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Abstract. In the field of shape and topology optimization the new concept is the topological derivative of a given shape functional. The asymptotic analysis 

is applied in order to determine the topological derivative of shape functionals for elliptic problems. The topological derivative (TD) is a tool to measure 

the influence on the specific shape functional of insertion of small defect into a geometrical domain for the elliptic boundary value problem (BVP) under 
considerations. The domain with the small defect stands for perturbed domain by topological variations. This means that given the topological derivative, 

we have in hand the first order approximation with respect to the small parameter which governs the volume of the defect for the shape functional evalu-
ated in the perturbed domain. TD is a function defined in the original (unperturbed) domain which can be evaluated from the knowledge of solutions 

to BVP in such a domain. This means that we can evaluate TD by solving only the BVP in the intact domain. One can consider the first and the second 

order topological derivatives as well, which furnish the approximation of the shape functional with better precision compared to the first order TD expan-
sion in perturbed domain. In this work the topological derivative is applied in the context of Electrical Impedance Tomography (EIT). In particular, we are 

interested in reconstructing a number of anomalies embedded within a medium subject to a set of current fluxes, from measurements of the corresponding 

electrical potentials on its boundary. The basic idea consists in minimize a functional measuring the misfit between the boundary measurements and the 

electrical potentials obtained from the model with respect to a set of ball-shaped anomalies. The first and second order topological derivatives are used, 

leading to a non-iterative second order reconstruction algorithm. Finally, a numerical experiment is presented, showing that the resulting reconstruction 

algorithm is very robust with respect to noisy data. 

Keywords: electrical impedance tomography, inverse problems, topological derivatives 

ZASTOSOWANIE METODY POCHODNEJ TOPOLOGICZNEJ W ELEKTRYCZNEJ 

TOMOGRAFII IMPEDANCYJNEJ 

Streszczenie. W dziedzinie optymalizacji kształtu i topologii zaproponowano nową koncepcję pochodnej topologicznej danego funkcjonału kształtu. 

Zastosowano asymptotyczną analizę w celu określenia pochodnej topologicznej funkcjonału kształtu dla zagadnień eliptycznych. Pochodna Topologiczna – 
PT (ang. the topological derivative – TD) jest miarą wpływu wtrącenia w postaci małego defektu na funkcjonał kształtu w badanym obszarze dla eliptycz-

nego zagadnienia brzegowego. Obszar z małym defektem traktowany jest jako obszar zaburzony przez zmiany topologii. Oznacza to, że dana pochodna 

topologiczna stanowi aproksymację pierwszego rzędu ze względu na mały parametr, który określa objętość defektu dla obliczanego funkcjonału kształtu 
w zaburzonym obszarze. PT jest funkcją zdefiniowaną w obszarze niezaburzonym, który może być wyznaczony na podstawie znajomości rozwiązania 

zagadnienia brzegowego w tym (niezaburzonym) obszarze. Oznacza to że PT może być wyznaczona poprzez rozwiązanie zagadnienia brzegowego w obsza-

rze niezaburzonym. Można rozważyć pierwszego jak również drugiego rzędu pochodną topologiczną, zapewniającą aproksymację funkcjonału kształtu 
ze znacznie lepszą precyzją w porównaniu do PT pierwszego rzędu rozwinięcia w obszarze zaburzonym. W niniejszej pracy PT jest zastosowana w kontek-

ście Elektrycznej Tomografii Impedancyjnej (ETI). W szczególności jesteśmy zainteresowani w rekonstrukcji pewnej liczby anomalii wewnątrz obszaru, 

na podstawie pomiarów potencjału na brzegu rozpatrywanego obszaru. Podstawowa idea zawarta jest w minimalizacji funkcjonału, będącego miarą 
niedopasowania między pomiarami potencjału na brzegu obszaru a potencjałem elektrycznym uzyskanym na podstawie modelu matematycznego uwzględ-

niającego zbiór anomalii o kształcie kuli. Zastosowanie pierwszego i drugiego rzędu pochodnej topologicznej prowadzi do nieiteracyjnego algorytmu 

rekonstrukcyjnego drugiego rzędu. W zakończeniu artykułu przedstawiono eksperyment numeryczny, wykazujący, że zaproponowany algorytm obrazowa-
nia jest bardzo odporny na zaszumione dane pomiarowe. 

Słowa kluczowe: tomografia impedancyjna, zagadnienia odwrotne, pochodna topologiczna 

Introduction 

Shape and topology optimization techniques are used in the 

wide domain of applications, in particular for solution of inverse 

problems. The modern theory of shape and topology optimization 

is a branch of calculus of variations, differential geometry, analy-

sis of boundary value problems for partial differential equations, 

numerical methods in engineering and structural mechanics, 

among others. The mathematical analysis of such problems pro-

vides the existence of optimal shapes and optimal topologies, 

together with the necessary conditions for optimality and the 

numerical schemas for evaluation of approximate solutions as well 

as the convergence of the proposed schemas. Since the shape 

optimization problems are in general non-convex, the numerical 

results are obtained for local solutions only. 

The class of inverse problems considered can be formulated as 

minimizations of shape functionals. Given a geometrical domain 

Ω with the boundary   and a boundary value problem 

defined in Ω whose solution is denoted by 
u , we are able to 

observe the response of the system on the boundary Г. For exam-

ple, we know the response to the Dirichlet boundary conditions 

given by the Dirichlet-to-Neumann map for the second order 

elliptic equation [18], 

 
n

u
QUu









 :: 
 on Г. 

Assuming that the couple (U,Q) is known however the real 

defect 
  is unknown we have an inverse problem. Therefore, 

given (U,Q) we want to determine the size and the position 

of a small defect   inside of the hold-all domain. The 

mathematical model of the system furnishes the mapping 

  for a family of defects  . Thus, taking U we can gen-

erate the output of the model  U  and compare with the given 

function  UQ  . In this way a sequence of approximate solu-

tions to the inverse problem is constructed. In general, such 

a sequence converges to a local solution of the minimization 

procedure for the distance between the real data and the data 

obtained from the model. 

Hence, using the mathematical model we can consider the as-

sociated shape-topological optimization problem based on the 

distance minimization between the observation (U,Q) and the 

model response   UU ,  over the family of admissible 

defects  . This is a numerical method which uses the shape and 

topological derivatives of the specific shape functional defined for 

the inverse problem. 

The topological derivative represents the first term of the 

asymptotic expansion of a given shape functional with respect to 

the small parameter which measures the size of singular domain 

perturbations, such as holes, inclusions, source-terms and cracks. 

This relatively new concept was introduced in the fundamental 

paper [56] and has been successfully applied to many relevant 
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fields such as shape and topology optimization [1, 8, 11, 12, 15, 

17, 29, 38, 40, 48, 49, 50, 59], inverse problems [10, 19, 20, 21, 

23, 30, 32, 34, 36, 42], imaging processing [13, 14, 31, 33, 39], 

multiscale material design [9, 26, 27, 28, 52] and mechanical 

modeling including damage [2] and fracture [60] evolution 

phenomena. Regarding the theoretical development of the topo-

logical asymptotic analysis, see for instance [6, 7, 22, 24, 25, 35, 

37, 41, 43, 44, 45, 46, 47, 57, 58]. For an account of new devel-

opments in this branch of shape optimization we refer to the book 

by Novotny & Sokołowski [51]. In this paper the topological 

derivative is applied in the context of Electrical Impedance Tomo-

graphy. 

In our frame the application of topological derivatives 

is of twofold interest. First of all, for one defect and the associated 

shape functional which measures the discrepancy between 

unknown 
  and the actual   in the model we can define the first 

order asymptotic expansion for solutions u  of the model with 

small defect of the size 0 , located at x̂ , 

        ,ˆ,, 0   oxuOJuJ  T  

where uu 0  for 0 . If we minimize the shape functional for 

the purposes of inverse problem solution, the selection of small 

  uses for its centre x̂  the condition 

   0ˆ xT . 

In addition, the size of the defect   can be deduced from 

the second order expansion of the shape functional 

         .ˆˆ,,
222

0 




   oxxuOJuJ TT  

It is clear that the proposed procedure strongly depends on the 

choice of the shape functional which should be of energy type, 

if possible. In the paper the tomography framework is considered 

for the purposes of numerical solution of inverse problems. The 

special attention is paid to the electrical impedance tomography 

which is a robust technique in the field of noninvasive detection 

of small defects. 

The tomography techniques for solution of inverse problems 

are developed in Poland, see e.g., [54] on the impedance and 

optical tomography, [55] on industrial and biological tomography, 

as well as [53] on electrical capacitance tomography. 

In the present paper, a new method for solution of inverse 

problems based on the topological derivative concept is proposed. 

The method is useful for identification of small defects and it is 

based on asymptotic analysis of associated PDEs with respect to 

the size of defects, for the size which tends to zero. The character-

istics of defects are given by the shape functionals, and the 

numerical methods employ the asymptotic expansions of the 

functional with respect to the size of defects. 

1. Problem formulation 

Let us consider a domain  R2 with Lipschitz continuous 

boundary  , which represents a body endowed with the capabil-

ity of conducting electricity. Its electrical conductivity coefficient 

is denoted by k*(x) ≥ k0 > 0, with x   Ω and k0   R+. If the body 

Ω is subjected to a given electric flux Q on  , then the resulting 

electric potential in Ω is observed on a part of the boundary 

m
. The objective is to reconstruct the electrical conductiv-

ity k* over Ω from the obtained boundary measurement *
|:

m
uU  , 

solution of the following over-determined boundary value 

problem 
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 (1.1) 

Without loss of generality, we are considering only one 

boundary measurement U on m . The extension to several bound-

ary measurements is trivial. Furthermore, we assume that the 

unknown electrical conductivity k* we are looking for belongs 

to the following set 
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where k0   R+ is the electrical conductivity of the background. 

The sets i , with i = 1, … , N, are such that  ji  Ø for 

i ≠ j. In addition, 1  and i
1  are used to denote the characteristics 

functions of Ω and i , respectively. Finally, γi   R+ are the 

contrasts with respect to the electrical conductivity of the back-

ground k. We assume that the electrical conductivity of the back-

ground k and the associated contrasts γi are known. Therefore, 

the inverse problem we are dealing with can be written in the form 

of a topology optimization problem with respect to the sets 

i

N

i  1

*

 . See sketch in Figure 1. Let us introduce the follow-

ing auxiliary Neumann boundary value problem: 

 

Fig. 1. Body with anomalies 

Find u, such that 
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 (1.3) 

where Q and U are the boundary excitation and boundary meas-

urement, respectively. Finally, we introduce the following shape 

functional measuring the misfit between the boundary measure-

ment U and the solution u of (1.3) evaluated on Γm, namely 
     ,UuuMinimize

2

m






J
*

 (1.4) 

which will be solved by using the first and second order topologi-

cal derivatives concepts. See related works [3, 4, 5, 16, 34]. 

2. Topological asymptotic expansion 

Let us consider that the domain Ω is perturbed by the nuclea-

tion of N ball-shaped inclusions  ixB
i

 with contrast γi, i = 1, … , 

N. We assume that   ixB
i

 is a ball with center at ix  

and radius εi, such that    ji xBxB
ji   = Ø for i ≠ j. We intro-

duce the notations  Nxx  , ... ,1  and  N  , ... ,1 . The topo-

logically perturbed counterpart of the shape functional (1.4) 

is given by 
     ,

2






m

Uuu J  (2.1) 

where u  is solution of the following boundary value problem 
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with the contrast defined as 
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From these elements, the topological asymptotic expansion the 

shape functional J(uε) is given by 

          ,
2

1
   Hduu JJ  (2.4) 

where d(ξ) and H(ξ) is the first and second order topological 

derivatives, respectively. In addition,  22
1 , ... , N   and  ,  

is the remainder. Some terms in the above expression still require 

explanations. The vector d(ξ) and the matrix H(ξ) are defined as 
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where each component di is given by 
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In addition, 
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and the functions      xgxhxg iii
~ , ,  and  x

j
i  are respectively 

given by 
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where the second order tensor A(x) is written as 
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Finally, the auxiliary function iu~  is solution to: Find iu~ , such that 
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while the auxiliary function iu
~~  solves: Find iu

~~ , such that 
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and the auxiliary function 
j

iu  is solution to: Find 
j

iu , such that 

 
  
 

   

























                            .      

          ,on     ,   

                 ,in              ,         

               ,in                      ,0div

mm

j

ij

j

i

j

ij

j

i

j

i

j

i

j

i

u

quq

ukuq

uq



 nn

 (2.17) 

The derivation of the above equations follows the same steps as 

presented in [34], for instance. 

3. A numerical experiment 

In this section we present the resulting non-interactive recon-

struction algorithm based on the expansion (2.4). Let us introduce 

the quantity 

         Hd
2

1
,  (3.1) 

After minimize (3.1) with respect to α we obtain the following 

linear system 

       .1  dH


  (3.2) 

Let us replace α(ξ) solution of (3.2) in (3.1), to obtain 

       .
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1
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Therefore, the pair of vectors (ξ*, α*) which minimize (3.1) 

is given by 
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where X is the set of admissible locations of the inclusions. From 

these elements the Algorithm 1 is devised. Its input data are: 

 the number of anomalies that are going to find, 

 the first d and second h order topological derivatives, 

 the size of the grid where we are seeking the inclusions, 

denoted by ng, 

 the index ig of the grid. 

As a result, the algorithm provides the location and optimum 

size of the anomalies (ξ*, α*), and the minimum value of the func-

tional given by (3.3) denoted by S*. 

Finally, let us present a numerical example. We consider 

a disk of unitary radius. Its boundary is subdivided into 16 disjoint 

pieces. Each pair of such a pieces are used for injecting and drain-

ing the current. Therefore, the excitation Q is given by a pair 

Qin = 1 of injection and Qout = -1 of draining. The remainder part 

of the boundary becomes insulated. The associated potential U 

is measured only on these disjoint pieces, representing Γm. 

See sketch in Fig. 2. 
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Fig. 2. Model problem 

The target consists of three ball-shaped anomalies, which is 

corrupted with 10% of White Gaussian Noise, as shown in Figure 

3(a). The obtained reconstruction with 64 partial boundary meas-

urements is shown in Figure 3(b). 

From an inspection of Figure 3 we observe that Algorithm 1 

is actually very robust with respect to noisy data. It comes out 

from the fact that the proposed second-order reconstruction algo-

rithm is non-iterative. 

 

 

Fig. 3. Target corrupted with 10% of White Gaussian Noise (left) and obtained result 

with 64 partial boundary measurements (right) 

5. Concluding remarks 

In the paper new methods of numerical solutions for a class 

of electrical impedance tomography problems is proposed. 

The method is based on the topological derivatives of shape 

functionals associated with the inverse problems. It is assumed 

that there is a finite number of small defects within the domain 

(body) and that the influence of the defects on the Dirichlet-to-

Neumann map is observed using the mathematical model in the 

form of linear elliptic boundary value problem. The noisy bound-

ary measurements are compared with the mathematical model 

in order to identify the number, size and locations of the hidden 

imperfections. 
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