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Abstract. The paper presents a new approach to monitoring changes of characteristic parameters of gravitational solids flow. Electrical Capacitance 

Tomography (ECT) is applied for non-invasive process monitoring. Artificial Neural Networks (ANN) are used to estimate important flow parameters 

knowing the measured capacitances. The proposed approach solves the ECT inverse problem in a direct manner and provides a rapid parameterization 
of the funnel flow. The simulation of the silo discharging process is performed relying on real flow behaviour obtained from the authors’ previous work. 

The simulated data are used to new approach testing and verification. The obtained results proved that proposed ANN-based method will allow for on-line 

gravitational solids flow monitoring. 

Keywords: Electrical Capacitance Tomography, process simulation, Artificial Neural Networks, funnel flow parameters estimation 

SYMULACJA PRZEPŁYWU GRAWITACYJNEGO I ESTYMACJA JEGO PARAMETRÓW 

PRZY UŻYCIU ELEKTRYCZNEJ TOMOGRAFII POJEMNOŚCIOWEJ I SZTUCZNYCH 

SIECI NEURONOWYCH 

Streszczenie. W artykule opisano nowe podejście do monitorowania zmian charakterystycznych parametrów przepływu grawitacyjnego. 

Do nieinwazyjnego monitorowania procesu stosowana jest Elektryczna Tomografia Pojemnościowa (ECT). Sztuczne Sieci Neuronowe wykorzystywane są 
do estymacji ważnych parametrów przepływu na podstawie mierzonych pojemności. Zaproponowane podejście pozwala na rozwiązanie problemu 

odwrotnego w ECT w sposób bezpośredni i umożliwia natychmiastową parametryzację przepływu kominowego. Symulacja procesu rozładowania silosu 

została wykonana na podstawie wyników wcześniejszych badań eksperymentalnych przeprowadzonych na rzeczywistym obiekcie. Dane symulacyjne 
wykorzystano do testowania i weryfikacji nowego podejścia. Uzyskane wyniki wykazały, iż zaproponowana metoda wykorzystująca Sztuczne Sieci 

Neuronowe pozwoli na monitorowanie on-line parametrów przepływu grawitacyjnego. 

Słowa kluczowe: elektryczna tomografia pojemnościowa, symulacja procesu, sztuczne sieci neuronowe, estymacja parametrów przepływu kominowego 

Introduction 

Silos are containers for protecting, storing and delivery par-

ticulate granular materials or powders. They differ on the size, 

shape and material of construction. A variety of types of flow 

regimes can be observed within the silo itself according to the 

geometry and solid properties. The basic two types of flow behav-

iour are ‘mass flow’ and ‘core’ (or ‘funnel’) flow. The first is 

characterized by all the material within any cross section discharg-

ing from the silo at the same time across the whole cross section. 

While the funnel flow causes problems with uniformity of flow 

and incomplete emptying of the hopper when the material tends to 

flow mainly in the core region of the container the rest of the solid 

situated close to walls is tending to form the so-called stagnant 

zones. Hence the material staying in these zones result in volume 

wastage and difficulties in process operation, for example uncer-

tainty in amount and rate of material deployment into process 

installations [3]. Therefore funnel type of flow regime is the target 

of investigation in order to measure and quantify these phenom-

ena. In the paper, authors propose estimation of two important 

funnel parameters: size of the funnel and permittivity of the funnel 

using Electrical Capacitance Tomography (ECT) and Artificial 

Neural Networks (ANN). 

1. Electrical Capacitance Tomography 

and gravitational solids flow monitoring 

Electrical capacitance tomography is a non-invasive measur-

ing technique enabling visualization of the distribution of a mix-

ture of materials with different dielectric permittivities inside an 

electrocapacitance sensor [5]. ECT relies on measuring the capaci-

tances between pairs of electrodes placed around the targeted 

vessel (see Fig. 1). The acquired measurements are then processed 

to reconstruct a tomographic image by the use of an appropriate 

image reconstruction algorithm. Therefore ECT is a useful tool for 

industrial process monitoring. 

The relationship between capacitance and permittivity distri-

bution is modelled by the Gauss Law, [8] (Eq. 1): 
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where: Q is the electric charge, V the potential difference between 

two electrodes, (x, y) denotes the permittivity distribution and 

(x, y) represents the electrical potential distributions. Γ stands for 

the electrode surface and d an element orthogonal to this surface. 

The Landweber iterative algorithm is one of the most popular 

methods in the field of ECT image reconstruction. The iteration 

process, in the Landweber algorithm is governed by the following 

formula [9, 13]: 

                          (2) 

where      and    are matrices of the estimated permittivity 

distributions at the     and         iterations respectively, S is 

the calculated sensitivity matrix,   is a relaxation parameter of the 

Landweber algorithm and C is a matrix of measured capacitances. 

The Landweber method owns the advantages of easy imple-

mentation and low computational complexity but suffers from the 

numerical optimization point of view as it possess a relatively low 

convergence rate and hardly provides a global optimization solu-

tion, [7]. Literature related to ECT application highlights that the 

current challenge in developing of ECT tomography concerns the 

improvement of the quality level of the extracted information 

about the state of the process in real time. In order to meet this 

target, new artificial intelligence techniques e.g. fuzzy logic [1] 

and artificial neural networks [2, 15] are applied. 

In the case of controlling the funnel flow‘s temporal behav-

iour, a parameterisation of the process allows tracking the changes 

of characteristics parameter of the considered flow. A geometric 

representation of characteristic parameters of silo flow considered 

in this paper is shown in Fig. 1. 
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Fig. 1. Geometrical modelling of hopper flow in cross section. The set of estimated 

parameters  = {  , ,   ,  } [12] 

This form of modelling can allow direct estimation of the 

process parameters, and make process monitoring more efficient.  

In order to model the silo flow, two separate regions are iden-

tified within the cross section during discharging the container: 

the ‘funnel’ in the centre and the area close to wall. One region 

corresponds to flowing material, e.g. funnel while the other corre-

sponds to stagnant zone. The estimated parameters were: size of 

the funnel  
 
, permittivity of the funnel  , and the size  

 
 and 

permittivity   of the other area. 

The funnel shape was approximated by a circle and its size 

was estimated based on the area belonging to lower permittivity   

in the centre of the silo cross-section. 

The changes of value of funnel permittivity can be visible on 

graph presenting changes of measurements capacitance in term 

of time during silo discharging process (Fig. 2): when the falling 

upper surface of the flowing solids reaches the electrode-sensing 

zone, measured capacitance is rising for all electrode pairs. 

Recorded capacitances decrease when the surface of material 

passes the sensors since there is less and less material present [12]. 

The characteristic parameters of the funnel: size and material 

concentration (permittivity) were estimated with the use of the 

Landweber method and image processing methods. Dependencies 

of the estimated funnel parameters versus frames are shown 

in Fig. 3 and 4. 

 

Fig. 2. Characteristics of the hopper discharge profile deduced from measured capacitance changes, showing six distinct features: (a) no change in the measurement space, 

(b) funnel propagation at the level of sensor plane, (c) stabilized funnel flow, (d) the flowing material surface appears at the sensor plane, (e) upper descending of the flowing 

material leaves the region of sensor plane, (f) residual solids in the stagnant zone 

 

Fig. 3. Plot of the estimated area occupied by the funnel versus frames [12] 

 

Fig. 4. Plot of the funnel permittivity   versus frames [12]

2. Flow parameters estimation by the use 

of Artificial Neural Networks  

The main idea of the proposed approach and its comparison to 

the existing methods is shown in Fig. 5. The introduced approach 

relies on ECT to parameterize the funnel flow with no image 

processing step as do the existing methods. The capacitance 

data is fed to the artificial neural network at the input layer and 

the funnel area and permittivity of the funnel are obtained at the 

output layer. 

ANNs are universal approximators [4], which were success-

fully used for similar shape inverse problems solving [6] and 

image reconstruction using electrical impedance tomography [10]. 

Therefore application of ANN is proposed to direct estimation 

of flow parameters on the basis of the measured capacitances. 

ANN method, combined with principal component analysis, 

allowed real time solution of inverse problem in electrical imped-

ance tomography [14]. 

In the previous work [2], the designed ANN proved efficient 

results on a reduced computational time about 120 times compar-

ing to the existing Landweber iterative algorithm for tomographic 

image reconstruction when estimating the radius of a circular 

object placed in the centre of the silo. In the present work, 

the performance of the ANN is tested for the occupied area by the 

funnel   and permittivity values 1 estimation.  

ANN of Multi-Layer Perceptron (MLP) type with one hidden 

layer was trained applying back propagation algorithm to perform 

the estimation of two object parameters (     ) from ECT meas-

urement data. 

In order to test and verify the ANN performance the simula-

tion of the silo discharging process was performed relying on real 

flow behaviour obtained from the authors’ previous work [12]. 
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A sequence of ECT reconstructed images obtained during funnel 

flow was prepared. 

The set of 600 frames is divided to 540 frames for training 

the ANN and 60 frames to test the ability of the earlier trained to 

estimate the area and the permittivity of the funnel in a direct and 

rapid manner and thus the ability to simulate the silo discharging 

process. 

Sum square error cost function and back propagation learning 

algorithm [4] were applied for the considered problem. These 

ensure that the convergence condition for the learning algorithm 

is true. In the present approach, the stop condition corresponds 

to a set value of the training error (TE). 

 

Fig. 5. Different approaches to determine the flow parameters from capacitances 

data: (a) an existing methods based on image processing and reconstruction, 

(b) the proposed method based on Artificial Neural Networks 

3. Experimental results 

The aim of the research was to determine the appropriate MLP 

structure for different radii and permittivities estimation. Different 

MLP structures (28-m-2), with 28 inputs, various numbers of 

neurons (m = 6, 8, 10 and 14) in the hidden layer and two neurons 

in the output layer were trained and tested (see the Table1). The 

neurons in the hidden layer have sigmoidal activation function, 

and these in the output layer have linear activation function. More 

than 100 different MLPs were trained. 

The main criterion for choosing the best MLP structure was 

the minimum of mean square error (MSE) for the testing data: 
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    denotes the corresponding estimated set of parameters at the 

MLP output and n is the number of testing samples. 

In the selection of the appropriate MLP structure two other 

testing errors defined for each single shape parameter were also 

taken into consideration: 

 Root Mean Square Error (RMSE): 
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 Mean absolute error (ME): 
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where   iii p~ppe  ,    corresponds to the desired single 

parameter (  or   ), for i-th sample,     
 
  denotes the estimated 

parameter at MLP output and n the number of the testing samples.  

The obtained testing errors for a training error TE = 0.01  

MSE = 0.00018, are gathered in Table 1. A structure (28-10-2) 

provided the most satisfactory testing errors and the smallest 

number of iterations in the learning process. This structure was 

maintained to further experiments.  

Table 1. Testing errors and number of iterations with different MLP structures 

(training error TE = 0.01   MSE= 0.000018) 

Network 

structure 

Testing error Number 

of iterations 

(learning) RMSE  
 
 
  Mean  

 
 
  

(28-6-2)  
      
      

   
      
      

  45185040 

(28-8-2)  
      
      

   
      
      

  25792020 

(28-10-2)  
         
         

   
      
      

  33487560 

(28-14-2)  
     
      

   
      
      

  25846560 

 

A comparison of the characteristic funnel parameters esti-

mated in traditional way with the use of the Landweber method 

and image processing methods and estimated by the use of ANN 

is shown in Fig. 6. 

The obtained area and permittivity of the funnel simulated 

by ANN are almost the same or very close to the parameters 

estimated in traditional way, what confirms the ability of the ANN 

to simulate the silo discharge process and track the changes 

of characteristic parameters of the flow versus time. 

 

Fig. 6. Simulation in comparison to estimated data



p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 2/2016      37 

The elapsed time of the flow parameters estimation by the 

trained ANN for 60 testing frames is 0.033765 second, what 

corresponds to 1777 frames per second. The acquisition rate, 

during measurements, is 50 fr/s and for high performances ECT 

systems the rate is 500 fr/s [11]. The proposed approach has the 

advantage to be rapid and the time of parameters calculation 

is about thirty times shorter than the acquisition time in traditional 

ECT measurement system and about three times shorter when 

compared to high performances ECT systems. 

4. Conclusions 

The aim of the work was to estimate the size and permittivity 

of the funnel during the silo discharging process based on artificial 

neural network technique and Electrical Capacitance Tomography. 

The data fed to the ANN was provided from authors previous 

work conducted in order to analyze and interpret the Hopper Flow 

behaviour using ECT. 

The obtained results are promising especially under a simple 

MLP structure (28-10-2) and back propagation training algorithm. 

The provided accuracy is satisfactory and ANN based approach 

allowed to estimate the characteristic funnel parameters and simu-

late the silo discharging process in a simple manner. Results 

revealed potential to on-line track changes of characteristic 

parameters of gravitational solids flow. 
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