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Abstract. In the paper the one-dimensional numerical modelling of heat transfer in thin metal films irradiated by ultra short laser pulses is considered. 

In the mathematical description the relaxation times and the boundary conditions for phonons and electrons are given as interval numbers. The problem 

formulated has been solved by means of the interval lattice Boltzmann method using the rules of directed interval arithmetic. The examples of numerical 
computations are presented in the final part of the paper. 
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ZASTOSOWANIE INTERWAŁOWEJ METODY SIATEK BOLTZMANNA DO NUMERYCZNEGO 

MODELOWANIA PROCESU NAŚWIETLANIA LASEREM PULSACYJNYM CIENKICH WARSTW 

METALOWYCH 

Streszczenie. W artykule zaprezentowano jednowymiarowy model numeryczny przepływu ciepła w cienkich warstwach metalowych poddanych. 
naświetlaniu laserem pulsacyjnym. W opisie matematycznym czasy relaksacji oraz warunki brzegowe dla fononów i elektronów są zdefiniowane jako liczby 

przedziałowe. Sformułowane zagadnienie rozwiązano za pomocą interwałowej metody siatek Boltzmanna stosując skierowaną arytmetykę interwałową.  

W końcowej części artykułu przedstawione są przykłady obliczeń numerycznych. 

Słowa kluczowe: równanie transportu Boltzmanna, interwałowa metoda siatek Boltzmanna, skierowana arytmetyka interwałowa 

Introduction 

In metals heat transport is mainly realized by electrons 

and phonons which are quanta of lattice vibrations. During this 

process these carriers transfer energy in the material. Energy 

transport in nanostructured materials can vary from a bulk. When 

dimensions are reduced properties predicted for the bulk phase, 

e.g., thermal conductivity, may not be suitable for modeling 

thermal transport and then we need some other nanoscale 

features.This phenomena of energy transport can be described 

by a system of two Boltzmann transport equations supplemented 

by the adequate boundary-initial conditions. The first equation 

is related to the electrons and the second one to the phonons. 

It is important to point out that both equations are connected 

by a so called coupled factor. 

In the mathematical model describing the heat transfer in 

a thin gold film the interval values of relaxation times and 

boundary conditions for phonons and electrons have been 

assumed. The relaxation time is estimated experimentally and its 

actual value is still a subject of discussion [5]. So it seems natural 

to take the interval value of this parameter and this assumption 

is closer to the real physical conditions of the process analyzed. 

The external heat source is treated as ultra-short laser pulse [6, 9]. 

The problem analyzed has been solved using an interval 

version of the lattice Boltzmann method according to the rules 

of the directed interval arithmetic [7, 8]. 

1. Boltzmann transport equation  

The Boltzmann transport equation (BTE) is one of 

the fundamental equation of solid physics. The BTE expressed 

in a carrier distribution function form [1, 2, 4] can be written as  
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where f is the carrier distribution function, f 0 is the equilibrium 

distribution function given by the Bose-Einstein or Fermi-Dirac 

statistics, v is the frequency-dependent carrier propagation speed, 

τr is the frequency-dependent carrier relaxation time and gef 

is the electron generation rate due to electron-phonon scattering. 

The Boltzmann transport equation can be transformed into 

an equivalent carrier energy density equation using the simplifying 

assumptions of the Debye model 
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where e is the carrier energy density, e 0 is the equilibrium carrier 

energy density and qv is the internal heat generation rate related 

to an unit of volume.  

Using the Debye model the dependence between phonon and 

electron energy densities and their temperature can be calculated 

from the following formulas [1, 3] 
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where ΘD is the Debye temperature of the solid, kb 

is the Boltzmann constant, Te and Tph are the carriers temperatures, 

F is the Fermi energy, ne is the electron density while η  

is the number density of oscillators and can be calculated using 

the following formula [1] 
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where ħ is the Planck constant divided by 2π and ω is the speed 

of sound in analysed material. 

The formulation of the heat transport problem in metals 

demand system of two equations which in an equivalent carrier 

energy density equations has the following form 
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where ,e phe e  are the carrier energy densities,
0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are the carrier 

energy sources related to an unit of volume. 
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2. The interval lattice Boltzmann method 

The lattice Boltzmann method (LBM) is a numerical 

technique for the simulation of heat transfer. The LBM solves 

a discretized set of the Boltzmann transport equations known 

as the lattice Boltzmann equations. The Boltzmann transport 

equations for the coupled problem with two relaxation times can 

be written in the following form [1, 3] 
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where ,e phe e  are the interval values of carrier energy densities 

for electrons and phonons respectively, 0 0,e phe e are the interval 

equilibrium carrier energy densities and ,e ph  are the interval 

relaxation times of electrons and phonons, eQ  is the interval 

electron energy source  

  ( )e e phQ Q G T T    (10) 

and phQ is the interval phonon energy source which is calculated 

using the formula  

  ( )ph e phQ G T T   (11) 

where Q is the power density function deposited by the external 

source associated with the laser irradiation, G is the electron-

phonon coupling factor which characterizes the energy exchange 

between electrons and phonons,  and e phT T  are the interval 

temperature values of electrons and phonons. 

The temporal variation of laser output pulse is treated 

as source term in the energy equation and may be approximated 

by a form of exponential function [5, 11, 12]  

 0( , ) x tQ x t I e     (12) 

where I0 is the peak power intensity of the laser pulse, 

δ  is the absorption coefficient, β  is the laser pulse parameter. 

The absorption coefficient is given by [12] 

 
4 extk




  (13) 

where kext is the imaginary parts of the refractive index  

(kext = 1.49 for Au) and λ  is the wavelength of the laser.  

The discrete set of propagation velocities in the main lattice 

directions for one-dimensional model is defined as follows  

(see Fig. 1)  
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Fig. 1. One-dimensional 2-speed lattice Boltzmann model 

The vectors 1ec  and 2ec  represent the velocities 

of the electrons, while the vectors 1phc  and 2phc  represent 

the velocity of the phonons in the horizontal direction [1]. 

In the interval lattice Boltzmann method is needed to solve 

a system of four partial differential equations allowing to compute 

phonon and electron energy densities in different lattice nodes 

according to the following equations 
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where c = Δ x / Δ t is the component of velocity along the x-axis, 

Δx is the lattice distance from site to site, Δt = t f +1 – t f is the time 

step. The set of equations (15) must be supplemented 

by the boundary conditions of the following form 
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and the initial condition 
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where 2

e

bT  and 2

ph

bT  are the interval boundary temperatures 

of electrons and phonons, 
0

eT and 
0

phT are the initial temperatures 

of electrons and phonons, e

bq , ph

bq are the interval boundary heat 

fluxes of electrons and phonons. 

The approximation of the first derivatives using right-hand 

and left-hand sides differential quotients for electrons and phonons  

is defined as  

 
( , ) ( , )i i ie e x t t e x t

, i = e1, e2, ph1, ph2
t t

   


 
 (18) 

and 

1 1 1

2 2 2

1 1 1

2 2 2

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

e e e

e e e

ph ph ph

ph ph ph

e e x x t t e x t t

x x

e e x x t t e x t t

x x

e e x x t t e x t t

x x

e e x x t t e x t t

x x

       


 

       


 

       


 

       


 

 (19) 

Then after introduction time and position derivatives 

the discretized form of (15) is as follows  
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The equilibrium electron energy density and phonon energy 

density is the same in all lattice directions and can be calculated 

using the formula 
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The total energy density is defined as the sum of discrete 

electron and phonon energy densities in two directions 

of the lattice  
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After subsequent computations the temperature of electrons 

and phonons are determined using the following formulas 

(see eq. 3 and 4) 
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1. Results of computations 

As a numerical example the heat transport in a gold thin film 

of the dimension 200 nm has been analyzed. To the modelling  

internal heat source was taken into account the KrF laser with 

the wavelength of λ = 248 nm [7].  

The following input data have been introduced: the relaxation 

time  0.038, 0.042 ps,re    0.76, 0.84 psrph  , the Debye 

temperature 170KD  , the peak power intensity of the laser 

pulse I0 = 2·1013 W/m2, the absorption coefficient 
77.55 10   1/m, the laser pulse parameter 

130.5 10   1/s, 

the coupling factor G = 2.3·1016 W/m3K, the boundary conditions 

of the 2nd type on the left boundary (0, ) (0, ) 0e ph

b bq t q t   

and the 1st type on the right boundary with the interval 

temperature 2 2 [285,  315]Ke ph

b bT T  , the initial temperature 

0 300KT  . The lattice step 20nmx   and the time step 

0.01pst   have been assumed.  

Figure 2 presents the courses of the temperature functions 

at the internal nodes 1 – 20 nm, 2 – 80 nm and 3 – 140 nm. 

For interval values of the electron and phonon relaxation times 

and the boundary conditions we obtain two curves for each 

internal node which denote the first and the second endpoints 

of the temperature interval. The application of the interval version 

of the LBM allows one to find the numerical solution 

in the interval form. 

Figure 3 shows the courses of the temperature function 

at the same internal nodes but for wider intervals of the boundary 

conditions ( 2 2 [270,  330]Ke ph

b bT T  ) and the relaxation times  

(  0.036, 0.044 ps,re    0.72, 0.88 psrph  ). The interval 

temperatures are, of course, wider. 

Figure 4 presents the interval temperature distribution 

in the domain considered for the chosen times: 0.6, 0.8 and 1 ps.

Figure 5 also shows the interval temperature distribution 

in the domain but for wider intervals of the boundary conditions 

and the relaxation times. We can see that the temperature intervals 

are also wider. 
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Fig. 2. The interval heating curves at internal nodes 
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Fig. 3. The interval heating curves at internal nodes for wider parameters 
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Fig. 4. The interval temperature distribution in gold film 
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Fig. 5. The interval temperature distribution in gold film for wider parameters 

2. Conclusions 

In the paper the coupled Boltzmann transport equation with 

the interval values of the relaxation times and the boundary  

conditions for electrons and phonons has been considered.  

The generalization of lattice Boltzmann method allows one to find 

the numerical solution in the interval form and such  

an information may be important especially for the parameters 

which are estimated experimentally, for example the relaxation 

time. The main advantage of the directed interval arithmetic upon 

the classical interval arithmetic is that the obtained temperature 

intervals are much narrower. The problem analyzed can be  

extended to multi-layered domains. 
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