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Abstract. In recent years the use of fractional calculus in control system identification is becoming popular and it has found new applications. The paper 
presents application of fractional calculus for modelling of two-phase gas/liquid flows in a test rig. The installation consists of three horizontal and 
vertical measuring segments with different diameters, which allow to investigate flows in a wide range of parameters. Flow components supply 
is measured/controlled by NI PXI system and a set of flow meters/controllers. The paper presents model of the two-phase flow in the above described 
installation, which leads to precise and accurate flow mathematical model. The main goal of the flow model is to describe steady flow parameters, 
especially the flow fractions, or type of the flow. The model describes flows more accurately, that classical second order system model. 
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ZASTOSOWANIE RACHUNKU RÓŻNICZKOWEGO NIECAŁKOWITEGO RZĘDU 
DO MODELOWANIA PRZEPŁYWÓW DWUFAZOWYCH GAZ/CIECZ 

Streszczenie. W ostatnich latach wykorzystanie rachunku różniczkowego niecałkowitego rzędu staje się coraz bardziej popularne i znajduje nowe obszary 
zastosowań. W pracy przedstawiono zastosowanie powyższego rachunku różniczkowego do modelowania przepływów dwufazowych gaz / ciecz. Instalacja 
badawcza składa się z trzech poziomych i pionowych odcinków pomiarowych o różnych średnicach, które umożliwiają badanie przepływu w szerokim 
zakresie parametrów. Przepływ komponentów mieszaniny jest mierzony / sterowany przez system NI PXI oraz zestaw przepływomierzy i sterowników. 
W artykule przedstawiono modelowanie przepływu dwufazowego w wyżej opisanej instalacji, które prowadzi do określenia precyzyjnego modelu 
matematycznego przepływu. Opracowany model opisuje przepływy dwufazowe dokładniej w porównaniu z klasycznym model opisanym równaniami 
różniczkowymi drugiego rzędu. 

Słowa kluczowe: tomografia, elektryczna tomografia pojemnościowa, rachunek różniczkowy niecałkowitego rzędu 

Introduction 

Two-phase gas/liquid flows are important and commonly 
found in the chemical, food, pharmaceutical and other industries. 
Examples include installations for hydraulic and pneumatic 
transport of gas and liquid, apparatus for separating gas from 
liquid, heat-exchange units, bio-reactors, cooling installations. In 
nuclear power stations cooling systems, the understanding of two-
phase flows as well as monitoring and identification of the flow 
regime is essential [11]. Another emerging environment of two-
phase flows is high computing power electronics, where power 
dissipation and heat is becoming a bottleneck. Two-phase cooling 
systems for electronics are exposed for strong flow instabilities, 
density-wave flow oscillations, which require efficient control 
systems [12]. Design of hardware configuration and an 
appropriate mode of operation is a complex task, because the 
induced fluid motion causes instability of the jet, which may in 
turn result in pressure and flow rate drop. Therefore, determining 
properties of the flow, share of the gas phase, parameters of gas 
bubbles like shape, dimensions, allows making an appropriate 
tuning control to the process. Application of Electrical 
Capacitance Tomography (ECT) system acts as a non-invasive 
method of obtaining information, which allows using it as a tool 
for imaging of different industrial processes. In the case of 
gas/liquid flow it is possible to reach higher spatial resolution and 
shorter time to collect the measurements (more than 100 
measurements per second) than conventional measuring methods. 
An ECT measuring system does not require placing sensors inside 
the process. This allows to get information from previously 
inaccessible locations such as a cross-section of a pipeline, interior 
of a tank or reactor. By using correlation techniques and twin-
plane ECT sensors, the velocity and character of the flow can be 
determined and the flow can be calculated [10]. 

A semi-industrial test rig for two-phase flows, was built to 
demonstrate the ECT technique [1]. The process fluid supply 
system is equipped with Kobold liquid mass flow meters. 
Installation of these meters allows measurement of different liquid 
flows, regardless their viscosities and electrical properties, like 
polypropylene glycol. For measurement of gas flow, two precise 
mass flow meters/controllers manufactured by Brooks are used. 
Elements of flow rig control system are shown in Figure 1. 

 

For over 40 years fractional calculus has been a subject of 
growing interest [5], with successful applications in many 
scientific and technical fields. Mathematical modelling of real-
time physical processes by linear or non-linear, time variant or 
time invariant fractional-order differential equations can be 
mentioned. The interest ranges from physics and chemistry to 
technical like mechanical and electrical to economical and 
biological processes, analysis and control strategies synthesis. 
Fractional calculus is becoming popular in many areas, especially 
in system identification, image processing, automation and control 
systems [9]. Review of available literature show a lack of 
publications concerning applications of fractional calculus in 
process tomography. This article presents preliminary results of 
research into the use of fractional calculus on two-phase flow 
modelling. 

 

Fig. 1. a) overview of control system, b) Brooks flow meters/controllers 
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1. Flow Measurement System 

Experiment of two-phase flow measurement were performed 
using the installation as mentioned before [1]. The flow rig is fully 
controlled by a NI PXI system, which in connection with other 
data acquisition systems (including ECT) and data processing 
units allows the measurement of flow parameters like pressures, 
components supply, ECT measurements with concurrent 
recordings of the flow image in the transparent segment of the 
installation located next to an ECT sensor and storing data for off-
line post-processing. 

Data collected are then processed using a software package 
“TomoKIS Studio” [3, 4]. The program allows 3D reconstruction 
of the flow pattern and calculation of the liquid fraction of the 
flow. Depending on the computer hardware used, it is possible to 
perform on-line 3D reconstruction with the performance of 10–12 
frames per second (FPS) using nVidia Tesla graphics cards and 
applying CUDA technology implemented in the TomoKIS Studio. 
Part of the experiments were performed using a computer with 
nVidia Tesla cards, part using a standard PC and data post 
processing at approximately 2 FPS. As an example, a TomoKIS 
Studio screenshot in Figure 2 shows flow pattern reconstruction 
and liquid fraction computation. 

 

Fig. 2. TomoKIS Studio screenshot of flow image reconstruction 

From the reconstructed tomographic images, different flow 
parameters like bubbles shape and dimensions, share of the 
various phases in the flow are calculated. The calculated values 
are used in a control system running LabVIEW by a specially 
developed dll plug-in and PXI control system. The aim of this 
research is to identify the flow parameters to build an appropriate 
model of the flow control system. 

Following successful research on fractional calculus in mobile 
robotics and image processing, authors decided to apply this 
approach for flow identification and measurements using 
tomography techniques. 

2. Flow Model Based on Fractional Calculus 

2.1. Grünwald-Letnikov Form of the Fractional- 
Order Backward Difference 

A definition of the Grünwald – Letnikov fractional-order 
difference (FOBD) is given below. 

 
Definition: The Grünwald – Letnikov backward 

difference/sum of a fractional-order ߥ ∈ ℝା is defined as a sum 
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and ߥ ∈ ℝା is an order. Applying to both sides the one-sided ࣴ-
Transform one immediately gets 

 
 ࣴ ቄ ∆଴

ீ௅
௞
(ఔ)݂(݇)ቅ = ࣴ ቄ∑ ܽ௜

(ఔ)
௞݂ି௜

௞
௜ୀ଴ ቅ = (1 −  ଵ)ఔ. (3)ିݖ

 
A fractional-order linear time-invariant differential equation is 
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An application of the one-sided ܼ-Transform to both sides of 

equation (4) yields 
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with ࣴ{ݕ(݇)} = {(݇)ݑ}ࣴ  ,(ݖ)ܻ =  From equation (5) one .(ݖ)ܷ
gets discrete transfer function [2,6,8] 
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Now on orders ߤ௜ , ௝ߥ ∈ ℝା one imposes a condition that they 

are the rational numbers. Hence the orders can be expressed as 
fractions 
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where ݁௜ , ݀௜ , ݃௜ , ௜݂ ∈ ℤା . Next one assumes that ݀௠ ∈ ℤା is the 
least common denominator of fractions (7). Then  
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By inequalities in formula (4)  
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In the light of equations (12) and (13) formula (5) takes the 

form 
 

 ∑ ௜(1ܣ̅ − ௣(ݖ)ଵ)ఔ௡೔ܻିݖ
௜ୀ଴ =  
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3. Modelling of the Flow System 

Following the presented theoretical assumptions the following 
models of the system were assumed. 

3.1. Classical first-order model 

A classical first-order difference equation is 
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with a classical first-order model discrete transfer function: 
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Coefficients ܽ଴ , ܾ଴ or ܽ଴ = ܾ଴ have to be identified when 

changing the level of ݑ(݇ℎ). h – denotes simulation step. 
 
Fractional-order model 
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Coefficients and fractional order  a଴ , b଴ , ν or only a଴ , ν when 
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A fractional-order model discrete transfer function is 
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Integer first-order model solution. One should only put 
ν = 1 and use the above equations 

 
A fractional-order oscillation element is 
 

(ݖ)ଶఓܩ  = ஽బ
(ଵି௭షభ)మഋା஼భ(ଵି௭షభ)ഋା஼బ
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for 0 < ߤ ≤ 1 
 
The linear model and non-linear model (FO-inertia & 

oscillation) are shown in Figure 3. 

  

 

Fig. 3. The linear model and non-linear model (FO-inertia & oscillation) 

Elements to evaluation: A଴, B଴ , ν, C଴ , D଴ , μ , S୪ - saturation 
level, s୪ – range of linearity. 

4. Flow Model Identification  

The above theoretical solution was implemented in MatLab to 
determine the parameters of the fractional derivative model, which 
fits the best to the measured flow phenomena. Figure 4 shows 
results of liquid fraction calculations based on ECT measurements 
of an air/propylene glycol two-phase flow. The horizontal axis 
presents measurement frame number. The average acquisition 
speed was 11 FPS. During experiments the supply parameters of 
flow components were set to obtain flow, which was recognised as 
regularly repeating long bubbles of air in the liquid. An example 
of such a case is shown in Figure 5.  

To identify model parameters, part of the flow pattern was 
selected, presented in Figure 6. For this set of measurement data, 
calculations performed in MatLab showed that the differential 
equation with fractional order of 0,82 – shown with small 
rectangles on Figure 7 RMS matches best to the originally 
measured data. 

 

Fig. 4. Liquid fraction calculation from ECT measurements 
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Fig. 5. Sequence of images of the measured flow 

 

Fig. 6. Part of selected diagram from Figure 4 

 

Fig. 7. Matlab simulation of the model for different fractional order values 

5. Conclusions 

More complex models based on fractional calculus allowed 
accurate system identification and allowed developing efficient 
control and data processing. The above presented case shows that 
application of fractional calculus allowed accurate system 
identification and preparing efficient control. The above presented 
example is part of research on flow identification and control, 
which covers among others flow regime identification using AI 
tools based on different measurement data acquired by different 
ECT systems and imaging cameras. The results confirmed the 
applicability of fractional calculus in two-phase flow modelling.  
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