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LOW POWER DC/DC CONVERTER FROM 3 KV TO 300 V 

– SIMULATION ANALYSIS 
Wojciech Matelski  
Gdańsk Branch of The Electrotechnical Institute 

Abstract. The article presents a 150 W converter, supplied from the railway 3 kV DC traction grid, lowering the voltage to a level of 300 V. The described 

structure enables the selection of low cost IGBT devices. A parallel connection of five identical two-transistor flyback converters, with division of input 

voltage on a series of capacitors, has been proposed. The operation of converter, together with the developed control method, has been tested 
by performing simulation studies. In states of input voltage variations, the converter powers the load with stable output voltage. 
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PRZETWORNICA NAPIĘCIA STAŁEGO 3 KV NA NAPIĘCIE STAŁE 300 V MAŁEJ MOCY 

– ANALIZA SYMULACYJNA 

Streszczenie. W artykule zaprezentowano przetwornicę o mocy 150 W, zasilaną z kolejowej sieci trakcyjnej 3 kV DC, obniżającą napięcie do poziomu 
300 V. Opisana struktura umożliwia zastosowanie tanich tranzystorów IGBT do budowy przetwornicy. Układ oparty jest na równoległym połączeniu pięciu 

dwu tranzystorowych przetwornic typu flyback, z podziałem napięcia wejściowego na kondensatorach. Praca przekształtnika, wraz z opracowaną metodą 

sterowania, zastała sprawdzona poprzez badania symulacyjne. W sytuacjach zmian napięcia wejściowego, układ zapewnia stabilne zasilanie obciążenia. 

Słowa kluczowe: przekształtniki DC/DC, symulacja komputerowa, przetwornice trakcyjne 

Introduction 

Automated and fully supervised railway routes require special-

ized sensors and actuators situated along the tracks to control train 

traffic. Most of these utilities are low power electrical devices that 

need power supply. The industrial AC power networks are very 

often far away from railway routes, therefore the necessary long 

power cable connections would be expensive. A reasonable source 

of power for such applications is the railway 3 kV DC traction 

system. The high input voltage needs to be decreased with the help 

of a DC/DC converter. High voltage converters suitable for low 

power applications are not common on the market. One of the 

main obstacles in wide application of such converters is related to 

the quality of the energy available in this way. The voltage varia-

tion in the railway grid, which is allowed by standards [4], can be 

of quite large range. It is evident, that in such systems the reliabil-

ity of the power supply is of great importance to security of trains. 

This issue is emphasized by a high probability of overvoltages, 

increasing the already harsh insulation requirements for power 

switches. Therefore, high voltage, and thus more expensive, tran-

sistors are necessary. The aim of this work was to find a converter 

topology enabling the use of low cost IGBT transistors in 3 kV 

low power applications. In this paper a parallel connection of five 

identical low power “two transistor flyback converters with divi-

sion of input voltage” has been proposed. The designed system 

has a modular form. The high voltage 3 kV DC is divided on an 

active input circuit, then further lowered by the work of the fly-

back converter modules. The operation of converter, together with 

the developed control method, has been tested by simulation 

studies using PSIM. 

1. Converter structure 

Insulation requirements of power electronic devices designed 

for railway traction grid applications can be met by the use of high 

voltage components, which are expensive. Another solution would 

be to find a topology reducing the voltage stress of power switches 

to a level enabling the selection of low cost IGBT transistors.  

The described system enables power supply from railway trac-

tion grid for electronic devices situated along the railways, by 

lowering the input 3 kV voltage to the level of 300 V. The pro-

posed 150 W system structure has a modular form, consisting of 

five low power DC/DC converters (modules), and is presented in 

Fig. 1. 

In the introduced solution the high input traction voltage URTV 

is divided by a series of capacitors Cxm. In this way, the voltage 

requirements for single module components are lowered. 

 

Fig. 1. Simplified block diagram of modular converter structure 

The output pins of the modules are parallel connected, which 

can give a number of advantages [7]. The effective output voltage 

frequency is higher. As a result the load current pulsations are 

decreased. What is more, converter reliability is improved, and the 

power ratings of necessary components can be reduced. Assuming 

the use of 1200 V transistors, the number of necessary capacitors 

k, and thus converter modules, was obtained from: 

 5
1200

3max 
U

k  (1) 

where: Umax3 – the highest long term overvoltage according to 

standard [4]. 

Devices supplied from the traction grid are exposed to over-

voltages. In order to protect the load, a special input circuit was 

developed, which is a combination of a low-pass filter with TVS 

(Transient Voltage Suppressor) diodes. This circuit is incorpo-

rated in the structure presented in Fig. 1, and the parameters are 

listed in Table 1. The values were obtained through simulation 

studies of the response of the proposed circuit to two surge models 

defined in standards [5, 6]. The first surge waveform was long 

voltage surge [6], and the second one was normalized voltage 

surge 1.2/50 µs of 12 kV amplitude [5]. The complete design 

procedure is presented in [2]. 

Table 1. Parameter list of designed input protection circuit 

RO 1100 Ω 

LO 0.1 H 

C1m – C5m 0.68 μF each 

TVS 15 piece: 1.5 kW, VBR = 400 V 

Uimax 7165 V 
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Uimax is the clamped voltage of a series of 15 TVS diodes 

dissipating the overvoltage energy. This value is the maximum 

input voltage for the designed converter. Note that capacitors 

C1m – C5m have two functions: input voltage division and transient 

voltage protection. From the value of maximum input circuit 

voltage Uimax the maximum single module input voltage can be 

determined: 

 V1433max
dmax 

k

U
U i  (2) 

The module structure has influence on voltage stress of the 

power switches. The chosen two-transistor flyback converter, 

presented in Fig. 2, enables the reduction of switch voltage to the 

level equal the input voltage Ud [3]. The incorporated transformer 

provides galvanic isolation of the load. 

 

Fig. 2. Single module DC/DC structure: two-transistor flyback converter 

2. Control principle 

The module transistors T1 and T2 are simultaneously 

controlled. All modules work with the same switching frequency. 

Fast transistor switching enables low output voltage ripple, and 

the transformer core volume can be reduced. On the other hand, 

with higher frequencies, the impact of skin effect in transformer 

windings becomes more of a problem. For the power switches, 

IGBT transistors were chosen, so the maximum frequency 

is limited to about 20 kHz. Considering the above, the flyback 

module switching frequency equals: 

 kHz15m f  (3) 

Thanks to parallel connection of outputs of five modules, the 

output current frequency is increased to a maximum level of: 

 kHz75mp  kff  (4) 

In the selected flyback module structure the energy transfer 

process is divided in two stages. When the transistors are on, their 

currents are linearly increasing, and the energy is stored in trans-

former core. The load voltage Uo is not affected, until the transis-

tors are turned off. The control system includes load voltage feed-

back. Therefore, the response of converter can be delayed. The 

process of charging the transformer magnetizing inductance has to 

be obligatory stopped, to avoid transformer saturation or even the 

damage of power switches. Another reason to limit the duty cycle 

of each modules transistors is not to excessively discharge the 

input circuit capacitors and preserve their voltage balance.  

All DC/DC modules work with the same switching frequency, 

but control signals are phase shifted. The modules work in differ-

ent time intervals, which are predetermined. The maximum tran-

sistor duty cycle can be obtained from: 

 0.2
1

max 
k

D  (5) 

The proposed converter control system has been presented 

in form of a block diagram in Fig. 3. As a result of subtraction 

of measured load voltage Uo from the reference Uref = 300 V, 

the value of error signal ε is calculated, and sent to the input of PI 

regulator. The output UPI voltage is compared with sawtooth 

voltage signal Usaw of frequency fm. The result VPWM signal is 

further divided to form the right module control signals VG1 – VG5 

of maximum duty cycle Dmax each. The input voltage Ud has 

influence on the increase rate of energy stored in transformer core. 

Module input voltages Ud1 – Ud5 are measured, and depending on 

their voltage levels, Dmax can be additionally limited, according to 

values presented in Table 2. In this way, the quality of output 

converter voltage Uo is improved, what will be discussed later. 

The division process of VPWM signal is presented in Fig. 4. 

 
Fig. 3. Converter control system block diagram 

Table 2. Limitation of duty cycle D according to module input voltages 

Udx [V] Dmax [-] 

< 500 0.2 

500 - 800 0.165 

> 800 0.11 

 
Fig. 4. VPWM signal division process
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The last waveform from Fig. 4 presents the reconstruction 

of the main control signal as a sum of module gate drive signals. 

As can be seen, dead times occur. These are periods of time, when 

none of the modules is working. Note that in the 15 kHz cycle not 

all modules are obliged to operate. The interval in which each 

module can work is fixed, and the control gate drive signal 

sequence is: VG1 – VG5. For example, in the last part of the cycle, 

the fifth module is allowed to work, but if at that moment the 

VPWM signal is 0, there is no need for it. In this way, the output 

voltage frequency varies in time, which can be considered 

as a drawback. 

3. Single module operation 

For simulation purposes and analytical description a simplified 

circuit model of the two-switch flyback converter has been 

adopted [1] and presented in Fig. 2.  

The power supply is represented by a DC voltage Ud. Transis-

tors T1 and T2 are ideal two-state switches. The pulse transformer 

has been presented as an ideal transformer, with turns ratio 

defined as: 

 1
s

p

T 
N

N
n  (6) 

where: Np – number of primary windings, Ns – number of 

secondary windings. The leakage Ll and magnetizing Lm 

inductances are connected in series and parallel to the primary 

winding respectively. The diodes denoted by D1, D2, D3 are also 

ideal elements. RL is the load resistance and Cf is the output filter 

capacitance. 

The processes occurring during DCM (discontinuous current 

mode) operation of two-transistor flyback converter, in a simpli-

fied analysis, can be divided into 4 main stages, and the typical 

waveforms characterizing work of converter are shown in Fig. 5. 

The circuit elements taking part in each switching cycle stage, are 

presented bold in Fig. 6. The second stage has been exaggerated 

for a better understanding of converter operation. The capacitance 

of load filter Cf is very large, so that the load voltage Uo ripples 

can be neglected. 

STAGE 1 (t0 ≤ t < t1):  

At the time of t0, the switches T1 and T2 are turned on by the gate 

drive signal VG. The voltage drops across diodes D1 and D2 equal 

uD1 = uD2 = Ud. Therefore, they are reverse biased and the currents 

iD1 = iD2 = 0. Assuming Ll << Lm, the voltage across the 

magnetizing inductance and the primary winding u1 is Ud, then the 

voltage drop of diode D3 can be obtained from: 

 
o

T

d
D3 U

n

U
u   (7) 

so D3 is reversed biased, and the current iD3 is 0. The current 

flowing through transistors T1, T2, Ll and Lm is linearly 

increasing: 
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In this stage, the energy drawn from the power supply 

is stored in the magnetizing inductance Lm of transformer. 

The maximum value of transistor current equals: 
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where: T – period of the transistor switching cycle. 

The voltages of switches T1 and T2 are 0. This stage ends 

at the moment of t1, when gate drive signal VG is 0, and the tran-

sistors are turned off. 

 

STAGE 2 (t1 ≤ t < t2):  

Switches T1 and T2 are turned off, diodes D1, D2 are forward 

biased. From t1, when the transistors are turned off, energy stored 

in leakage inductance Ll is transferred through the conducting 

diodes D1 and D2 to the power supply. The current linearly 

decreases, with a slope: 
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The voltage across transistors T1 and T2 is reduced to the value 

of Ud. After they are turned off at t1, in order for the transformer 

flux to remain continuous, the primary winding voltage becomes 

negative. The same goes for the secondary winding voltage, so 

that D3 becomes forward biased. The energy stored in transformer 

core is transferred to the load. The D3 current linearly rises until 

the energy transfer from leakage inductance to the power supply 

is over at t2. 

 

 

Fig. 5. Waveforms characterizing the work of two transistor flyback converter during DCM operation 
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Fig. 6. Equivalent circuits representing two-transistor flyback switching cycle work stages: a) stage: 1 (t0 – t1); b) stage: 2 (t1 – t2); c) stage: 3 (t2 – t3); d) stage: 4 (t3 – t4)

STAGE 3 (t2 ≤ t < t3): 

Transistors T1 and T2 are turned off. The currents iD1, iD2 are 0. 

D3 is forward biased and the secondary winding current linearly 

decreases: 
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Assuming switches T1 and T2 are identical, the voltages across 

those elements equal: 
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Assuming diodes D1 and D2 are identical, their voltage drops 

equal: 
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This work stage ends at t3, when iD3 drops to 0, which means the 

energy stored in transformer core was completely extracted to the 

load. 

 

STAGE 4 (t3 ≤ t < t4): 

Transistors T1 and T2 are turned off. Diodes D1, D2, D3 are 

reverse biased, and their currents are 0. The voltages on 

transformer windings are 0. The voltages across T1, T2, D1, D2 

equal: 
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U
uuuu   (14) 

The voltage of D3 equals the load voltage Uo. Energy stored in 

electric field of capacitor Cf is transferred to the load. The stage 

ends at t4, when transistor gate drive signal VG becomes high, and 

the cycle of operation starts anew. 

4. Simulation results 

The two-transistor flyback model presented in Fig. 2 has been 

tested in PSIM, to determine the maximum values of currents and 

voltages necessary for further component selection.  

During simulation the input voltage Ud was equal to the calcu-

lated (2) maximum Udmax value. Converter module parameters are 

listed in Table 3. The duty cycle D remained constant and was 0,2. 

The output filter capacitance Cf was very high, to keep the load 

voltage on a stable 300 V level. Simulation results are presented in 

form of waveforms depicted in Fig. 7. 

Table 3. Converter module simulation parameters 

Description Symbol Value 

Transformer magnetizing inductance Lm 6.5 mH 

Transformer leakage inductance Ll 0.03 mH 

Transformer turns ratio nT 1.2 

Module switching frequency fm 15 kHz 

Load resistance RL 600 Ω  

Fig. 7. Simulation results of two-transistor flyback module operation, Ud = 1433 V 
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Characteristic current and voltage values of converter 

elements are listed in Table 4 and Table 5. For comparison pur-

poses, results for nominal module input voltage 600 V are also 

presented. 

Thanks to the two-transistor flyback structure, the maximum 

collector-emitter voltage UCE(max) is clamped to the module input 

voltage value Ud. Due to the possibility of overvoltages, simula-

tion results show, that for this system structure, 1700 V transistors 

are required. 

Table 4. Converter module simulation results 

  
T1, T2 D1, D2 

Ud D UCE(max) IC(max) IC(AV) IC(RMS) URRM IF(max) IF(AV) IF(RMS) 

[V] [ - ] [V] [A] [A] [A] [V] [A] [A] [A] 

600 0,2 600 1.23 0.12 0.316 600 1.21 0.001 0.033 

1433 0,2 1433 2.93 0.29 0.755 1433 2.93 0.002 0.058 

Table 5. Converter module simulation results 

  
D3 

Ud D URRM IF(max) IF(AV) IF(RMS) 

[V] [ - ] [V] [A] [A] [A] 

600 0.2 802 1.448 0.24 0.484 

1433 0.2 1502 3.477 1.38 1.79 

 

To demonstrate the performance of proposed modular 

3 kV/300 V converter, a full system simulation model was devel-

oped and presented in Fig. 8. The structure incorporates five mod-

ules presented in Fig. 2. The control scheme presented in Fig. 3 

is contained in the “CONTROL” block. System parameters are 

listed in Table 3. The output filter capacitance Cf was 5 µF. 

The operation of the converter was tested by examining the system 

response to step changes of input voltage Ui. The range 

of variation was 2 kV – 7.2 kV.  

For a better presentation of the influence of limitation of mod-

ule duty cycle due to input voltage feedback, at first the simulation 

was conducted without this additional feature. Dmax was fixed and 

equalled 0.2. Waveforms of converter input voltage Ui, currents 

of secondary winding module diodes iD3_1 – iD3_5, and load voltage 

Uo are presented in Fig. 9a. Simulation results of converter system 

including input voltage feedback and limitation of module duty 

cycle according to values listed in Table 2 are presented in Fig. 9b. 

All system parameters remained the same. 

Comparing load voltage waveforms Uo from Fig. 9a and 

Fig. 9b, it is clear, that thanks to maximum duty cycle limitation 

according to input voltage feedback, load voltage ripples have 

been reduced. In conditions of input voltage step change, the 

converter response is faster. Comparing the module secondary 

winding diode currents iD3_1 – iD3_5, the currents from Fig. 9b 

reach lower peak values, and are more evenly distributed in time. 

Their instantaneous values are not summed. Transistors of each 

module conduct more frequently. For this reason the quality of 

regulation has improved, and the load voltage frequency is higher. 

5. Conclusion 

In this paper, a DC/DC 3 kV/300 V low power converter with 

input voltage division circuit has been proposed. The converter 

structure has a modular form, consisting of five two-transistor 

flyback modules. The operation of converter, together with the 

developed control method, has been tested by simulation studies 

using PSIM. Results of research showed proper functionality 

of the converter, and generation of stable output voltage during 

traction voltage variations. The additional limitation of module 

maximum duty cycle improved the regulation process. The level 

of output voltage ripples didn’t exceed 5 V. Thanks to the input 

circuit and converter topology, the converter itself can be built 

using low cost 1700 V transistors. 

 

Fig. 8. Simulation model of 3 kV/ 300 V DC/DC converter 
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Fig. 9. Simulation results of 3 kV/300 V converter: a) without input voltage feedback; b) including input voltage feedback 
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