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Abstract. The presented modelling investigation was carried out to analyze thermal stresses and expansion in an anode supported planar Solid Oxide Fuel 
Cell (pSOFC). The temperature distribution was based on previously developed thermo-electrochemical model predicting fuel cell operation. The design 
of a single pSOFC consisted of three ceramic layers of membrane electrode assembly: anode, electrolyte, cathode and two cross-flow bipolar plates with 
26 ribs. The gases flowed diagonally from one cell corner to the opposite one. The fuel and air flows were cross-wise opposed on each bipolar plate side. 
The study allowed to indicate the most vulnerable to thermal damage area of the fuel cell in the operating conditions. The results will be useful in further 
design modification and performance optimization of the SOFC. 
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MODELOWANIE 3D TERMICZNYCH NAPRĘŻEŃ W PŁASKIM STAŁOTLENKOWYM 
OGNIWIE PALIWOWYM O NOWATORSKIEJ KONSTRUKCJI  

Streszczenie. Przeprowadzone symulacje numeryczne miały na celu analizę termicznych naprężeń i ocenę stopnia wydłużenia płaskiego stałotlenkowego 
ogniwa paliwowego typu pSOFC (ang. planar Solid Oxide Fuel Cell). Rozkład temperatury w ogniwie wyznaczono w oparciu o wcześniej opracowany 
model termiczno-elektrochemiczny [11]. Nowatorskie rozwiązanie ogniwa typu pSOFC objęło ceramiczną konstrukcję, w skład której weszły porowate 
elektrody – anoda i katoda, elektrolit oraz dwie płytki bipolarne z 26-cioma żebrami. Przepływ paliwa i powietrza odbywał się krzyżowo i przeciwprądowo, 
po przekątnej ogniwa. Wyniki symulacji pozwoliły na określenie obszarów ogniwa narażonych na uszkodzenie w wyniku wysokich wartości naprężeń 
termicznych. Uzyskane rezultaty FEM umożliwią dalszą modyfikację konstrukcji płaskiego ogniwa  w celu optymalizacji wydajności pSOFC. 

Słowa kluczowe: płaskie stałotlenkowe ogniwo paliwowe, naprężenie termiczne, naprężenie szczątkowe, Metoda Elementu Skończonego, Numeryczna Mechanika Płynów  

Introduction 

Nowadays renewable and clean energy sources are more and 
more popular as a result of the ecological awareness and the need 
of pollutant emission reduction. Fuel cells, particularly the Solid 
Oxide Fuel Cells (SOFCs), are taken into account in a future plan 
of power systems due to their capabilities of efficient usage for 
stationary and mobile energy generators [10, 12]. The SOFCs are 
characterized by high performance in comparison to other fuel 
cells. Moreover, SOFCs are quite fuel flexible. Both hydrogen as 
well as hydrocarbons, such as natural gas, may be used as fuel [7]. 

However, currently the key challenges are short fuel cell life 
duration and high SOFC fabrication costs. One of the main causes 
of high cell degradation rates is structural failure. The SOFC 
operates at high temperature, which is often more than 700oC. 
This influences thermal stress generation in the cell structure, 
which can lead to its damage. The stress is due to a spatial 
temperature gradient and thermal expansion coefficients mismatch 
of the fuel cell components [8]. Therefore, it is so important to be 
able to define areas of thermal stress occurrence and  its values. 
This knowledge allows to save time, design and fuel cell 
production costs in a wide range of material parameters and 
operating conditions. A risk assessment of fuel cell damage and 
improvement of SOFC design can be performed with the help 
of numerical coupled approaches such as Computational Fluid 
Dynamics (CFD) and Finite Element Method (FEM) codes. 

Therefore, the purpose of this study was to investigate thermal 
stresses in the anode-supported single planar Solid Oxide Fuel 
Cell (pSOFC) with an innovative design based on 3D CFD/FEM 
simulations. 

1. Mathematical model 

The computational method consisted of two components: 
a multi-physics electrochemistry model and a structural mechanics 
model. A coupled of Computational Fluid Dynamics (CFD) and 
Computational Structural Mechanics (CSM) with Finite Element 
Method (FEM) analyses were performed using the commercial 
ANSYS software: Fluent with SOFC module and Mechanical. 

1.1. Multi-physics electrochemistry model 

A full numerical model used in this study, based on the cou-
pled equations for thermal, fluid, electrochemistry and electrical 
transport, was presented in details in a paper [11]. 

1.2. Structural mechanics model 

The applied structural mechanics model assumed that fuel cell 
materials undergo linear thermoelastic deformation. Total strain 
consisted of elastic and thermal contributions as follows: 
      thel    (1) 

Thermal strain was calculated from Eq. (2): 
      refth TT  0,0,0,,,   (2) 

where: α was the coefficient of thermal expansion (CTE),  T was 
the temperature obtained from the thermo-fluid model in the first 
stage of simulation, Tref was the stress free temperature.  

Stress-strain relationship for an isotropic, linear elastic solid 
material was computed as: 
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where: E was the Young’s modulus, ν was the Poisson’s ratio 
of the model material. 

The equivalent von Mises stress was described by Eq. (4): 
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 (4) 
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1.3. Model geometry 

The model geometry was based on the design of a single pla-
nar SOFC proposed by Bossel [1]. It consisted of three MEA 
layers (membrane electrode assembly – anode, electrolyte, cath-
ode) and two cross-flow bipolar plates with 26 ribs. Bipolar plates 
acted as flow channels and as current collectors. The gas flows 
were diagonal from one cell corner to the diagonally opposed 
corner and the fuel and air flows were cross-wise opposed on each 
bipolar plate side. 

 
Fig. 1. The proposed planar SOFC design: a) bipolar plate, view from the cathode 
side, b) view from the anode side, c) single planar SOFC geometry divided into 
separate layers 

The schematic of the analysed design is shown in Fig. 1. 
In Fig. 1a, ribs of bipolar plates from the cathode side are shown, 
while in Fig. 1b an anode side view is presented. The pSOFC 
geometry presented in Fig. 1c was divided into separate layers, 
sequentially from the left side: cathodic bipolar plate, air channel, 
LSM (Strontium-doped Lanthanum Manganite) cathode, YSZ 
(Yttria-Stabilized Zirconia) electrolyte, Ni-YSZ cermet anode, 
fuel channel and anodic bipolar plate. Arrows in Fig. 1a and b 
indicate gas flow directions:  the purple arrow means the air inlet, 
and the orange arrow – the air outlet, the blue and red  arrows  
indicate the fuel inlet and outlet, respectively. 

The basic physical parameters of the pSOFC materials are 
included in Tab. 1. The stress free temperature for SOFC was 
widely assumed as the sintering temperature, at which different 
layers were joined. 

Tab. 1. The physical parameters of the SOFC materials 

material 
property 

Ni-YSZ 
anode 

YSZ  
electrolyte 

LSM 
cathode 

Crofer 22 APU 
bipolar plate  

CTE *10-6 [1/K] 12.2 
[4, 9] 

10.3 
[2] 

11.7 
[4, 6] 

10.3-12.7 
(473–1273 K) 

[3] 

Young’s modulus 
[GPa] 

57 
[4, 9] 

215/185 
(298/1073 K) 

[7] 

35 
[4,6] 

214-44 
(298–1073 K) 

[3] 

Poisson’s ratio [-] 0.28 
[9] 

0.32/0.313 
[9] 

0.36 
[6] 

0.29 
[3] 

Density [kg/m3] 7740 
[13] 

6000 
[2, 6] 

5300 
[13] 

7700 
[3] 

Thermal conductivity 
[W/m K] 

6 
[13] 

2.7 
[13] 

10 
[13] 

24 
[3] 

Specific heat [J/kg K] 600 
[13] 

400 
[13] 

607 
[13] 

660 
[3] 

Tensile yield strength 
[MPa] 

115 
[7, 9] 

332/256 
[9] 

155 
[5] 

291 
[3] 

Compressive strength 
[MPa] 100 1000 

[7] 
100 
[7] 

345 
[3] 

Stress free temperature 
[K] 

1623 
[6] 

1623 
[6] 

1473 
[6] - 

2. Results and discussion 

In the first modelling stage, temperature distribution was cal-
culated for 0.7 V operating voltage based on the CFD model. 
Then, the obtained temperature was imported into the Mechanical 
module in order to achieve the stress and expansion distributions 
in the single planar SOFC. The residual stress was calculated 
during a cooling down process using the stress free temperature 
of MEA. 

2.1. CFD results 

In this study, only one case at the operating voltage equal 
to 0.7 V was considered. The temperature distribution is shown 
in Fig. 2a. The temperature distribution estimated during the CFD 
simulation was imported to the ANSYS Mechanical module. 
Temperature profiles imported to the second step FEM simulation 
is presented in Fig. 2b. 

a)  

b)  

Fig. 2. Temperature distribution [K]: a) at electrolyte, CFD model, b) imported 
at bipolar plate, FEM model 

2.2. Structural mechanics results 

Both gradients of the operating temperature and the manufac-
turing process temperatures of the MEA layers were taken into 
account during thermal stresses generation. The operating stress 
resulted as the first factor  from the temperature distribution im-
ported from CFD calculation of the single planar SOFC at 0.7 V. 
Distributions of the deformation and operating von Mises stresses 
are shown in a diagonal cross-section views in Fig. 3. 
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a)  

b)  

Fig. 3. Operating distribution of: a) total displacement [mm], b) von Mises stress 
[MPa] 

Fig. 4 presents the contour maps of maximum principal stress 
in the local scale for each part of the planar SOFC. 

a)  

b)  

c)  

d)  

Fig. 4. Operating maximum principal stress [MPa]: a) in cathode, b) in electrolyte, 
c) in anode, d) in bipolar plates 

The MEA residual stress was developed during the sintering 
process of the MEA layers. It was assumed in this study that only 
one stage of the cooling down process from 1623 K to 298 K [6] 
is considered. Due to a constant temperature profile in this ap-
proach, the residual stress  varied only along the vertical direction. 
Therefore, the stress results are shown in zoomed view of a diago-
nal cut of MEA parts in Figs. 5 – 6. Fig. 5a shows the total dis-
placement of MEA under sintering process. 

a)  

b)  

Fig. 5. Fabrication impacts: a) total displacement [mm], b) von Mises stress 
of MEA [MPa] 

a)  

b)  

Fig. 6. Fabrication impacts: a) maximum principal stress [MPa], b) minimum 
principal stress of MEA [MPa] 

Fig. 7. shows the total principal stress, which was defined as a 
sum of both the residual and operating stresses. The highest total 
stress was noticed in the electrolyte and it was equal to -670 MPa, 
i.e. it was the compression stress. 

 

Fig. 7. Total principal stress in the planar SOFC along the vertical centerlines 
in the center point of geometry 
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3. Conclusion 

The stress state in the anode supported planar SOFC of the 
innovative design was predicted using a coupled CFD and CSM 
analysis. Both operating temperature and that of the manufactur-
ing process of the MEA layers were taken into account in generat-
ing the thermal stresses. 

The highest total stress value of -670 MPa was noticed 
in the electrolyte, while -14.5 MPa was created in the cathode 
and 41.5 MPa in the anode layer. Based on this numerical 
investigation it can be concluded that the residual stress due to the 
manufacturing process has a major influence on thermal stress 
distributions. 
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