
42 IAPGOŚ 2/2018 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 2/2018, 42–45

DOI: 10.5604/01.3001.0012.0703

TOOLS FOR COMPARING THE RESULTS OF THE WORK

OF SORTING ALGORITHMS

Larysa Gumeniuk, Vladimir Lotysh, Pavlo Gumeniuk
Lutsk National TechnicalUniversity, Department of Automation and Computer – Integrated Technologies

Abstract. The program implementation of sorting algorithms is obtained. The program realization of complex for comparison of sorting algorithms

is obtained. Using the obtained tools, an analysis of algorithms for sorting by speed was performed depending on the number of members of the data
array.

Keywords: sorting algorithms, program realization, a software package

NARZĘDZIA DO PORÓWNANIA WYNIKÓW PRACY ALGORYTMÓW SORTOWANIA

Streszczenie. Wykonano program realizujący algorytmy sortowania. Otrzymano programowy układ do porównania algorytmów sortowania.

Wykorzystując otrzymane narzędzia, wykonano analizę algorytmów sortowania według prędkości, w zależności od liczby elementów tablicy danych.

Słowa kluczowe: algorytmy sortowania, realizacja programu, pakiet oprogramowania

Introduction

Often, there is a need to arrange objects based on a single

quality: to record number’s data in ascending order, arrange

people by their height, arrange words in alphabetical order. If you

are able to compare any two items from the given set, then this set

can always be arranged. The process of organizing information is

called "sorting".

The volumes of data arrays reach the sizes that decades ago

seemed almost unbelievable. The need to organize large amounts

of information that is used to effectively implement a real-time

search and processing procedure is increasing. The larger the

amount of processed data, the more important is the task of

optimizing the algorithms used, including sorting.

Thus, the development and research of methods for sorting

data arrays, presenting them in a more convenient and formalized

form with subsequent implementation is an urgent task at the

present stage of development of high-performance computing

instruments.

The purpose of this work is to develop a software package for

comparing the results of the algorithms of sorting. The creation of

a complex includes the development of algorithms and software

for comparing the results of the algorithms of sorting.

1. Problem statement

In the development of tools (software complex) the most

common algorithms for data sorting have been analysed. Due to

the analysis conducted for the program implementation, the

following sorting algorithms were selected:

 Built-in sorting algorithm (Python),

 Quicksort (Hoare sorting),

 Merge sort,

 Heapsort (pyramid sort),

 Binary insertion sort,

 Sorting by using simple (linear) inserts,

 Shell sort,

 Sort by choice,

 Bubble sort,

 Threaded sort,

 Bin sort (Bucket sort),

 Integer sort (Radix sort).

For program realization of selected algorithms scripting

programming language is being used.

The scripting languages are used by themselves as complete

base tool platforms more frequently. For example, many large

commercial applications are now programmed mainly in Perl,

PHP or Python. Python belongs to a dynamic typing language

class, provides the programmer with an automatic "garbage

collection" and convenient high-level data structures, such as

dictionaries, lists, tuples, etc. Python combines striking power

with a simple and understandable syntax, thought-out modularity

and scalability.

The Python language interpreter is freely distributed under the

Python Software Foundation (PSF) License, which is to some

extent even more democratic than the GNU General Public

License.

For Python there are libraries for access to the DBMS (on the

Windows platform, access to the DB is possible through ADO).

There are extension modules for Python under Windows and

Unix/Linux for access to Oracle, Sybase, Informix, MySQL and

SQLite.

The implementation of tools for comparing results is done in

the Delphi programming language.

For temporarily storing data about the speed of program

implementation of sorting algorithms, SQLite database is selected.

The program is lined up with a library and the engine becomes an

integral part of the program.

SQLite stores the entire database (including definitions, tables,

indexes, and data) in a single standard file on the computer that is

running the program.

Database Management System "SQLite" is a program that is

provided under "open source" terms.

The SQLite library itself is written in C and is included in the

Python installation application. A number of wrappers and

components have been developed to work with Delphi. To

implement the Delphi-SQLite connection, the ZeosLIB

components have been selected.

ZeosLib is an open source project that supports multiple

database management systems for Delphi, FreePascal, Kylix and

BCBuilder: MySQL, PostgreSQL, Interbase, Firebird, MS SQL,

Sybase, Oracle, SQLite. ZeosLib uses native DBMS libraries, but

can also use its own modified libraries. Usually it's used for

configuring and linking components to each other and the host.

The software implementation of the selected algorithms has

been carried out in the programming language Python version

3.4.3. SQLite3 database version 3.7.0.1 was used to save data.

To save the data of calculation of the sorting algorithm time to

obtain information about the average, median, and fashion, we use

the box_plot database table box created using the SQLite3 DBMS.

The table structure is designed to store the data of ten runs of

each sorting algorithm with a fixed value of the number of

members of the Nb data array.

To analyse the obtained data a software package was

developed, which includes: application for calculation (average,

median, mode) and visualization of the obtained results;

Application for analysis of the received data (regression equation,

time) of the sorting process and their 2D and 3D visualization; an

application for comparing graphs of sorting time dependence on

the number of sorting elements.

Let's take a closer look at each of the applications.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2018 43

2. Main results

Data Mining application – has the ability to download data

from the box's database, namely the box_plot table, display it in

tabular form, calculate the average, median, mode, maximum

value and minimum value, and visualize this data in the form of a

graph (Figure 1).

The application Chart_m is intended to calculate the total

sorting time, creating the sorting time graphical dependence on the

number of array elements for this sorting method (2D and 3D),

maintaining the obtained dependence into the BMP file, and

printing the received results (Figure 2).

The Charts application is designed to construct sorting time

dependencies on the number of members of the sorting array for

different sorting methods (Figure 3).

For each testing algorithm, a preliminary analysis of how

much time algorithms work, depending on the size of the input

data, was carried out.

It has been found by the research that all sorting algorithms,

except for threaded sort, sorting by choice, sorting by simple

inserts, and "bubble" sorting, work fairly quickly. For fast

algorithms (built-in sort, integer sort, bucket sort, etc.) testing with

incoming data up to 1,500,000 entries was performed; for others

(that work slowly) – this limit was up to 110000 entries.

From the analysed data the results of the complexity of each

algorithm are obtained.

Table 1 shows the dependence of the working time (sec.) on

the number of elements sorted by different algorithms (complexity

of the algorithm). The language of implementation is Python.

Fig. 1. Data Mining application

Fig. 2. The application Chart_m

Fig. 3. The Charts application

44 IAPGOŚ 2/2018 p-ISSN 2083-0157, e-ISSN 2391-6761

Table 1. Dependence of the working time (sec.) on the number of elements sorted by different algorithms
N

u
m

b
er

 o
f

so
rt

ed

el
em

en
ts

Algorithms name

B
u
il

t-
in

 s
o
rt

in
g

Q
u
ic

k
so

rt

B
in

ar
y
 i

n
se

rt
s

M
er

g
e

so
rt

T
h
re

ad
ed

 s
o
rt

in
g

S
o
rt

 b
y
 c

h
o
ic

e

S
h
el

l
so

rt

P
y
ra

m
id

 s
o
rt

S
im

p
le

 i
n
se

rt
s

B
u
b
b
le

 s
o
rt

B
u
ck

et
 s

o
rt

S
o
rt

 b
y
 g

ra
d
e

10000 0.0083 0.092 0.277 0.1781 4.471 2.486 0.1166 0.241 13.26 4.317 0.011 0.0686

20000 0.0175 0.198 0.774 0.3781 25.862 9.901 0.2143 0.461 51.52 4.115 0.0218 0.1325

30000 0.0235 0.311 1.478 0.5867 73.461 22.26 0.3504 0.798 116.8 16.019 0.0324 0.1981

40000 0.031 0.431 2.442 0.8041 158.671 40.14 0.4584 1.077 213.3 35.415 0.0446 0.2664

50000 0.0412 0.562 3.530 1.0226 292.989 63.65 0.578 1.242 343.9 63.397 0.0571 0.3355

60000 0.055 0.691 4.828 1.2466 484.829 92.31 0.7266 1.510 512.3 101.59 0.0687 0.4042

70000 0.0567 0.817 6.258 1.4707 750.883 127.39 0.8605 1.794 722.4 146.83 0.0796 0.4759

80000 0.0661 0.959 7.937 1.7038 1087.57 169.20 0.9939 2.073 959.9 206.16 0.0924 0.5428

90000 0.076 1.087 9.834 1.9379 1502.1 217.01 1.1345 2.356 1231.7 268.33 0.1041 0.6113

100000 0.0867 1.219 11.903 2.1671 2037.53 263.05 1.2666 2.64 1539.4 339.57 0.1164 0.6812

200000 0.2051 2.614 45.241 4.6329 - - 2.6257 5.619 - - 0.2509 1.3716

300000 0.3316 4.067 96.237 7.1507 - - 4.1002 8.710 - - 0.386 2.0493

400000 0.4679 5.588 - 9.7097 - - 5.4515 11.898 - - 0.522 2.7254

500000 0.6084 7.111 - 12.223 - - 7.0134 15.255 - - 0.6609 3.4092

600000 0.7548 8.731 - 14.918 - - 8.4102 18.398 - - 0.7958 4.0838

700000 0.9062 10.283 - 17.796 - - 10.236 21.748 - - 0.9359 4.8021

800000 1.0577 11.869 - 20.516 - - 11.721 25.116 - - 1.0734 5.444

900000 1.2145 13.338 - 23.26 - - 13.185 28.498 - - 1.2114 6.1427

1000000 1.374 14.933 - 26.023 - - 14.619 31.864 - - 1.3499 6.8398

1500000 2.2014 23.084 - 40.095 - - 22.002 49.392 - - 2.0584 10.214

The following table shows that the following sorting

algorithms: threaded sort, sort by choice, simple inserts, "bubble"

sort, work very long in comparison with others.

The graph of the time dependence of these algorithms on the

number of elements sorted is as follows (Figure 4).

From the graph it is noticeable that the algorithm of "threaded

sort" is considerably inferior to others (more than 2 times).

Let’s consider the running time of other algorithms.

We will start with the algorithm of binary inserts. The graph

of the time dependence of this algorithm looks like this(Figure 5).

We describe the resulting curve by the equation of the

form y = axb. We get y = 1.736E-8·x^1.77365. We give the

similarly calculated dependencies in the four previous algorithms

and in the binary insertion algorithm in Table 2.

Fig. 4. Nonlinear dependence of the algorithm's running time on the number of

elements that are sorted. The following algorithms are presented in the graph:

1 – Threaded sorting, 2 – Sort by choice, 3 – Simple inserts, 4 – Bubble sort

Table 2. Dependencies of the forms y = axb for sorting algorithms

Algorithms name

Analytical

equation of the

curve

Coefficients

a b

Threaded sorting y = axb 7.478E-11 2,68429

Sort by choice y = axb 1.725E-8 2,03691

Simple inserts y = axb 5.536E-8 2.08723

Bubble sort y = axb 3.358E-8 2,02027

Binary inserts y = axb 1.736E-8 1.77365

Fig. 5. The speed of the binary insertion algorithm

The binary insertion algorithm works faster than the previous

four also because the constant b in this algorithm is smaller.

Let’s consider a series of fast algorithms: quicksort, merge

sort, Shell sort, pyramid sort (Figure 6).

Fig. 6. The speed of algorithms: 1 – Quicksort, 2 – Merge sort, 3 – Shell sort,

4 – Pyramid sort

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2018 45

Accordingly, the table of coefficients of the equations for the

given algorithms is as follows:

Table 3. Dependencies of the forms y = axb for sorting algorithms

Algorithms name

Analytical

equation of the

curve

Coefficients

a b

Quicksort y = axb 4.151E-6 1.07562

Merge sort y = axb 8.784E-6 1.07868

Shell sort y = axb 6.281E-6 1.06096

Pyramid sort y = axb 4.126E-6 1.09330

In this group the Pyramid sort Shell sort algorithm was the

fastest.

The last considered algorithms:

 Sort by the built-in Python function.

 Bucket sorting.

 Sort by grade (Figure 7).

Fig. 7. The speed of algorithms: 1 – Sort by the built-in Python function,

2 – Bucket sorting, 3 – Sort by grade

Accordingly, the table of coefficients of the equations for the

given algorithms is as follows:

Table 4. Dependencies of the forms y = axb for sorting algorithms

Algorithms name

Analytical

equation of the

curve

Coefficients

a b

Built-in Python

function

y = axb 1.392E-7 1.03039

Bucket sorting y = axb 6.609E-7 1.02246

Sort by grade y = axb 5.478E-7 1.05756

Table 5. Total sorted table of algorithms’ speed

Algorithms name

Analytical

equation of

the curve

Coefficients

a b b [5]

Threaded sorting y = axb 7.478E-11 2,68429 -

Simple inserts y = axb 5.536E-8 2.08723 2.01693

Sort by choice y = axb 1.725E-8 2,03691 -

Bubble sort y = axb 3.358E-8 2,02027 1.88238

Binary inserts y = axb 1.736E-8 1.77365 2.00631

Pyramid sort y = axb 4.126E-6 1.09330 1.08243

Merge sort y = axb 8.784E-6 1.07868 -

Quicksort y = axb 4.151E-6 1.07562 1.08036

Shell sort y = axb 6.281E-6 1.06096 -

Sort by grade y = axb 5.478E-7 1.05756 -

Built-in sorting y = axb 1.392E-7 1.03039 1.07821

Bucket sort y = axb 6.609E-7 1.02246 -

3. Summary

The program implementation of sorting algorithms is

obtained. The program realization of complex for comparison of

sorting algorithms is obtained. Using the obtained tools, an

analysis of algorithms for sorting by speed was performed

depending on the number of members of the data array.

References

[1] Antonova I., Karikh O.: Otsenka effektivnosti parallel'nykh algoritmov zadachi

sortirovki dannykh. Promyshlennyye ASU i kontrollery 3/2010, 23–25.

[2] Kovartsev A., Popova-Kovartseva D.: Strukturnaya optimizatsiya

upravlyayushchego grafa na osnove algoritma topologicheskoy sortirovki.

Programmnaya inzheneriya 5/2013, 31–36.

[3] Knut D.: Iskusstvo programmirovaniya. T.3. Sortirovka i poisk. Izdatel'skiy dom

"Vil'yams", Moscow 2003.

[4] Martynov V., Mironov V.: Parallel'nyye algoritmy sortirovki dannykh s

ispol'zovaniyem tekhnologii MPI. Vestnik Syktyvkarskogo universiteta – Seriya

1: Matematika, Mekhanika, Informatika 16/2012, 130–135.

[5] Ovchinnikova I., Sakhnova T.: Algoritmy sortirovki pri reshenii zadach po

programmirovaniyu. Informatika i obrazovaniye 2/2011, 53–56.

[6] Samun' V.: Sravneniye raboty algoritmov sortirovki, realizovannykh na yazyke

Perl., 2007, http://docplayer.ru/29195102-Sravnenie-raboty-algoritmov-

sortirovki-realizovannyh-na-yazyke-perl.html (available: 01.10.2017).

Ph.D. Larysa Gumeniuk

e-mail: l.gumeniuk@lntu.edu.ua

Lutsk NationalTechnical University, PhD. (technical),

Head of Department of Automation and Computer –

Integrated Technologies.

Research interests: Modeling ofreliability and safety

ofthe automated control systems.

Has more than 60 publications in this area

Ph.D. Vladimir Lotysh

e-mail: admin@lntu.edu.ua

Lutsk National Technical University, PhD. (technical),

Department of Automation and Computer – Integrated

Technologies.

Scientific interests include open-source software

applied for simulations of problems using distributed

platforms.

Author of nearly 80 publications in this area.

Ph.D. Pavlo Gumeniuk

e-mail: p.gumeniuk@lntu.edu.ua

Lutsk NationalTechnical University, PhD. (technical),

Department of Automation and Computer – Integrated

Technologies.

Research interests: programming, robotics.

otrzymano/received: 21.10.2017 przyjęto do druku/accepted: 11.05.2018

mailto:l.gumeniuk@lntu.edu.ua
mailto:admin@lntu.edu.ua
mailto:p.gumeniuk@lntu.edu.ua

