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Abstract. In this paper, we present our research which confirms the suitability of the convolutional neural network usage for the classification of single-

lead ECG recordings. The proposed method was designed for classifying normal sinus rhythm, atrial fibrillation (AF), non-AF related other abnormal 

heart rhythms and noisy signals. The method combines manually selected features with the features learned by the deep neural network. The Physionet 
Challenge 2017 dataset of over 8500 ECG recordings was used for the model training and validation. The trained model reaches an average F1-score 

0.71 in classifying normal sinus rhythm, AF and other rhythms respectively. 
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DETEKCJA MIGOTANIA PRZEDSIONKÓW NA ELEKTROKARDIOGRAMACH 

Z WYKORZYSTANIEM KONWOLUCYJNEJ SIECI NEURONOWEJ 

Streszczenie. W tej pracy, przedstawiamy nasze badania, które potwierdzają przydatność zastosowania konwolucyjnych sieci neuronowych dla klasyfikacji 

zapisów jedno-odprowadzeniowego EKG. (tak brzmi ta nazwa). Proponowana metoda została zaprojektowana dla klasyfikowania prawidłowego rytmu 
zatokowego, migotania przedsionków (AF), poza-AF powiązanych z innymi nieprawidłowymi rytmami serca i zaszumionymi (głośnymi?) sygnałami. Ta 

metoda łączy cechy wyselekcjonowane ręcznie z cechami  wyuczonymi przez głębokie sieci neuronowe. Zbiór danych Physionet Challenge 2017 

zawierający ponad 8500 zapisów EKG został zastosowany dla modelu szkolenia oraz walidacji. Model  nauczony (wyszkolony?) osiąga odpowiednio 
średni F1-wynik 0.71 w klasyfikowaniu prawidłowego rytmu zatokowego, rytmu AF oraz innych rytmów.            

Słowa kluczowe: elektrokardiografia, nauczanie maszynowe, sieci neuronowe 

Introduction 

Heart diseases are the leading cause of death in the EU and the 

US for both men and women. The fact that around 47% of sudden 

cardiac deaths occur outside a hospital suggests that many people 

with heart disease do not react on early warning signs. 

An electrocardiogram (ECG) can be used for diagnostics of 

many heart malfunctions like the presence of any damage to the 

heart's muscle cells or conduction system. Many handheld ECG 

recorders were developed to produce a single-lead ECG. WIWE 

[23], AliveCor [1], OMRON HCG801 HeartScan [22] are the 

examples. 

Automated ECG analysis is a complex problem, which 

includes a number of basic tasks such as noise reduction, QRS 

complex detection, P and T wave detection, analysis of the shapes 

of the waves and their positions and lengths. Each of those tasks is 

a separate topic of scientific research. For example, noise 

reduction is a well-explored task with a lot of developed 

techniques and methods, including band-pass filters [5], 

spectrograms [6], Fourier [15] and wavelet [8] transformations. 

QRS detection is also represented with a large list of methods 

reaching sensitivities and specificities of about 99.5. The detailed 

comparison of the QRS detection methods is done in [3]. 

Atrial Fibrillation (AF) is a common type of heart disease that 

leads to stroke, heart failure or other complications. Every year 

millions of people get affected by AF, and this number tends to 

increase. The percentage of people with AF also increases with 

age: from 0.14% under 50 years old to over 14% for those over 80 

years old. And AF is often an episodic event, which makes early 

diagnostics even more complicated. 

AF detection methods can belong to one of two categories: 

atrial activity analysis-based methods, which search for the 

absence of P waves or the presence of F-waves in the TQ interval; 

and ventricular response analysis based on the predictability of the 

inter-beat timing (‘RR intervals’). 

Park et al [9] analyzed heartbeat variability from inter-beat 

intervals obtained by a wavelet-detector. The features are 

extracted from the Poincare plot of the intervals. The method 

performs a binary classification of the signal into AF/non-AF. 

Rodenas-Garcia et al [11] incorporated wavelet entropy in 

ECG analysis. The signal is analyzed in chunks of 10 consequent

noise-free heartbeats, for which a median of TQ segment is 

extracted and the wavelet entropy is computed. The method can be 

used to detect common cardiac arrhythmias and atrial fibrillation. 

Petrenas et al [10] proposed a simple method for long-term 

AF monitoring. The signal is processing with the 8-beat sliding 

window in order to reduce computational power. The building 

blocks of the algorithm are the estimation of RR trend and 

irregularity, ectopic beats filtering, bigeminy suppression and 

fusion of the signals. The model uses binary AF vs non-AF 

classification. 

Tziakouri et al [13] built a 3-stage model for multi-label ECG 

classification. The first stage analyzes the quality of the signal and 

rejects noisy signals. In the second stage, the signal is classified 

into normal sinus rhythm and abnormality. And on the third stage, 

atrial fibrillation is separated from the other abnormal rhythms. 

The previously developed methods are usually limited in 

applicability due to following reasons: 1) only normal and AF 

recording were considered, while all the other diseases were 

discarded; 2) good performance was shown of carefully-selected 

often clean data; 3) test dataset was not used or was too small for 

making a conclusion; 4) a small number of patients was used. 

The aim of this research is to develop an atrial fibrillation 

detection model, which would not require complex and long-

running computations for feature extraction. The input of our 

model is a raw ECG signal. The developed algorithm runs initially 

basic signal filtering and splits the signal into separate heartbeats. 

Then the sequence of heartbeats is used for heart disease 

prediction. Our model is also applicable for noisy signals with 

significant signal-to-noise ratio, because it involves filtering 

preprocessing algorithms. The model can also distinguish between 

atrial fibrillation and other abnormal rhythms.   

1. Methodology 

Our method is based on the usage of state-of-the-art ECG 

processing techniques in noise reduction and R-peaks combined 

with deep neural networks. Convolutional neural network layers 

are used as feature extractors over a 2D matrix of the signal 

heartbeats. The classification decision is done using fully 

connected network layers.  
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1.1. Dataset overview and preprocessing 

The dataset used for this project was taken from 

PhysioNet/Computing in Cardiology Challenge 2017 [2]. It 

contains 8528 single-lead ECG recordings, sampled at 300Hz and 

varying lengths from 2700 to 18300 points. The records are 

labeled with 4 classes: normal sinus rhythm (N, 5154 records), 

atrial fibrillation (A, 771 records), other abnormal rhythms (O, 

2557 records) and noise (originally marked with tilde in the 

dataset, replaced with P, 46 records). 

The first and the most important step of the analysis is the 

visualization of the data. We plotted some samples from each 

class and analyze them visually. This helps to identify potential 

problems with the dataset as well as gives insights on how to 

create a set of relevant features to represent the data. 

We paid more attention to the analysis of the class “Other” as 

it includes a wide range of heart diseases. We tried to identify 

those diseases and find out the most common ones. Some of them 

are 1) atrial flutter; 2) ventricular fibrillation; 3) tachycardia (more 

than 100 bpm); 4) bradycardia (less than 60 bpm); 5) wide QRS 

complex (more than 0.1 s – prolonged, more than 0.12 s – 

abnormal); 6) presence of extrasystole; 7) long PR interval (more 

than 0.2 s).  

The review of the dataset revealed underlying problems, 

including the following: 1) some of the records were inverted, 

probably due to electrode misplacement; 2) values of the records 

are absolute and not restricted to any range; 3) imbalanced 

representation of the classes.  

Our preprocessing steps include: 

Noise reduction 

The ECG signals are recorded using single-lead, non-medical 

equipment and usually by patients themselves. It means they are 

often noisy. The most common sources of noise are: 

 electrode contact noise (frequency is about 1 Hz) caused by 

improper contact between the body and electrodes; 

 motion artifacts produced by patient’s movements which 

affect electrode-skin impedance, resulting in usually short-

term distortions; 

 muscle contractions - noise with 10% of regular peak-to-peak 

ECG amplitude and frequency up to 10 kHz; 

 baseline wander caused by a respiratory activity with 

a 0–0.5 Hz frequency. 

The goal of this process is to remove noises while keeping as 

much of the signal as possible. 

The most important cardiac information in ECG is stored 

within a frequency range of 0–20 Hz [14]. We apply both high 

pass (HPF) and low pass (LPF) FIR filters with the order of 100 

(1/3 of the sampling frequency). For HPF cut-off frequency of 

0.5 Hz was used to remove the baseline movement of the signal. 

And LPF was set with a cut-off frequency of 40 Hz to reduce the 

impact of other noise sources on the ECG. 

Signal normalization 

The ECG recorder might generate a wide range of values 

depending on different conditions when the recording was 

performed (Fig. 1). Also, manufacturers might provide their own 

value ranges for different recorders. 

Neural networks can be considered as a function (usually non-

linear) of input values multiplied by weights and combined with a 

bias. The weights and the bias are estimated during the model 

training. So, if the range of the input values changes, then the 

output of the function might also change. To avoid such cases, we 

applied a standard data normalization technique in the field of 

neural networks: to scale signal values to a specific range. The 

values of every record were converted to the range of [-1;1] by 

dividing original values by the absolute value of the signal. 

Lead inversion detection 

Inverted ECG signals happen in around 4% of the recordings 

even during a professional medical examination. Inverted records 

(for example, A06667, A08477) are more likely to be classified as 

abnormal rhythm due to changes in morphologies of the QRS and 

P and T waves. 

We used a simple principle of comparing the absolute values 

of the minimum (abs_min) and the maximum (abs_max) in the 

QRS complex of the filtered signal. 

We applied the lead inversion detection after running low pass 

and high pass filter. It is important as it removes most of the noise 

in the ECG signal and reduces misleading high peaks in the data, 

leaving primarily clear QRS complexes. For those cases, when the 

abs_max is at least less than 0.6 of abs_min, we considered such a 

record as inverted and performed the sign change for the values of 

the record. The algorithm detected and worked out the 734 

inverted records in our dataset. 

Handling of the imbalanced dataset problem 

The dataset is highly unbalanced, which is common for natural 

signals, but it complicates the training process. While the model 

should learn the natural distribution of the classes (eg, most people 

would have normal sinus rhythm, and less would have some 

disease), the actual goal of the model is disease detection. 

Normal sinus rhythm is more than 100 times more represented 

in the dataset, than noise and about 18 times more – than AF. The 

model might easily overfit and predict the most represented class. 

Severe overfitting was observed in early experiments. 

There are several known approaches to handle the problem, 

including the usage of abnormalities detection algorithms. These 

algorithms apply class weights (penalties) on classifiers 

and perform data balancing. Another approach is to use 

the models which are better at handling unbalanced data. 

The experiments with class weights did not show any significant 

improvement in classification results. Therefore, data balancing 

techniques were applied to the dataset, including oversampling 

and undersampling [4]. 

  

 

Fig. 1. The difference in value ranges for normal ECG signals (records A00009 and A00121, only 10 seconds of each record) 
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Data oversampling is used when the amount of collected data 

is insufficient. The technique is applied to the underrepresented 

minority classes in the dataset. The main idea is to create synthetic 

samples of the data based on the characteristics of existing 

samples. The signals were interpolated in time (either making 

them shorter or longer) by 10 to 25% (chosen randomly). The 

generated signals might have a very low or very high heart rate, as 

we do not take into account the heart rate of the original signal. 

If a class of data is the overrepresented majority class, 

undersampling may be used to balance it with the minority class. 

This operation took the instances of the majority class and 

compared the time-shifted filtered signals by the square root of 

differences in the developed method. About 10% of the records 

with the lowest differences were removed from the training 

samples. 

1.2. Heartbeat detection 

The detection of the heartbeat starts with the search 

of R-picks, the highest and the most resistant to the noise 

component of a single heartbeat. This is a well-known problem, 

and one of the most commonly used methods is the Pan-Tompkins 

algorithm [7]. The original paper states the detection rate of 

99.3%. Our algorithm is a modification of the original one. It runs 

the Pan-Tompkins algorithm. Then it runs backward and looks for 

intervals where the RR interval length is larger than 1.5 of the 

mean RR interval length and reruns R-peak detection with the 

lower threshold.   

After R-picks detection, we started the lookup of the Q and S 

positions, which are the local minimums on both sides of the R 

pick. After that, the algorithm also looks for the local maximums 

in the interval of 0.2 s before R pick and 0.4s after R pick. Those 

points are assumed to be positions of the maximum of P and T 

waves respectively. These important points are marked in Fig. 2. 

Based on the positions of R-peaks, we extracted the heartbeats 

from the filtered signal, using the static window of 0.6 s (Fig. 3). 

We ignored the heartbeats, where the window cannot be applied 

(heartbeats on start or end of the signal). 

The extracted heartbeat had 180 points. We constructed a 

matrix filled with all detected heartbeats. Input for the neural 

network should have the same number of templates for every 

record, therefore an upper limit of 160 heartbeats was set. In case, 

there were no enough heartbeats, we added empty heartbeats 

(zero-values) to the end of the matrix. 

 

Fig. 3. Extracted normalized heartbeats from the ECG signal

 

Fig. 2. Detection of heartbeat components: QRS points marked with triangles, maximums of P and T waves with circles 

2. Neural network topology 

We propose to use a convolutional neural network for ECG 

classification. Our model was particularly inspired by the VGG-16 

neural network [12], which is commonly used for image 

recognition problems. We reduced the number of layers to 6, 

which includes two groups of 2 convolutional layers and a group 

of dense layers. 

The input dimension for the neural network was set to 160 by 

180, where 160 represents the heartbeats, and 180 is the number of 

data points per each heartbeat (0.6 s). 

The input is supplied into a convolutional layer with 32 filters 

and a convolution window length 3. It is followed by the rectified 

linear unit activation (ReLU), a simple non-linear function that 

replaces all negative values in the activation map by zero. Then it 

goes the same convolutional layer followed by a max-pooling 

layer with pool size set to 2 and the downscaling factor of 2. 

Pooling helps resolve multiple problems related to neural 

networks: makes input representations smaller, reduces the 

number of parameters (which makes computations faster and 

controls overfitting), makes network resistant to small 

transformations of the input, helps to detect features in data no 

matter where they are located. Then another ReLU layer follows. 

MaxPooling was performed before ReLU activation to reduce the 

number of operations and fasten the training process. These layers 

create the first block of our neural network. It is finalized with the 

drop out layer with a drop rate of 0.25, which has a slight 

regularization effect and reduces overfitting. The second block is 

built using the same layers structure as the previous one, but we 

increased the number of filters in convolutional layers to 64. The 

architecture of the proposed neural network is given in Fig.4. 

We transform the 2D output of the second block into 1D and 

supply it into a fully connected neural network (third block). This 

block contains a fully connected layer of 512 units and ReLU 

activation. It is followed by the drop out layer with a rate of 0.5. 

The last layer of the neural network produces the model 

output. It should have the same number of neurons as the number 

of possible output labels. Therefore, the neural network ends with 

a fully connected layer of 4 units. The layer uses softmax 

activation, which normalizes the layer outputs sum to 1 (eg, each 

value is a probability of the input to be an instance of a given 

class). 

The network was optimized using Stochastic Gradient Descent 

with Nesterov momentum of 0.9 and the initial learning rate set to 

0.01. 

We used categorical cross-entropy as a loss function for the 

neural network. 
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Fig. 4. The architecture of the neural network for ECG classification 

1.3. Implementation notes and training procedure 

We used Python [19] with Numpy [17] and SciPy [20] for 

signal processing, Scikit-Learn [18] and Keras [16] with 

Tensorflow CPU [21] backend for neural network construction 

and training. 

We split the original dataset into training and validation sets, 

2/3 and 1/3 respectively. Then we applied over- and 

undersampling on the training dataset. We used SciPy to resample 

the signals. 

The network was implemented using Keras functional API. 

Convolutional layers were implemented using Conv1D and max-

pooling was implemented using MaxPooling1D layers. 

For neural networks, the categorical value of the output should 

be encoded with the one-hot encoding. This means that class 0 

becomes a vector [1 0 0 0], class 1 becomes [0 1 0 0] and so on. 

We did that using Keras  to_categorical utility function. 

The neural network was trained in batches with 32 batch size. 

The training process was initialized with 30 training epochs and a 

controlling algorithm to stop training after reaching a minimum of 

the validation loss function. The training stop function was 

implemented using Keras EarlyStopping callback, with the 

patience parameter set to 7. 

We also run a dynamic learning rate algorithm, which reduced 

the initial learning rate by a factor of 10, when the validation loss 

function did not improve during the last 3 epochs. The 

improvement delta was set to 10-4, and the learning rate can be 

reduced from the initial value of 0.01 to 10-6. It was implemented 

using ReduceLROnPlateau Keras callback. 

3. Evaluation 

Evaluation of the model is performed using F1 score which is 

a combination of precision (PPV) and recall (TPR). 

         
                   

                 
 (1) 

The class detection accuracy of the model is a proportion of 

the number of true positive (TP) cases to the sum of true positive 

and false positive (FP) cases. 

          
  

     
 (2) 

The class recall of the model is a ratio of the number of true 

positive to the sum of true positive and false negative. 

          
  

     
 (3) 

For multi-class classification, we compute the F1 score for 

each class and the final score of the model is an average of all 

scores. But the distribution of normal, atrial fibrillation, other 

rhythms, and noisy data is highly imbalanced, and the amount of 

noisy data is significantly less compared to other classes, so the 

noise class evaluation was excluded from the final score. The F1 

score of the model is an average of the scores for AF, N and O 

classes. 

    
            

 
 (4) 

F1 score helps us to prevent an accuracy paradox, which is 

very common for the imbalanced datasets. 

We also incorporated cross-validation technique, which helps 

to estimate how accurately a predictive model will perform in 

practice. It runs in rounds and each round involves partitioning of 

a dataset into training and test sets, fitting the training data into the 

model, and validating the classifier on the test data. 5-fold cross-

validation was used for this project. This method splits the dataset 

into 5 subsets, then one subset is used for testing and 4 subsets for 

training. The parameter 5 not only defines the number of subsets, 

but also the number of rounds. A new subset is used for testing in 

each round. This means that during 5 rounds each of the generated 

subsets was used only once as a testing dataset. 

4. Results 

The model was validated both locally on the piece of the 

original dataset and remotely on the PhysioNet challenge hidden 

dataset.  

Table 1 shows the detailed model performance report we 

generated based on the local test dataset (33% of the original 

dataset). 

Table 1. Results of ECG classification using Convolutional Neural Network 

Class Precision Recall F1 Support 

AF 0.62 0.64 0.63 183 

Normal 0.78 0.92 0.84 1273 

Other rhythm 0.70 0.45 0.55 608 

Noise 0.61 0.59 0.60 68 

Total 0.68 0.65 0.66 2132 

As it was mentioned earlier, we also validated the model using 

5-fold cross-validation. The model got an average mean F1 score 

of 0.68 and a standard deviation of 0.016. 

Next, we sent the model for evaluation on the hidden dataset. 

PhysioNet runs the model in the virtual environment and 

computes the F1 score of the model for classes Normal, AF and 

Other. The results of the model on the hidden dataset are shown in 

Table 2. 

The final score of the model on the hidden dataset is 0.71. 

Table 2. PhysioNet report on the model performance 

Class Normal AF Other Overall 

F1 0.88 0.69 0.56 0.71 

5. Conclusions 

In this paper, we proposed an approach for the automatic 

detection of atrial fibrillation in single-lead ECGs using a 

convolutional neural network. Our model is designed to handle 

noisy signals and distinguish atrial fibrillation from other 

abnormal heart rhythms. The computational efficiency of the 

model is reached by using only basic signal preprocessing 

techniques like filtering and heartbeats detection. 

The performance of the model was validated using 5-fold 

cross-validation, which showed an average F1 score on the test 

dataset equals 0.68 with a little variance of 0.016. The model 

accuracy was additionally confirmed by running it on a closed 

dataset of ECG signals from the PhysioNet website, where the 

model showed the overall result of 0.71. 

Our result is lower compared to the results of the models 

which include manual feature extraction or a combination of 

multiple estimators. However, our model uses less computational 

power and it can be used on devices with limited resources. 

There are several directions for future research. In particular, 

the signal resampling algorithm, used during model training, can 

be improved by taking the actual heart rate into account. 

We also plan to improve the model performance (without 

reducing efficiency) by adding some of the computationally 

lightweight expert features like heart rate variability. 
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