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Abstract. The article presents a model of the measuring system for image reconstruction. Electrical impedance tomography was used to determine the 

moisture of the test flood blank on a specially built model. The Gauss-Newton methods have been applied very successfully in many areas of the scientific 
modelling. The basic information about the built model system is given. The finite element method was used to solve the forward problem. The level set 

method and the Gauss-Newton method were applied to solve the inverse problem. 
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TOMOGRAFIA IMPEDANCYJNA DO WYZNACZANIA WILGOTNOŚCI W MODELU WAŁU 

Streszczenie. W artykule zaprezentowano model systemu, układ pomiarowy oraz metody rekonstrukcji obrazów. Elektryczna tomografia impedancyjna 
została użyta do określenia wilgotności w specjalnie przygotowanym testowym modelu wału przeciwpowodziowego. Zastosowane metody gradientowe 

i topologiczne są bardzo skuteczne w wielu obszarach modelowania. Zostały przedstawione podstawowe informacje o koncepcji systemu. Do rozwiązania 

zagadnienia odwrotnego zostały wykorzystane metody zbiorów poziomicowych i Gausa-Newtona. 

Słowa kluczowe: zagadnienie odwrotne, metoda elementów skończonych, tomografia impedancyjna, wał przeciwpowodziowy 

Introduction 

This paper presents the new method examining the flood 

embankment dampness by electrical impedance tomography (EIT) 

[1-3]. Numerical methods were based on gradient techniques [8, 9, 

12]. Discussed algorithms can be applied to the solution of inverse 

problems to determine a dampness in electrical impedance 

tomography. The finite element method coupled with Gauss-

Newton or (and) the level set function has been used [4, 6]. The 

model of the flood embankment creates nonhomogeneous testing 

environment where object properties conductivity varied smoothly 

with one more coordinates. Surface potential measurements are 

performed at different angles of projection whereby the 

information needed to determine an approximate distribution of 

conductivity inside the object is obtained. This idea has been used 

successfully in the context of the inverse problem in the flood 

embankment [5, 7, 10, 11, 13-15]. 

1. Flood embankment model 

The flood embankment dampness was examined by electrical 

impedance tomography system. The examples of embankment’s 

damage were presented in Figure 1 such as: piping, erosion outer 

slope, micro instability, drifting ice, slip circle inner slop, slip 

circle outer slop, wave overtopping, overflow and liquefaction. 

 

Fig. 1. The model of the flood embankment 
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The architecture of the flood embankment system is shown 

in Figure 2. 

 

Fig. 2. The architecture of the flood embankment system 

There is well known that for EIT scanning system with 16 

electrodes on 2 dimension, we can get 13 independent electrode-

to-electrode measurements and 8 independent potential 

distributions and 104 linearly independent values. The distribution 

of potentials on the edge of saturated sand and the top of the bank 

is linear, it may be because the electrode was placed near the edge. 

Surface potential measurements are performed at different angles 

of projection whereby the information needed to determine an 

approximate distribution of conductivity inside the object is 

obtained. 

 

Fig. 3. The distribution of elements on the edge of the flood embankment 

The example of embankment’s model was shown in Figure 3. 

This object was divided into 57elements, 111 nodes. Each element 

consists of three nodes. The red element symbolizes the electrode 

10V. In black marked 0V ground potential. For the area of γ4 is 

water. The measurement voltage is from node 1 to 57 - 28 items 

(27 electrodes from node 2 at the second node to node until the 

number 56, in addition to node 32 where it was applied 10V). 

Green color indicated the first item. 

The distribution of potentials on the edge of the flood 

embankment results can easily check the state of saturation in the 

layer of sand γ2. The greater permeability of the sand is lower 

potential at the edge of the flood embankment. The lower 

permeability area γ3 is lower potentials. As you can see from the 

chart the impact of water conductivity in a very small influence on 

the distribution of potentials in most places (at the edge of the 

flood embankment and on the border between the saturated sand 

and the top layer of dry sand and the boundary between the 

saturated sand and a lower layer of the bank). Only the results 

differ on the border of the bank - the water. The distribution of 

potentials on the border of saturated sand and the top of the bank 

is linear, it may be because the electrode was placed near the 10V 

and the other side of the border of three centers is 0V.  

 

 

 

 

Fig. 4. Numerical models of the flood embankments 

Figure 4 presents the numerical models of the flood 

embankments. EIT measurement models of the flood embankment 

are shown in Figure 5 and 6. The laboratory prototype model with 

devices is presented in Figure 7.  

 

Fig. 5. The EIT measurement model I of the flood embankment 

 

Fig. 6. EIT measurement model II of the flood embankment 
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Fig. 7. The laboratory prototype of the measurement system 

2. Image reconstruction 

Electrical impedance tomography is known that the inverse 

problem is nonlinear and highly ill-posed. The forward problem 

solution in EIT consists in determining potential distribution 

inside the region  under given boundary conditions and full 

information about region under consideration. That is in solving 

Laplace’s equation: 

    (        )    (1) 

where u - voltage, γ - conductivity. 

The objective function is formed following: 

      ∑ (    )
  

   (    ) (2) 

where   is a projection angle, Um – the measured voltage, U – the 

calculated voltage by solving the equation (1). 

A Gauss-Newton method is deployed to the regularized 

tangential movement problem. The electrodes move tangentially 

to the domain at each iteration and so do not in general lie on the 

boundary of the domain after each iteration. These are thus 

projected back onto the fixed domain by computing the nearest 

boundary simplex of the finite element mesh. The Gauss-Newton 

algorithm is following form: 
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      )
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where   denotes the vector of the unknown conductivity, α is the 

step size,   is a regularization parameter,   is the Jacobian matrix, 

  is a regularization matrix and  (  ) is the observation model 

derived from a finite elements model. 

The forward problem solution in EIT consists in determining 

potential distribution inside the region under given boundary 

conditions and full information about region under consideration, 

that is in solving Laplace’s equation. In this paper there was 

proposed combination the Gauss-Newton method, the level set

method and the finite element method to solve the inverse 

problem. The representation of the boundary shape and its 

evolution during an iterative reconstruction process is achieved by 

the level set method. The image reconstruction in the different 

geometrical model of the micro instability was presented. The 

conductivity of searched objects is known. Figures 8, 9 show the 

simulation of one and two objects. The image reconstruction 

obtained by the Gauss Newton Level Set Method with simulation 

data was shown in Figure 10. Picture 11 shows the image 

reconstruction obtained by the Gauss Newton method with real 

data: the model (a), data taken after 15 minutes (b), after 30 

minutes (c). Figure 12 presents the image reconstruction of the 3D 

model of the flood embankment. 

 

Fig. 8. The model of the one objects and image reconstruction 

 

Fig. 9. The model of the two objects and image reconstruction 

a) 

 

b) 

 

c) 

 

d) 

 

Fig. 10. The image reconstruction obtained by the Gauss Newton Level Set Method 

with simulation data: a) the model, b) the reconstructed image, c) the image without 

mesh, d) the level set method component after 15 iterations 
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a) 

 

b) 

 

c) 

Fig. 11. The image reconstruction obtained by the Gauss Newton method with real 

data: a) the model, b) data taken after 15 minutes, c) after 30 minutes 

 
 

 

Fig. 12. The image reconstruction 3D model of the flood embankment 

3. Conclusion 

New nondestructive methods of the monitoring flood 

embankment model were tested. There were used iterative 

algorithms where repeatedly the shape boundary evolves smoothly 

and the searched object is detected. The combination of the 

proposed algorithms and the line measurement is effective in the 

simulation and the laboratory experiment. The finite element 

method was used to solve forward problem. The presented 

techniques are successful to identify the unknown properties of the 

object. Image reconstruction for identifying the unknown shape of 

an interface in a problem motivated by electrical impedance 

tomography can be done by proposed method. The Gauss-Newton 

and level set function techniques are useful in this system. The 

application depends on a specially built model. The proposed 

method was verified by simulations and its main components were 

verified experimentally in the laboratory. The presented method 

determines the moisture of the test model. Applying the line 

measurement model is enough effective to solve the inverse 

problem in the moisture flood embankment. 
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