,𝑚; denote the respective wind action 

components (i.e., aerodynamic drag, lift, and moment); and a set of free vibration modes 

(shapes) {𝛷𝑖}; 

• case 2 

{𝑂} = {{

(𝑚,𝑚𝑚)𝑠𝑝𝑎𝑛

(𝑚,𝑚𝑚)𝑝𝑦𝑙𝑜𝑛

(𝑚)𝑐𝑎𝑏𝑙𝑒

} ; 𝛾𝑛, 𝛾𝑏 , 𝛾𝑚; 𝑓𝑛, 𝑓𝑏 , 𝑓𝑚; {𝛟𝑖}} (87) 

• case 3  

{𝑂} = {{

(𝑚,𝑚𝑚)𝑠𝑝𝑎𝑛

(𝑚,𝑚𝑚)𝑝𝑦𝑙𝑜𝑛

(𝑚)𝑐𝑎𝑏𝑙𝑒

} ; 𝛾𝑛, 𝛾𝑏 , 𝛾𝑚; {

{𝐸𝐼𝑛 , 𝐸𝐼𝑏 , 𝐺𝐼𝑚}𝑠𝑝𝑎𝑛

{𝐸𝐼𝑛 , 𝐸𝐼𝑏 , 𝐺𝐼𝑚}𝑝𝑦𝑙𝑜𝑛

{𝐸𝐴}𝑐𝑎𝑏𝑙𝑒

}} (88) 

where: 𝑚,𝑚𝑚 – mass and mass moment of inertia per unit length of the main structural 

elements;  𝛾𝑘 – critical damping ratio (dimensionless quantity); 𝐸𝐼, 𝐺𝐼𝑚, 𝐸𝐴 – bending, 

torsional, and along-axis stiffness of the main structural elements, respectively.  

Assuming a dimensional base of (𝜌, 𝐷, 𝑉), from the dimensional quantities 𝑚, 𝑚𝑚, 𝑓𝑘, 

𝐸𝐼, 𝐺𝐼𝑚, 𝐸𝐴, the following dimensionless quantities can be created: 

• dimensionless parameters of mass and mass moment of inertia: 
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𝑀𝜌 =
𝜌𝐷2

2𝑚
,       𝑀𝜌𝑚 =

𝜌𝐷4

2𝑚𝑚
 (89) 

• kinematic Strouhal numbers: 

𝑆𝑟𝑘 =
𝑓𝑘𝐷

𝑉
=

1

𝑉𝑟𝑘
,   𝑘 = 𝑛, 𝑏,𝑚 (90) 

• Cauchy numbers: 

𝐶𝑎𝐸𝐼 =
𝐸𝐼

𝜌𝑉2𝐷4,       𝐶𝑎𝐺𝐼𝑚 =
𝐺𝐼𝑚

𝜌𝑉2𝐷4,       𝐶𝑎𝐸𝐴 =
𝐸𝐴

𝜌𝑉2𝐷2 (91) 

The dimensionless quantities presented above form part of the dynamic similarity 

criteria for the analysed problem.  

By grouping all dimensionless quantities characterizing the mechanical properties of 

the object into a single set (�̌�) and applying the Π theorem of dimensional analysis, the 

following final relationship can be written: 

𝜓𝑖(�̌�) = 𝜓𝑖{{�̌�}, {�̌�}, {�̌�}; �̌�} (92) 

where: �̌� – dimensionless time assumed as �̌� =
𝑉

𝐷
𝑡. 
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