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Abstract: During a calibration of Helmholtz coils, in which more than one parameter is measured directly, there are various approaches to statistical 

averaging. In this paper will be discussed two of them: the averaging at the beginning of directly measured magnitude and the averaging of the final value. 

In order to compare the methods they will be referenced to the Monte Carlo method, having regard to the uncertainty of type A. 
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PORÓWNANIE METOD UŚREDNIANIA STATYSTYCZNEGO NA PRZYKŁADZIE 
WZORCOWANIA CEWEK HELMHOLTZA 

Streszczenie. Podczas wzorcowania cewek Helmholtza podczas których mierzy się bezpośrednio więcej niż jeden parametr możliwe są różne podejścia do 

uśredniania statystycznego. W pracy omówione będą dwa z nich: uśrednianie na początku bezpośrednio zmierzonych wielkości oraz uśrednianie wielkości 

końcowej. W celu porównania metod zostaną one odniesione do Metody Monte Carlo z uwzględnieniem niepewności typu A. 

Słowa kluczowe: wzorcowanie cewek Helmholtza, uśrednianie statystyczne, metoda Monte Carlo 

 

Introduction 

One calibration method of the magnetic field meters consists 

in generating the reference magnetic field, and reading of a 

calibrated meter. This field is usually obtained by a set of two 

Helmholtz coils (commonly referred to as “Helmholtz coil” or 

simply “coil”) with a coil constant K. The field strength is then 

equal to the product of the constant K and the current intensity I. 

This constant can be calculated from the geometry of the coil [3], 

however the accuracy of this method is low. The reason for this is 

the necessity to make many complex measurements and 

approximations which can then be used in deriving the utility 

equation for a coil constant K. 

The solution to this problem is the determination of a constant 

coil through its calibration using a calibrated magnetic field meter. 

Such a method is in fact the reverse procedure used for the 

calibration of field meters. The field strength generated by the 

coil, at the determined current intensity, is measured with a 

previously calibrated meter of the field strength H. For this 

purpose is used a Hall-effect meter called a transfer meter. In this 

paper we will use the current intensity measurement method for 

measuring the voltage on the calibrated resistor.  

In order to reduce the uncertainty of determining the constant 

coil K, the temperature of both, the resistor and the Hall-effect 

probe transfer meter should be controlled (however, for technical 

reasons, in this paper we will present an approach based on the 

temperature resistor only). 

The parameters which are directly measured is the temperature 

T and the voltage V on the resistor. For a constant coil the equation 

is: 
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where H is the selected magnetic field intensity, R0 - the resistance 

of the standard resistor in a temperature T0 and α - the temperature 

coefficient of the first order. 

In all equations in this paper only a first order coefficient is 

used, but for the calculations also the coefficient of the second 

order was employed. 

The calibration procedure of the coil is as follows: when 

adjusting the current generated by the power supply (or a 

generator) set the current value to the value indicating the intensity 

of the magnetic field on the transfer meter, which should be exact-

ly H, according to the calibration value on the meter’s certificate. 

Then we read the voltage V value on the standard resistor T. This 

measurement we repeat M times for one selected field strength H 

indicated by the transfer meter. Then we select the next value of 

the field strength and then we make the M measurements of the 

voltage V and the temperature T. If the number of set values of the 

field strength was N, then we get a total of N · M measured values 

V and T. 

The coil constant K can be determined in two different ways. 

The first method consists of averaging the temperature and voltage 

separately and then inserting the averages for equation (1) and 

calculating a constant K. This approach is described by equation 

(2). The second way is to calculate value M of the constant Ki for 

fractional values of T and V by using equation (1), and by averag-

ing Ki values only, what was done in equation (3). 

The coil constants calculated by using two methods we denote 

as the K1 and the K2 respectively. 

 

Fig. 1. Scheme of the measuring system 

In this paper the results of calculations a coil constant K are 

compared and the uncertainty of analytical methods (the first and 

the second) of the Monte Carlo method as well.  

The Monte Carlo method is required to take into account the 

uncertainty of the systematic and the non-systematic separately 

[5]. The systematic components of uncertainty budget are more 

than 40 independent factors. In order to compare the calculation 

results with the abovementioned analytical methods, the expanded 

uncertainties have been calculated separately; they are containing 

only components A denoted as UA, and the total expanded 

uncertainties, including components of both A and B marked as 

UA + B. 

1. Presentation of the methods 

Let us first consider the situation in which we set the M-fold 

coil current, so as to obtain the value of field strength H (measured 

with the transfer meter). By inserting into equation (1) an average 
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value of the voltage and temperature, we thus obtain the equation 

for the coil constant K for the first method. 
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where Tj is j-th value of the temperature measurement and Vj - j-th 

value of the voltage measurement. By inserting into the equation 

(1) the values of Tj and Vj and then averaging  the partial results Kj 

only, we get the average value of the coil constant K for the se-

cond method. 
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When calculating the constant K for a larger number of field 

strength H value, we obtain N values of Ki, given the equation (2) 

or (3). Averaging these values we obtain finally the following 

equations. For the first method: 

 ∑ ∑∑
=

−

==


















−+=

N

i

M

j

ij

i

M

j

ij

i

i

ii

V
M

TT
M

RH
N

K
1

1

11

001

1
)(1

1 α  (4) 

with the standard uncertainty: 
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For the second method we have: 
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with the standard uncertainty: 
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where: Ki is the partial value of the coil constant for each value of 

the field strength Hi, σ(X) is the standard deviation of a physical 

quantity Xq, u(Xq) is the standard uncertainty magnitude Xq esti-

mated by the B method (ie. non-statistical method in accordance 

with the Guide) [4], Xq represents all the values from the equation 

(1), Q is the quantity of these values, t(ν) is the quantile of the t-

distribution with ν degrees of freedom, inserted here for the rea-

sons explained in [1]. 

The expanded uncertainty was calculated using the method 

described in [1]. This method comes down to the assumption that 

mezurand is described by a flat-normal distribution, then consists 

of reading the coverage factor from the table given also in [1]. The 

coverage factor is therefore a discrete function dependent on 

parameter r on the formula (8). This parameter determines the 

percentage component of the uniform distribution of mezurand’s 

combined uncertainty. 
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where uk is the complex overall uncertainty, cl is the correspond-

ing sensitivity coefficient, ul is the partial uncertainty, l is an 

indicator ordering all components of the partial uncertainty which 

are occurring in the uncertainty budget (a total of which is more 

than 40). 

cB is equal to 1 divided by MN and kUP  is a percentage share 

of components of the uniform distribution of fractional uncertainty 

ul  and is given by: 
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where kX is the coefficient of extension taken from the calibration 

certificate of the physical magnitude X, which corresponds to the 

uncertainty ul. If the value of this parameter is not given, or if it is 

greater than 1.96, it should be converted to 1.96, which is 

equivalent to the assignment of a physical magnitude X of normal 

distribution. 

To use the Monte Carlo method, which takes into account only 

the uncertainty of type A, in equation (1) the random variables T 

and V must be submitted with the help of a random variable Dn, 

containing information about the distribution of the variables T 

and V with a preset mean value and standard deviation. For this 

purpose we use the substitution ( )TDTT n σ⋅+=  and 

( )VDVV nZM σ⋅+= . The random variable Dn was carried out 

using the RAND function used in MS EXCEL for the purpose of 

implementation of the Monte Carlo method. The RAND function 

simulates the white noise from the value range [-1,1], which 

means it performs the uniform distribution. When we want to get a 

normal distribution, then we have to use the RAND function 12 

times for the one embodiment of the random variable. We use the 

fact that the average value from the N random variables with 

uniform distribution tends to a normal distribution. ( )Xσ  is the 

standard deviation of the mean value of the random variables Xi, 

averaged over the M partial measurements. The number of steps in 

the Monte Carlo method is L ≈ 20.1 thousand for each value of the 

field strength H. Finally, the value of a coil constant, determined 

now by KNUM, and the corresponding expanded uncertainty of type 

A, are given by equations: 
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The expanded uncertainty is expressed by the order statistics: 
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2. Comparison results 

The measurements of the constant K were carried out for a 

commercial coil of NFH63,4 type, using a transfer meter of Rx21 

type with the temperature-compensated Hall probe. In order to 

omit the impact of the current frequency on a constant coil [2] the 

measurements were performed for DC. The full description of the 

calibration procedure and the calculation of uncertainty is given in 

[6]. The results averaged over N = 9 values of the field strength Hi, 

measured each time M = 6 times, with the corresponding uncer-

tainties, are shown in Table 1. 

Table 1. The comparison of results of the coil constant K calculated for the various 

methods for N = 9 and M = 6 = const (with nominal value of α) 

 K [A/m/A] UA [A/m/A] UA+B [A/m/A] 

K1 18749,4 31 41 

K2 18749,5 14 30 

KNUM 18749,9 23 - 

 

The values of the coil constants with the same number of 

measurement repetitions for the same field intensity (with the 

same M), obtained by different methods, do not vary within the 

limits of uncertainty. We observe a greater difference between 

constants K when the number of measurement repetitions per field 

value changes. The results of coil constants K calculations for 

N = 13 of the field strength values, with the number of repetitions 

for each field value Mi = {5, 5, 5, 6, 6, 1, 6, 1, 5, 1, 6, 1, 6} togeth-

er with the corresponding uncertainties, are presented in Table 2. 

Adopted here is the assumption that when Mi = 1 then for the 

calculations an expression σ(X) = 0 has been inserted. 
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Table 2. The results of the comparison coil constant K calculated for the different 

methods for N = 13 and different values Mi (with nominal value of α) 

 K [A/m/A] UA [A/m/A] UA+B [A/m/A] 

K1 18736 27 38 

K2 18747 14 30 

 

The significant differences in the results of different methods 

of the averages calculations were observed in case of uncertainty 

only. This means that the basic difference between the 

abovementioned methods of calculating the coil constant is the 

estimation of the type A uncertainty. The uncertainty of type B for 

both methods is almost the same. 

This difference becomes obvious if we look at the number of 

degrees of freedom, which for both methods is different. In the 

first case we perform averaging 9 times at different values of the 

field strength measured 6 times, which each time gives the number 

of degrees of freedom 6 only. In the latter case, we are averaging 

over all elements, of which a total is 9 · 6, which gives the number 

of degrees of freedom equal to 54. 

3. Influence of resistor temperature 

The temperature of the resistor has little importance for the 

calculation results due to the low values of temperature 

coefficients (α = 1.9·10-5 K-1 and β = -3.9·10-5 K-1) as well as small 

changes in temperature during the measurements. The standard 

deviations of the voltage and the temperature were approximately 

of σ(V) = 0.31 mV, and of σ(T) = 0.4°C respectively. 

However, by artificially increasing the value of the tempera-

ture coefficients, one can enhance this effect. Table 3 shows the 

difference between the calculated coil constants for a thousand-

fold increased value of this parameter. 

Table 3. Coil constants K for N = 9 and M = 6 = const with resistor temperature 

coefficient increased  thousand times 

α·103 K  [A/m/A] UA [A/m/A] UA+B [A/m/A] 

K1 18556,0 283 305 

K2 18556,1 38 120 

KNUM 18556,8 42 - 

 

As can be seen, for the highly sensitive thermistor the values 

of the calculated constants are not significantly different. 

However, the uncertainty of type A, calculated using the second 

method, is almost 7.5 times lower, and the total uncertainty of type 

A + B is almost 2.5 times lower. The uncertainty achieved by the 

second method is consistent with the result obtained by the Monte 

Carlo method.  

As shown in Table 4, the reduction of the temperature coeffi-

cient does not cause noticeable changes in comparison to the 

results in Table 1. 

Table 4. The coil constant K determined for N = 9 and  = 6 = const with the 

temperature coefficient thousandfold reduced 

α·10-3 K  [A/m/A] UA [A/m/A] UA+B [A/m/A] 

K1 18749,6 31 41 

K2 18749,7 14 30 

KNUM 18749,6 22  

4. Analysis results of Monte Carlo method 

The uncertainty calculated using the Monte Carlo method is 

different from both of the methods defining a coil constant K1 and 

K2. The histogram obtained from all 181 000 calculated partial K 

shows that the reason for this difference is an asymmetrical and 

bimodal distribution, which is contrary to the assumptions of both 

methods. The probable cause of this anomaly is the dependency of 

the coil constant Ki on the field strength H. 

Fig. 3 shows this dependence with the expanded uncertainty 

given by the equation where UNUM,i is the expanded uncertainty of 

type A using the Monte Carlo method for each value of the field 

strength H and k is the coverage factor calculated using the meth-

od discussed in Chapter 1. 

 

Fig. 2. Total histogram of 9 times 21 thousand samples of Kij (with nominal value α) 

The causes of the coil constant dependency on the filed 

strength, and the occurrence of two modes in the constant K 

distribution require further research. It was only stated that the 

histogram of the first 4 values of the field strength (Fig. 3) made 

for the last few field strength values are monomode and 

symmetrical.  

The shape of the curve of the constant K dependency on the 

field strength H (Fig. 3) is maintained also in the case of the 

increased number field strength points. Also, when we perform the 

measurements for the decreasing values of the field strength (with 

the opposite direction of change of the field strength), the shape of 

the curve shown in Fig. 3 does not change, thus providing the 

basis for elimination a potential cause of the observed non-

linearity, which is the heating of the coil. 

The observed effect should be studied further and included in 

the uncertainty budget. 

18700

18750

18800

18850

18900

18950

19000

25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

H (mT)

K
 (

A
/m

/A
)

 

Fig. 3. The coil constant K dependence on the field strength H as a function 

(proportional to the current flowing through the coil) 

There were also made calculations of the constant K 

histograms for a resistor with thermal coefficient thousand times 

smaller than the nominal and a thousand times greater than the 

nominal. In the case of a thousandfold lower thermal sensitivity of 

the standard measuring resistor the histogram is bimodal, but for a 

thousand times more thermally sensitive one, the resulting 

distribution becomes symmetric and monomodal. 

In this case the dependency of the partial coil constants Ki on 

the field strength H is flatter and therefore more corresponds to the 

expectation for the coil constant to be less dependent on field 

strength (Fig. 4) but uncertainty is so high that nothing can be 

excluded. 
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Fig. 4. The dependence of the coil constant K on the field strength H with 

a housandfold increased temperature coefficient of the standard resistor R 

5. Summary 

In this paper two methods of averaging the results of coil 

constant calculations are compared: the first is based on averaging 

a series of measurements of the current intensity and temperature 

and on inserting the averages to the formula (1) and the second 

consists of averaging the constants K values calculated for the 

partial results of the current intensity and temperature 

measurements. 

The main difference between those abovementioned methods 

of the coil constant calculating is the difference in the estimation 

of the uncertainty type A. 

The results were compared with the Monte Carlo method; also 

a better compatibility with the second method was achieved, that 

is, in averaging the partial results of the constant K. This method 

gives more degrees of freedom and is easier to implement 

analysis. Where the number of measurements for a single field 

strength value is small (Mi < 3), this method overcomes the 

problem of calculating the partial standard deviation. Moreover, 

when the measured values are correlated or dependent, there is no 

need to calculate the correlation functions. 

Using the Monte Carlo method allows to examine the distri-

bution of composed random variable. 

In this case is shown that the distribution of a coil constant K 

is asymmetric and bimodal, what may be associated with the 

dependence of the coil constant on field strength. 

Also the simulation of the impact of increasing and decreas-

ing the temperature coefficient of the standard resistor was carried 

out. 

The reduction of the temperature coefficient thousand times 

does not alter the distribution and the assigned uncertainties, while 

increasing it thousandfold causes the constant K distribution 

become monomodal. 
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