
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2017 5

artykuł recenzowany/revised paper IAPGOS, 2/2017, 5–7

DOI: 10.5604/01.3001.0010.4823

TRAFFIC ANALYSIS USING NETFLOW AND PYTHON

Vaclav Oujezsky, Tomas Horvath

Brno University of Technology, Department of Telecommunication

Abstract: This article presents an application that is used as NetFlow collector and analyzer. It is a console application created in Python language.

A software analyzer detects and analyzes incoming NetFlow messages version 1 and 5 of devices that support them. The output file is a database
of information and analysis of the overall UNIX time duration of reported traffic and analysis of NetFlow lifetime. The software is developed to work with

Python version 3 and higher and is designed for the Windows operating system.

Keywords: IP networks; Computer languages; Software tools.

ANALIZA RUCHU SIECIOWEGO Z WYKORZYSTANIEM NETFLOW I PYTHON

Streszczenie: W artykule przedstawiono aplikację używaną jako kolektor i analizator NetFlow. Jest to aplikacja konsoli utworzona w języku Python.
Analizator oprogramowania wykrywa i analizuje przychodzące wiadomości NetFlow w wersji 1 i 5 dla urządzeń je obsługujących. Plik wyjściowy to baza

danych informacji i analizy ogólnego czasu trwania zgłoszonego ruchu UNIX i analizy życia NetFlow. Oprogramowanie zostało opracowywane dla

systemu operacyjnego Windows i języka Python wersja 3 lub wyższa.

Słowa kluczowe: sieci IP; języki komputerowe; oprogramowanie narzędziowe

Introduction

NetFlow has been invented by Cisco Systems, Inc. company

[1]. It is a very popular technique nowadays and it is also widely

deployed. Another type is the Internet Protocol Flow Information

Export (IPFIX) and it is an IETF (The Internet Engineering Task

Force) [2] protocol. Both of them are used to export flow

information from routers, probes and other network devices for

security, accounting, and other purposes.

Typical NetFlow export datagram format for version 1, 5, 7,

and 8 is shown in Fig. 1.

+------------------------+

| IP Header |

+------------------------+

| UDP Header |

+------------------------+

| NetFlow Header |

+------------------------+

| Flow Record |

+------------------------+

| Flow Record |

+------------------------+

| x x x |

+------------------------+

| Flow Record |

+------------------------+

Fig. 1. NetFlow Export Datagram Format

The version 1 is rarely used nowadays. The version 5 adds

Border Gateway Protocol (BGP) autonomous system information

and flow sequence numbers. The version 7 adds support for Cisco

Catalyst switches. When the Router-Based NetFlow Aggregation

feature is enabled then the version 8 is used. The most recent

version is 9 and supports template based extensible design [3].

Network devices send information about passing traffic using

NetFlow to a collector. One example of such collector is

Scrutinizer [4]. Collectors obtain information from network

devices about duration, Transmission Control Protocol (TCP) and

User Datagram Protocol (UDP) ports of a connection and so on.

Flows provide a continuous account of all network activity

and detect attacks without signatures. It is possible to identify the

certain types of network attacks and other incidents. This

possibility depends on the quality of a collector. The flow-based

analysis relies on used algorithms and behavior and provides zero-

hour detection of attacks [5].

From this perspective, the deployed algorithms are very

important for identifying the certain type of incidents. From this

point of view, we concentrate on the possibility to develop own

algorithms to detect malicious traffic. This development demands

having our own application where we can test these algorithms.

1. The concept and functionality of the application

We choose Python language for the development. It is

a scripting language, similar to Matlab. Python has a huge base of

developers and it offers many packages for scientists as are

Matplotlib, Numpy, Scipy, Panda etc.

The other very important requirement for us is the possibility

to work with network integrated cards. This feature is also

included in Python packages.

The name of the program is GDP [6]. Its concept is based on

the possibility to process NetFlow messages version 1 and 5. Both

types of messages (reports) are composed out of the header and

flow body. The detailed composition is presented in [7]. As we

designed the flows part, we took over the distribution of the bit

stream from this source.

2. Terminal User Interface

Fig. 2 shows the terminal user interface of the GDP program.

Generally, the program listens to incoming NetFlow reports on

individually selected ports. The default port number <4710> can be

changed in the configuration file <config.txt>. The entire socket

consists out of all interfaces and addresses of a network device

(computer). The part (1) shows the type of incoming NetFlow and

how many flows a stream includes.

6 IAPGOŚ 2/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

Fig. 2. GDP Terminal User Interface

Part (2) shows detailed information about each included flow,

as are flow number, protocol, source IP address, destination IP

address, Type of Service, first and last time in UNIX format. An

analysis of traffic is shown in the last part (3). This analysis

presents summary UNIX duration time for each IP source address

(column T) and also how many times this connection was

observed (column C).

All of this information is taken from a database file, in which

all incoming traffic is written in a proper format. The string format

is shown in Fig. 3. Items listed here are: ID, SYS_UPTIME,

UNIXS, FIRST, LAST, IP_SOURCE, IP_DEST, PROTO,

SOURCE_PROTO, DEST_PROTO and timestamp. Its names

come from NetFlow. The program automatically stores

information to the file <dataset.sqlite3>. The database file is

deleted by default from the program’s beginning. The preservation

of historical data in the database can be changed with the

configuration file. The value <YES> is necessary to change to the

value <NO>.

The Terminal User Interface (TUI) is developed upon the

npyscreen package [8]. We also had to use the threading package

[9]. The program runs with two separate threads and with one

general lock. First of all, the TUI starts after that the socket

listener starts. It is necessary to run two independent loops of

specified program parts. It is because socket listener is

continuously listening to incoming frames and the TUI is doing a

separate calculation at the same time.

Fig. 3. DB Browser for SQLite – NetFlow

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2017 7

3. Flow analysis

Accumulated time duration analysis is implemented as a first

type of individual analysis. The output of the analysis is presented

in previous chapter. The value is taken from saved flows in the

database. The value is calculated by <SysUptime> the last package

of the flow was received minus <SysUptime> at the start of the

flow.

Alg. 1. Python code of duration analysis

The next step of data processing is shown in Alg. 1. The function

<read_sql_query> from panda package reads the data from the

database and after that the data are stacked by <head>, where 100

inputs of IP addresses are read. The data are then grouped by IP

source and the function <survival_max_time_per_ip()> returns the

sum of aggregated values. In Alg. 2 is presented the function

<survival_read()> mentioned above. It uses sqlite3 database

import and sql panda import. As is shown, the sql reads previously

saved information from the database.

Alg. 2. Python code of duration analysis

4. Traffic Lifespans

The second algorithm is used to find lifespans of each

communication and compares their similarity. Survival analysis

is used for this purpose. The survival analysis was originally

developed to measure lifespans of an individual. This analysis can

be applied to any process duration. To estimate the survival

function, we used Kaplan-Meier estimator. Mantel-Cox test

is used to test each traffic and observe its conformity. This

research is presented in [10]. This test is not fully implemented yet

in the final version of GDP application.

5. Conclusion

In this paper, we presented our developed application GDP

used to collect and analyze network traffic from NetFlow

messages. Its benefit is the possibility to add own algorithms in

the source code. This program creates a base for the intended

following research. The duration traffic analysis is the first of the

algorithms which were implemented. The second algorithm which

is partly implemented is the lifespans. Other algorithms will

follow to test the theoretical conclusions of analytical capabilities

of NetFlow reporting.

In the near future, we want to expand our application with

NetFlow version 9 and with the IPFIX format and to deploy

genetic's algorithms.

Acknowledgment

Research and development described in this paper was

financed by the National Sustainability Program under grant

LO1401. For the research, infrastructure of the SIX Center was

used.

References

[1] Cisco Systems, Inc., Introduction to Cisco IOS NetFlow – A Technical

Overview. CISCO, 2012

[2] IETF, Specification of the IP Flow Information Export (IPFIX) Protocol for the

Exchange of Flow Information. IETF Tools, 2013.

[3] Cisco Systems, Inc.: NetFlow Services Solution Guide.

http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html

[23.09.2016].

[4] Plixer International, Inc., Flow Analytics, Plixer–Malware Incident Response,

2016.

[5] Plixer International, Inc.: Top 5 Uses of NetFlow for Network Security.

https://www.plixer.com/blog/netflow/top-5-uses-of-netflow-for-network-

security/ [24.09.2016].

[6] Network Security Research.: GDP–NetFlow Collector, BUT, 2015.

[7] Plixer International, Inc., NetFlow packet Version 5 (V5), 2016.

[8] Cole N.: An introduction to npyscreen.

http://npyscreen.readthedocs.io/introduction.html [24.09.2016]

[9] Python Software Foundation, Threading — Thread-based parallelism. Python

3.5.1 documentation, 1990-2016.

[10] Oujezský V., Horváth T., Škorpil V.: Modeling Botnet C& C Traffic Lifespans

from NetFlow Using Survival Analysis. In Proceedings of the 39th International

Conference on Telecommunication and Signal Processing, TSP 2016.

International Conference on Telecommunications and Signal Processing (TSP).

Vienna, Austria, 2016, 50–55.

M.Sc. Vaclav Oujezsky

e-mail: vaclav.oujezsky@phd.feec.vutbr.cz

Vaclav Oujezsky (MSc) was born in Brno, Czech

Republic. Post graduate student at Brno University

of Technology, Department of Telecommunications

Senior Network Engineer at T-Mobile CZ and

currently at IBM CZ. Working actively on projects

of security and transport networks at laboratory SIX.

His research interests include implementation

of evolutionary algorithm, Cisco, Python, VHDL

and converged networks. His topic of dissertation

thesis is Converged Networks and Traffic

Tomography by Using Evolutionary Algorithms.

M.Sc. Tomas Horvath

e-mail: horvath@feec.vutbr.cz

Tomas Horvath (MSc) was born in Havirov, Czech

Republic. He received his MSc. degrees in

Telecommunications from the Brno University

of Technology, Brno, in 2013. His research interests

include passive optical networks (xPON) and

optoelectronics. Currently, he is post graduate student

at Brno University of Technology, Department

of Telecommunications. His topic of dissertation

thesis is Optimization Services in FTTx Optical

Access Networks.

otrzymano/received: 05.02.2017 przyjęto do druku/accepted: 01.06.2017

https://www.plixer.com/blog/netflow/top-5-uses-of-netflow-for-network-security/
https://www.plixer.com/blog/netflow/top-5-uses-of-netflow-for-network-security/
http://npyscreen.readthedocs.io/introduction.html

