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APPLICATION OF THE INTERVAL LATTICE BOLTZMANN METHOD
FOR A NUMERICAL MODELLING OF THIN METAL FILMS IRRADIATION
BY ULTRA SHORT LASER PULSES
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Abstract. In the paper the one-dimensional numerical modelling of heat transfer in thin metal films irradiated by ultra short laser pulses is considered.
In the mathematical description the relaxation times and the boundary conditions for phonons and electrons are given as interval numbers. The problem
formulated has been solved by means of the interval lattice Boltzmann method using the rules of directed interval arithmetic. The examples of numerical
computations are presented in the final part of the paper.
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ZASTOSOWANIE INTERWALOWEJ METODY SIATEK BOLTZMANNA DO NUMERYCZNEGO
MODELOWANIA PROCESU NASWIETLANIA LASEREM PULSACYJINYM CIENKICH WARSTW
METALOWYCH

Streszczenie. W artykule zaprezentowano jednowymiarowy model numeryczny przephywu ciepla w cienkich warstwach metalowych poddanych.
naswietlaniu laserem pulsacyjnym. W opisie matematycznym czasy relaksacji oraz warunki brzegowe dla fononéw i elektronow sq zdefiniowane jako liczby
przedzialowe. Sformutowane zagadnienie rozwigzano za pomocq interwatowej metody siatek Boltzmanna stosujgc skierowang arytmetyke interwatowgq.
W koncowej czgsci artykutu przedstawione sq przykiady obliczen numerycznych.

Stowa kluczowe: rownanie transportu Boltzmanna, interwalowa metoda siatek Boltzmanna, skierowana arytmetyka interwalowa

Introduction

In metals heat transport is mainly realized by electrons
and phonons which are quanta of lattice vibrations. During this
process these carriers transfer energy in the material. Energy
transport in nanostructured materials can vary from a bulk. When
dimensions are reduced properties predicted for the bulk phase,
e.g., thermal conductivity, may not be suitable for modeling
thermal transport and then we need some other nanoscale
features.This phenomena of energy transport can be described
by a system of two Boltzmann transport equations supplemented
by the adequate boundary-initial conditions. The first equation
is related to the electrons and the second one to the phonons.
It is important to point out that both equations are connected
by a so called coupled factor.

In the mathematical model describing the heat transfer in
a thin gold film the interval values of relaxation times and
boundary conditions for phonons and electrons have been
assumed. The relaxation time is estimated experimentally and its
actual value is still a subject of discussion [5]. So it seems natural
to take the interval value of this parameter and this assumption
is closer to the real physical conditions of the process analyzed.
The external heat source is treated as ultra-short laser pulse [6, 9].

The problem analyzed has been solved using an interval
version of the lattice Boltzmann method according to the rules
of the directed interval arithmetic [7, 8].

1. Boltzmann transport equation

The Boltzmann transport equation (BTE) is one of
the fundamental equation of solid physics. The BTE expressed
in a carrier distribution function form [1, 2, 4] can be written as
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where f is the carrier distribution function, f° is the equilibrium
distribution function given by the Bose-Einstein or Fermi-Dirac
statistics, v is the frequency-dependent carrier propagation speed,
1, is the frequency-dependent carrier relaxation time and g
is the electron generation rate due to electron-phonon scattering.

The Boltzmann transport equation can be transformed into
an equivalent carrier energy density equation using the simplifying
assumptions of the Debye model

0
%+V-Ve=—e ¢
ot T

r

+q, 2

where e is the carrier energy density, e ° is the equilibrium carrier
energy density and q, is the internal heat generation rate related
to an unit of volume.

Using the Debye model the dependence between phonon and
electron energy densities and their temperature can be calculated
from the following formulas [1, 3]
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where ©p is the Debye temperature of the solid, ky

is the Boltzmann constant, Tand T, are the carriers temperatures,
g is the Fermi energy, n. is the electron density while n

is the number density of oscillators and can be calculated using
the following formula [1]
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where h is the Planck constant divided by 27 and ® is the speed
of sound in analysed material.

The formulation of the heat transport problem in metals
demand system of two equations which in an equivalent carrier
energy density equations has the following form
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wheree,, e, are the carrier energy densities, e,’, e, are

the equilibrium carrier energy densities and Q,, Q,, are the carrier
energy sources related to an unit of volume.
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2. The interval lattice Boltzmann method

The lattice Boltzmann method (LBM) is a numerical
technique for the simulation of heat transfer. The LBM solves
a discretized set of the Boltzmann transport equations known
as the lattice Boltzmann equations. The Boltzmann transport
equations for the coupled problem with two relaxation times can
be written in the following form [1, 3]
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where €, €, are the interval values of carrier energy densities

for electrons and phonons respectively, &°, ephU are the interval
equilibrium carrier energy densities and 7, T, are the interval

is the interval

e

relaxation times of electrons and phonons, Q
electron energy source

(je = Q'_G(-lie _fph) (10)

and (jph is the interval phonon energy source which is calculated
using the formula

Qph = G(fe _-th) (11)

where Q'is the power density function deposited by the external

source associated with the laser irradiation, G is the electron-
phonon coupling factor which characterizes the energy exchange

between electrons and phonons, T, and T, are the interval

temperature values of electrons and phonons.

The temporal variation of laser output pulse is treated
as source term in the energy equation and may be approximated
by a form of exponential function [5, 11, 12]

Q'(x,t)=1,8e " (12)

where 1y is the peak power intensity of the laser pulse,
& is the absorption coefficient, B is the laser pulse parameter.
The absorption coefficient is given by [12]
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where ke iS the imaginary parts of the refractive index
(ke = 1.49 for Au) and X is the wavelength of the laser.

The discrete set of propagation velocities in the main lattice
directions for one-dimensional model is defined as follows
(see Fig. 1)

Cel = [Ce’ O]

CeZ = [7Ce’ 0]
Cphl = [Cph! O]
cph2 = [_Cph' O]

(14)
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Fig. 1. One-dimensional 2-speed lattice Boltzmann model

The wvectors ¢, and c,, represent the velocities
of the electrons, while the vectors c,, and c,, represent

the velocity of the phonons in the horizontal direction [1].
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In the interval lattice Boltzmann method is needed to solve
a system of four partial differential equations allowing to compute
phonon and electron energy densities in different lattice nodes
according to the following equations
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where ¢ = Ax/ At is the component of velocity along the x-axis,
AX is the lattice distance from site to site, At =t ™ —t " is the time
step. The set of equations (15) must be supplemented
by the boundary conditions of the following form
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and the initial condition
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where TS and T)" are the interval boundary temperatures
of electrons and phonons, T,°and T,™ are the initial temperatures

of electrons and phonons, G, G are the interval boundary heat
fluxes of electrons and phonons.

The approximation of the first derivatives using right-hand
and left-hand sides differential quotients for electrons and phonons
is defined as
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Then after introduction time and position derivatives

the discretized form of (15) is as follows
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The equilibrium electron energy density and phonon energy
density is the same in all lattice directions and can be calculated
using the formula
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The total energy density is defined as the sum of discrete
electron and phonon energy densities in two directions
of the lattice

€

e

=84 +8; (23)

éph = éphl + éph2 (24)

After subsequent computations the temperature of electrons
and phonons are determined using the following formulas

(see eg. 3 and 4)
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1. Results of computations

As a numerical example the heat transport in a gold thin film
of the dimension 200 nm has been analyzed. To the modelling
internal heat source was taken into account the KrF laser with
the wavelength of L =248 nm [7].

The following input data have been introduced: the relaxation

time 7T, =[0.038,0.042]ps, T, =[0.76,0.84]ps, the Debye
temperature ©, =170K, the peak power intensity of the laser
pulse 1, = 2:10® W/m? the absorption coefficient
§=7.55-10" 1/m, the laser pulse parameter B=0.5-10"1/s,
the coupling factor G = 2.3-10% W/m3K, the boundary conditions
of the 2™ type on the left boundary gF(0,t)=g™(0,t)=0
and the 1% type on the right boundary with the interval
temperature T, =T,5" =[285, 315]K, the initial temperature
T,=300K . The lattice step Ax=20nm and the time step
At=0.01ps have been assumed.

Figure 2 presents the courses of the temperature functions
at the internal nodes 1 — 20 nm, 2 — 80 nm and 3 — 140 nm.
For interval values of the electron and phonon relaxation times
and the boundary conditions we obtain two curves for each
internal node which denote the first and the second endpoints
of the temperature interval. The application of the interval version
of the LBM allows one to find the numerical solution
in the interval form.

Figure 3 shows the courses of the temperature function
at the same internal nodes but for wider intervals of the boundary
conditions (TS =T,)" =[270, 330]K ) and the relaxation times

(7. =[0.036,0.044]ps, T, =[0.72,0.88]ps). The

temperatures are, of course, wider.
Figure 4 presents the interval temperature distribution
in the domain considered for the chosen times: 0.6, 0.8 and 1 ps.

interval
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Figure 5 also shows the interval temperature distribution
in the domain but for wider intervals of the boundary conditions
and the relaxation times. We can see that the temperature intervals
are also wider.
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Fig. 2. The interval heating curves at internal nodes

1100
TIK] 1/~
900

/ .

AN
700
500 3//_ I
300
0.0 0.3 05 0.8 t[ps] 1.0

Fig. 3. The interval heating curves at internal nodes for wider parameters
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Fig. 4. The interval temperature distribution in gold film
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Fig. 5. The interval temperature distribution in gold film for wider parameters
2. Conclusions

In the paper the coupled Boltzmann transport equation with
the interval values of the relaxation times and the boundary
conditions for electrons and phonons has been considered.
The generalization of lattice Boltzmann method allows one to find
the numerical solution in the interval form and such
an information may be important especially for the parameters
which are estimated experimentally, for example the relaxation
time. The main advantage of the directed interval arithmetic upon
the classical interval arithmetic is that the obtained temperature
intervals are much narrower. The problem analyzed can be
extended to multi-layered domains.
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