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Abstract. The article presents the analysis of the dead time measurement using two sources for a non-paralyzable detector. It determined the optimum 
division of count rate measurement time between both source measurement and a single source one. Results of the work can be used to optimize dead time 

measurement for systems which count photons or particles. 
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POMIAR CZASU MARTWEGO METODĄ DWÓCH ŹRÓDEŁ – OPTYMIZACJA PODZIAŁU 

CZASU POMIARU 

Streszczenie. W artykule zaprezentowano analizę pomiaru czasu martwego detektora nieparaliżowalnego metodą dwóch źródeł. Wyznaczono optymalny 

podział czasu pomiaru częstości zliczeń dla pomiaru jednym i dwoma źródłami. Wyniki pracy mogą być wykorzystane do optymalizacji systemów 
zliczających fotony lub cząstki. 

Słowa kluczowe: czas martwy, częstość zliczeń, metoda dwóch źródeł 

Introduction 

In many problems of nuclear techniques it is important to 

determine the detector dead time. In practice, there are two types 

of detectors: non-paralyzable and paralyzable (Chapter 4 in [1]). 

For the measurement of the dead time, there are two methods: 

two-source method [2, 3] and the method of short-lived single-

source [1]. 

1. Theory 

Two-source method of detector dead time measurement 

involves measuring the count rates for two radioactive sources 

separately, and then measuring the count rate from both 

radioactive sources together. For non-paralyzable detector it 

allows to easily determine the dead time. 

 

Symbols: 

m – count rate recorded by a detector of dead time τ, 

n – count rate recorded by an ideal detector with zero dead time. 

 

The following relationships occur: 
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The following indexes are added for the count rate symbols: 

1 – measurement for the first source, 2 – measurement for 

the second source, 12 – measurement for both sources together. 

For the measurement procedure used to measure the dead time one 

can write equation: 

 122 n=n+n1  (2) 

The count rate n can be replaced by expressions dependent on the 

respective count rate m: 
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After simple transformations quadratic equation form can be 

obtained: 
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The solution to this equation are the two roots: 
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Due to the physical interpretation, only the first root is correct. 

It can be represented as  
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Equation (6) allows to determine the dead time of the detector 

based on the count rate measurements m1, m2 and m12.  

To estimate the uncertainty of the dead time (the random 

error) the variance of the random variable τ need to be determined. 

However, use of a strict equation (6) leads to a very complex 

expression. Therefore, to evaluate the random error simplified 

formula is used: 
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obtained by assuming that in quadratic equation (4) the component 

τ2 can be neglected. 

The all above count rate values are mean values. To estimate 

the dead time uncertainty (the random error) the variances of the 

count rates m1, m2 and m12 presented in formula (7), will be 

required. Count rate m can be expressed depending on the number 

of registered pulses M and the measurement time t: 
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Then the variance of the random variable m is: 
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with the obvious assumption that the number of registered pulses 

M is subject to the Poisson distribution, and the best 

approximation of its average value (for single measurement)
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is measured value M. In fact, the variance of registered counts, 

with non-zero dead time is less than that resulting from the 

Poisson distribution, but we accept this approximation in view of 

the establishment of a short dead time. We assumed here that dead 

time is short compared to the average time between successive 

counts. In the case that the above assumption is not fulfilled the 

full formula for the variance of the variable m should be used: 
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The variance of the random variable τ is 
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where the partial derivatives are respectively: 
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The formula (11), after using the necessary numerical values 

of variables, estimates the variance of the random variable τ (that 

is, the random error of measurement). 

However, in addition to the knowledge of τ dispersion, it is 

useful to be able to select optimal partition of count rate 

measurement time. If the measurement times t1 and t2 will be 

equal it raises the question of what the relationship should be 

between these times and t12 measuring time to get the minimum 

random error of measurement dead time for the total measurement 

time equal to t = const. 

 

Symbols: 
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where k is a constant with a value in the range of (0,0.5). 

 

Using the above designations variance of the random variable 

τ can be written as: 
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Differentiating expression for the variance of the random 

variable τ with respect to k one can determine the division of the 

measurement time t, which will provide the minimum value of the 

measured random error of dead time τ. To further transformations 

there will be adopted the following substitutions that can simplify 

equations: 
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After using these substitutions the optimum allocation of 

given measurement time t can be determined by solving the 

equation of the form: 
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After simple transformations one can obtain the quadratic 

equation form: 
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The solution to this equation are the two roots: 
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Due to the physical interpretation, only the second root is valid 

– it can be represented as: 
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2. Results of measurements 

Measurements of dead time in the spectrometric system that 

uses radiation detector type Ge(Li). A block diagram of the 

measurement system is shown in Figure 1. 

 

Fig. 1. The block schema of measurement system 

It consists of a detector powered by the high voltage -1000V, 

preamplifier, shaping amplifier, base line restorer and scaler type 

PT-72. Three series of measurements using two Am-241 

radioactive sources were made. The first series consisted of 10 

measurements using the first source during 10 s, 10 measurements 

using the second one during 10 s and 10 measurements using both 

sources during 20 s. The second series consisted of 10 

measurements using the first source during 1 s, 10 measurements 

using the second one during 1 s and 10 measurements using both 

sources during 40 s. The third series consisted of 10 measurements 

using the first source during 20 s, 10 measurements using the 

second one during 20 s and 10 measurements using both sources 

during 1 s. Mean count rates are presented in the Table 1. 

The Table 2 shows the determined values of dead time and 

relative standard deviations for the three measurement series.  
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Table 1. The results of measurements of the count rates for the three measurement 

series 

Serie Source Time [s] 
Mean count rate 

[cps] 

1 No. 1 10 12881 

1 No. 2 10 6930 

1 No. 1 + No. 2 20 15004 

2 No. 1 1 12859 

2 No. 2 1 6864.8 

2 No. 1 + No. 2 40 14988 

3 No. 1 20 12868 

3 No. 2 20 6918.7 

3 No. 1 + No. 2 1 14959 

Table 2. The results of the determined values of dead time and relative standard 

deviation for the three measurement series 

Serie 

Total 

time 

[s] 

Ratio k 
Mean dead 

time τ [μs] 

Relative 

standard 

deviation 

δ(τ)/τ 

1 40 0.2500 37.437 0.0036 

2 42 0.0238 37.185 0.0095 

3 41 0.4878 37.792 0.0075 

 

For the measured count rates and Poissonian approximation 

the optimum split of the time is determined by the ratio k = 0.15. 

For non-Poisson approximation the optimal value of k is about 

0.28. The dependence of the relative standard deviation of the 

random variable τ with respect to the ratio k is shown in Figure 2 

(assuming total measurement time of 40 s). Two curves – the first 

(solid line) calculated according to the formula (9) and the second 

(dashed line) calculated according to the formula (10) are shown. 

Location of the minimum on the first curve corresponds to the 

value calculated from the formula (19). The second curve was 

calculated using numerical approximation of derivatives for full 

accuracy formula (6). The relative standard deviation tends to 

infinity for two extreme cases, the parameter k close to zero or 

value of 0.5. In the first case, the measurement time for a single 

source tends to zero, and the relative error of count rate for a 

single source tends to infinity. In the second case, the value of the 

parameter k tends to 0.5 and the time of the measurement by both 

sources tends to zero, so the relative error of count rate for both 

sources also tends to infinity. The measured relative standard 

deviation values of the dead time are generally higher than 

predicted by the formula (11). This may be caused by instability of 

the measuring equipment. 

3. Conclusions and discussion 

The analysis of the dead time measurement uncertainty of 

non-paralyzable detector indicates the existence of an optimal 

allocation of measurement time between both sources. The 

formula for the optimal allocation of measurement time was 

derived assuming that the dead time is short compared to the 

average time between successive counts. Experimentally 

confirmed the existence of the optimal allocation of time. Results 

of the work can be used to optimize dead time measurement for 

systems which count photons or particles. 
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