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Abstract. The boundary element method and the level set method can be used in order to solve the inverse problem for electric field. In this approach the 

adjoint equation arises in each iteration step. Results of the numerical calculations show that the boundary element method can be applied successfully to 
obtain approximate solution of the adjoint equation. The proposed solution algorithm is initialized by using topological sensitivity analysis. Shape 

derivatives and material derivatives have been incorporated with the level set method to investigate shape optimization problems. The shape derivative 

measures the sensitivity of boundary perturbations. The coupled algorithm is a relatively new procedure to overcome this problem. Experimental results 
have demonstrated the efficiency of the proposed approach to achieve the solution of the inverse problem.  
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POŁĄCZENIE METODY ELEMENTÓW BRZEGOWYCH I ZBIORÓW POZIOMICOWYCH 

W ROZWIĄZYWANIU ZAGADNIENIA ODWROTNEGO 

Streszczenie. Metoda elementów brzegowych i metoda zbiorów poziomicowych mogą być wykorzystane to rozwiązania zagadnienia odwrotnego pola 

elektrycznego. W takim podejściu równanie sprzężone jest rozwiązywane w każdym kroku iteracyjnym. Wyniki obliczeń numerycznych pokazują, że metoda 

elementów brzegowych może być zastosowana z powodzeniem do uzyskania przybliżonego rozwiązania równania sprzężonego. Proponowany algorytm jest 
inicjalizowany za pomocą topologicznej analizy wrażliwościowej. Pochodna kształtu i pochodna materialna zostały połączone z metodą zbiorów 

poziomicowych w celu zbadania problemów optymalizacji kształtu. Pochodna kształtu mierzy wrażliwość perturbacji brzegowych. Zespolony algorytm jest 

stosunkowo nową procedurą do rozwiązania tego problemu. Wyniki doświadczenia pokazały skuteczność proponowanego podejścia w rozwiązywaniu 
zagadnienia odwrotnego. 

Słowa kluczowe: zagadnienie odwrotne, metoda elementów skończonych, tomografia impedancyjna 

Introduction 

The electrical impedance is non-destructive imaging technique 

[14, 15], which has various applications. For example, it can be 

used in medical imaging. In our approach the algorithm of the 

inverse problem bases on the boundary element method (BEM) 

[4, 13], the gradient technique and the level set method [1, 2, 5–7, 

12, 16, 17]. In the gradient technique so-called adjoint equation 

has to be solved [3, 8–11]. The solution has to be obtained in each 

iteration step. Numerical techniques give us opportunity to find 

approximate solutions of differential equations which cannot be 

solved by means of analytical ones. Among various numerical 

tools like the finite element method, the finite difference method 

or BEM we concentrated our attention on the last one. BEM can 

be effectively employed on condition that partial differential 

equation can be transformed to integral form. Additionally, the 

Green’s function has to be calculated. In our numerical 

calculations for simplicity zero order approximation has been 

chosen. The function which describes electrical conductivity 

distribution in our system possesses two different nonzero values. 

Finally, we have successfully solved the inverse problem in two-

dimensional system with 16 electrodes. Therefore, the proposed 

numerical model has been verified. 

1. Boundary Element Method 

The field studies might be split on two main branches. In that 

case are defined: the topology of the structure (interface boundary 

– outside and/or inside), boundary conditions, material 

coefficients (e.g. conductivity), the internal source or sources etc. 

The second case concerns with the inverse problem solution. In 

this case the unknown parameters are searched when the field 

distribution is known. Unknown shape of the interface could play 

the role of the unknown parameters and the inverse problem could 

be called for example Electrical Impedance Tomography (EIT). 

Normally we only known the field distribution on the most 

external boundary of the object. 

The partial differential equation in its integral form was 

defined in order to compute the field distribution for the 

inhomogeneous regions presented in Figure 1: 
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where the value of   coefficient is defined by the location of the 

point indicated by the position vector   ⃗⃗  : 
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Fig. 1. The example of the structure: region Ω1 limited by border Γ1 with two internal 

objects: Ω2 limited by border Γ2 and Ω3 limited by border Γ3 

The objective is to find interface (inside boundary) using 

voltage measurements on the periphery of the region. The 

boundary    is known, but the starting shape of interface in 

request has been chosen randomly (at the beginning of the 

iteration process). For so called “current electrodes” (nodes of the 

boundary elements) the Dirichlet boundary conditions are imposed 

(emulate the voltage source), for the rest (the “voltage electrodes”) 

the homogeneous Neumann boundary condition 
  

  
   are 

imposed. 
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The state function (electric potential) and its normal derivative 

on the particular boundary          of each substructures 

         are denoted as: 
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Substitute: 
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we will rewrite eq. (1) in a matrix form. The same manner was 

used to mark the matrices A and B as the state function and its 

normal derivative (see equation (3)): 
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The voltage on the internal boundary (interface)    or    fulfill 

the continuous conditions: 

  (  )    (  ) 
   (  )    (  ) (7) 

If the conductivity    is equal   ,    is equal    and 

conductivity of    is    (as it was previously noted: the 

conductivity in objects are constant) then: 
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where: minus means the opposite direction of the normal unit 

vector to the border of       and      . 

Rewrite equations for inhomogeneous regions in the matrix 

form we have got: 
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where the following values   
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 are unknown. It 

is needed to solve the equation (1) for all projection angles. 

2. Inverse Problem 

To solve the inverse problem with the aid of the level set 

method there was needed the adjoint equation. Let us consider the 

following partial differential equation in two-dimensional 

Cartesian coordinate system: 

   [ (  )  (  )]   (  ) (10) 

where     . We assumed that  (  ) denotes electrical conductivity 

distribution. The source term  (  ) is defined only on the boundary 

of the domain Ω. It depends on differences between voltages 

obtained from measurements and numerical simulations. The 

source term has to be calculated on each iteration step. The 

formula for  (  ) is given in [13]. Additionally, we assumed that 

the adjoint function λ or its normal derivative β is known for all 

boundary points. The differential problem defined in described 

manner may be regarded as the boundary value problem for the 

adjoint equation (10). 

Starting point for our research is typical for BEM integral 

equation [13], where the boundary curve is divided into N 

elements: 
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Equation (11) is valid if the electrical conductivity is constant 

in the whole domain. In the case of constant boundary elements 

only three values of the function c are possible. If a given point 

belongs to boundary of the domain Ω, then the value equals 0.5. 

The value of function c equals 1, when a given point lies inside of 

Ω and equals 0 in other cases. The Green’s function g may be 

obtained by solving the fundamental equation and is given by: 
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In above formula A is a positive constant. Function h 

represents the derivative of the Green’s function in normal 

direction appointed by unit vector  ⃗ (  ). After calculations we get: 
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The vector formula for j-th constant boundary element is given by: 

    ( )    ( )     (  ( )    ( ) )  (14) 

where   〈    〉. Position vectors   ( ) ,   ( )  and   ( )  represent 

the first vertex, the last vertex and the middle point (node) of j-th 

boundary element, respectively. We use constant boundary 

elements, therefore: 
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Formulas (12), (13), and (15) can be utilised to solve the 

adjoint equation (10) because the domain Ω can be decomposed 

into two subdomains where electrical conductivity is constant for 

each one. 

 

Fig. 2. The scheme of the algorithm to minimize the objective function 

The following algorithm is used to find out the shape and the 

position of the unknown internal obstacles (Fig. 2): 

a) make discretization of the outer boundary    (for example on 

32 elements), 

b) collect measurements from the electrodes for all projection 

angles, 

c) conduct simulation for randomly placed objects inside,  

d) use the Laplace equation and compute electric potential 

distribution with the aid of BEM,  

e) determine difference between the “measured”    and 

computed potential   and use them for the adjoint equation, 

f) update the Hamilton-Jacobi equation, 

g) check if it’s necessary to reinitialize set level function, 

h) get zero level contour of updated φ function and select 

discretization points, 

i) calculate the objective function according to the equation  
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where:   – is computed electric potential distribution;    – is 

measured values for real object, if the objective function is lower 

than assumed threshold, then “stop”, else go to the point (d). 

3. Results 

Figure 3 shows the solution of the inverse problem. All points 

in both figures represent vertices of boundary elements. Our 

algorithm needed about 50 iterations to minimalize the objective 

function (see Fig. 4). Obtained result is appropriate. Proposed 

numerical model has been successfully verified. We can make use 

of BEM in algorithm which solves the inverse problem in EIT.  

 

 

Fig. 3. The solution of the inverse problem (green points). internal square indicated 

by blue points represents proper position of the interface, orange points represent 

initial position of the interface, symbol OF denotes the value of the objective function 

 

Fig. 4. The objective function versus the number of iteration step 

Figure 5 presents the image reconstruction with the one object. 

Figure 6a shows two obstacles marked by the blue dashed line. 

Such a test example will be considered as an EIT problem. The 

phantom object with unknown topology inside was reconstructed. 

In such case the level set function with four zero level objects will 

be applied as most appropriate one. For each simulated object the 

velocity would be calculated under assumption that the 

conductivities of all objects are known. Unknown structures are 

marked by the blue line; simulated objects are marked by the red 

line. For last 300 iterations step the unknown structure was found. 

The result is presented in Figure 6d. The objective function 

distribution versus the number of iteration steps is shown in 

Figure 7. 

 
Fig. 5. The image reconstruction of the one object (BEM-LSM) 
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 a) b) 

 

 c) d) 

 
Fig. 6. The black line marks the outside border of the structure with the internal 

unknown objects (marked by the blue dashed line). The red line marks zero level 

contours, a) starting point, b) after 98 iterations, one step before merging two 

objects, c) after 225 iterations with the lowest value of the cost function 

equal to=0.96; d) after 300 iteration steps when the objective functions again 

increased 

 

Fig. 7. The objective function distribution versus the number of iteration steps 

4. Conclusion 

The inverse problem was solved using the combination of the 

level set function with the boundary element. The level set method 

and BEM show a way how to compute the interface by updating 

the Hamilton-Jacobi equation. This is particularly easy when the 

BEM is applied because the normal derivatives of the state 

function and adjoint function are the primary values directly 

achieved after the simulation process. In many cases occurs that 

the reinitialization is necessary to fix the correct shape of the level 

set function and also the signed distance function. Experimental 

results confirmed that presented method is efficient and the only 

one which is able to change the topology during the iteration 

process. 
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