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Abstract. The paper concerns the non-linear algorithms for image reconstruction in electrical capacitance tomography for which Jacobi matrix 

computation time is very long. The paper presents the idea of an iterative linearization in nonlinear problems, which leads to a reduction in the number 

of steps calculating Jacobi matrix. The linear Landweber algorithm with sensitivity matrix updating and non-linear Levenberg-Marquardt algorithm with 
Jacobi matrix updating in selected steps only were presented. 
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PRZEDZIAŁAMI LINIOWE ITERACYJNE ALGORYTMY REKONSTRUKCJI OBRAZÓW 

W ELEKTRYCZNEJ TOMOGRAFII POJEMNOŚCIOWEJ 

Streszczenie. Artykuł dotyczy nieliniowych algorytmów rekonstrukcji obrazów w elektrycznej tomografii pojemnościowej, dla których czas wyznaczenia 

macierzy Jacobiego jest bardzo długi. W pracy przedstawiono ideę iteracyjnej linearyzacji w problemach nieliniowych, która prowadzi do zmniejszenia 

liczby kroków wyznaczających macierz Jacobiego. Przedstawiono liniowy algorytm Landwebera z uaktualnianiem macierzy wrażliwości oraz algorytm 
Levenberga-Marquardta z wyznaczaniem macierzy Jacobiego tylko w wybranych krokach. 

Słowa kluczowe: problem nieliniowy, iteracyjna linearyzacja, tomografia elektryczna, rekonstrukcja obrazów z projekcji 

Introduction 

Electrical capacitance tomography is an imaging technique 

which allows to visualize spatial (three-dimensional or cross-

sectional) and temporal distribution of electric permittivity inside 

tomographic sensor. The image is reconstructed from 

measurements of mutual capacitance of sensor electrodes 

surrounding examined space. This method was first time proposed 

by Maurice Beck and Andrzej Plaskowski from University of 

Manchester for monitoring of industrial processes [6, 14].  

Image reconstruction in electrical capacitance tomography 

is a non-linear problem [10]. The measured capacitances are non-

linear function of the spatial distribution of permittivity. The 

inverse problem consists of determining the distribution of electric 

permittivity inside the probe using the measured capacitance. Lack 

of knowledge of analytical form of non-linear inverse transform 

forces calculation of permittivity distribution by solving 

an optimization problem, for example by minimizing the mean 

square norm.  

The Newton-Raphson method could be applied for least-

square minimization. Because this method requires the calculation 

of Hessian matrix which is time consuming, the Gauss-Newton 

method is preferable in which the approximation of Hessian 

matrix is used. The application of Gauss-Newton algorithm in the 

electrical capacitance tomography is presented in [5]. The 

weakness of the Gauss-Newton method is bad behavior when 

Jacobi matrix is ill-conditioned, what is the case of electrical 

tomography. Even small measurement errors cause a significant 

change of step direction of iterative algorithm searching a 

functional minimum. For regularized non-linear least-square 

optimization the Levenberg-Marquardt method can be used. 

However, the selection of the value of the regularization parameter 

used in Lavenberg-Marquard method is not a simple task. The 

value could be selected experimentally or set manually. Some 

automatic methods of regularization parameter value were 

proposed like generalized cross validation (GCV) or L-curve. 

The application of the Lavenberg-Marquard algorithm in 

electrical tomography is described in [1]. The application of GCV 

method for automatic selection of the value of regularization 

parameter in the Levenberg-Marquardt algorithm did not bring 

satisfactory results [1]. In contrast to the GCV, L curve method 

gave good results of image reconstruction [3]. 

Practical application of non-linear optimization algorithm is 

limited by the calculation time, because these algorithms need to 

determine the Jacobian matrix (solve a forward problem) in each 

step. The forward problem consists of determining the electric 

field distribution in tomographic probe by numerical solution of 

the generalized Poisson equation, which is a complex 

computational problem. For this reason, linearization and iterative 

algorithms for solving the linear problem are preferred in 

electrical capacitance tomography. 

An interesting idea presented in this paper is to use an iterative 

linearization in non-linear problem. The iterative linearization 

reduces the number of steps of the algorithm in which the 

Jacobian matrix is determined. Transformation of linear and non-

linear algorithm in a linear over ranges algorithm was presented in  

the papers [15, 16]. The linear Landweber algorithm with 

sensitivity matrix updating and Levenberg-Marquardt algorithm 

with the calculation of Jacobi matrix only in selected steps were 

discussed. 

1. Landweber algorithm with sensitivity matrix 

updating 

In the linear approach, the image reconstruction in capacitance 

tomography can be defined as the minimization of a quadratic 

residue of the standard linear equation with respect to the vector 

ε , which can be written as: 
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where the vector ε  describes the spatial distribution of electric 

permittivity inside the sensor, S is the sensitivity matrix describing 

the impact of changes in the distribution of permittivity on the 

value of the mutual capacitance of electrodes in the tomographic 

sensor, and c  is the vector of measured capacitances.  

The Landweber iterative algorithm, which searches a 

minimum of quadratic norm functional is given by the formula: 
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The Landweber algorithm is steepest descent gradient type method 

with very small value of step length a  which guarantees the 

convergence of the algorithm [8]. 

Because the linear model of the tomographic system 

(sensitivity matrix) depends on the distribution of permittivity in 

the tomographic sensor, the approximation of the sensitivity 

matrix is used in the algorithm. Most often, because there is no a 

priori information about the examined object, the sensitivity 

matrix calculated for a uniform distribution of the permittivity is 

used in the linear model. For the same reason, uniform distribution 

of permittivity is taken as the first stage of an iterative algorithm. 
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So, taken the form of sensitivity matrix, which is a good 

option for the first steps of the algorithm, it is becoming worse 

approximation model of the system with the next steps. Suppose 

that in subsequent iterations of the algorithm, getting better 

estimate of the electrical permittivity distribution is found. This 

information can be used to determine a better approximation 

model of linear system at given step. If after a certain number of 

steps, the permittivity distribution changes significantly, a new 

approximation of the sensitivity matrix can be determined. 

In the simplest version, the sensitivity matrix can be updated 

after a given number of iterations. In this way, ranges linear 

algorithm can be obtained, which solves the non-linear problem 

over linear ranges [13, 17] . The step of the algorithm can be 

written using the following equation: 
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where 
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ε
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S S  and the function ( )g i  describes the 

moments of sensitivity matrix updating. 

In the first approach it can be assumed that through a number 

of steps the algorithm is moving in a small range, in which the 

function does not change rapidly and can be approximated by 

linear relationship. If the sensitivity matrix has to be updated 

every certain number of iterations, the function has the form of a 

stepped function given by the formula: 

 ( ) ( )ceil modg i i i i= - D   (4) 

where ceil  is a rounding up to the nearest integer, mod  is the 

remainder of the division. In the case of observing changes in the 

estimated vector, the function defining moment of renovation 

sensitivity matrix may have the form: 

 ( ) ( ) ( ) ( )( )

( ) ( )( )

ε ε

ε ε

1

1

0  dla 0,

1 dla ,

dla ,

g ii

g ii

i

g i g i

i

d

d

-

-

ěďďď =ďďďď= - - <í
ďďďď - łďďďî

  (5) 

where d  is a certain small value. The value of the parameter that 

determine when to upgrade the sensitivity matrix, such as the 

number of iterations or threshold by which must change estimate 

the distribution permittivity is not obvious. This issue was the 

subject of research. Some papers [9, 17] show that the modified 

Landweber algorithm with sensitivity matrix updating achieves far 

better results than the linear version. Even the use of two, three 

modifications of the sensitivity matrix, with the total number of 

steps equal to several hundreds, brings a great improvement in the 

quality of the reconstructed image. The additional modifications 

of the above-described ranges linear iterative algorithm are 

possible [12]. The first modification is adaptive control of step 

length parameter 
( )i

a . The standard approach is a relaxation 

strategy, involving reduction of step length during the calculation, 

which allows the algorithm to reach a stabilized solution.  

The proposed modification consists of checking whether the 

value of the residue decreases in the next step. If in the next step 

the condition of decreasing the value of the residuum is not 

reached, the algorithm returns to the previous estimate of the 

solution, and the value of the parameter 
( )i

a  is decreased. This 

strategy allows to take greater step length at the beginning of 

calculations to accelerate the search and prevents divergence of 

the algorithm in the case of too long step. Another modification of 

the Landweber algorithm is to use the normalized sensitivity 

matrix [12]. The method of normalization of the sensitivity matrix 

was taken from a linear back projection (LBP) algorithm [7]. The 

matrix is normalized in columns, so that the sum of the 

coefficients in the columns is equal to unity. The matrix 

normalized in columns is given by the formula: 

 ( )
1
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where 1, 1, ..., 1
T

M

é ů= ę úë ű
u  is column unit vector, and diag  is 

an operator that creates diagonal matrix from a vector. If the 

measurements are normalized according to the following formula: 
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where c , 
max

c , 
min

c  are vectors of capacitance measurements for 

the object, for the uniform distribution of electric permittivity with 

the minimum 
min

e  and maximum 
max

e  value of the measurement 

range respectively, the reconstructed permittivity values are 

normalized and bounded in the range 0;1 .  

The iterative algorithm with the application of normalized 

sensitivity matrix which searches for a minimum of a quadratic 

norm is given by the formula: 
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If the initial solution is the uniform permittivity distribution with 

the value 
( )0

0e =% , the first step of the algorithm is given by the 

equation 
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The first step of this algorithm is equivalent to a linear back 

projection algorithm LBP when step length 
( )0

1a = .  

The application of normalized sensitivity matrix compensates 

for the lack of sensitivity in the center of the field of view of the 

tomographic sensor. In our forward problem solver the sensitivity 

matrix is calculated inaccurately at the edges of the field of view 

because of the used Cartesian grid. It turned out that sensitivity 

matrix normalization minimized the impact of the errors of the 

sensitivity matrix coefficients for the edges of the field of view. 

This approach is preferred in the case of image reconstruction 

with the sensitivity matrix calculated using a regular Cartesian 

discretization grid because it is less sensitive to the errors of 

calculation of the sensitivity coefficients on the edges of the 

sensor.  

2. Levenberg-Marquardt algorithm with 

the calculation of Jacobi matrix only 

in selected steps 

The problem of image reconstruction in electric capacitance 

tomography described by a nonlinear equation: 

 ( )εh=C   (10) 

can be defined as a search for roots of the function:  

 ( ) ( )ε εf h= - C   (11) 

In the electric capacitance tomography, it can be assumed that the 

problem is underdetermined and there are many solutions. The 

task is to find such N  dimensional vector ε
1 2
, , ...,

T

N
e e eé ů= ę úë ű

, for 

which the condition: 

 ( )ε 0f =   (12) 

is satisfied. If the function f  is continuous and differentiable in 

the vicinity of the point e , it can be expanded in a Taylor series: 

 ( ) ( ) ( ) ( )ε ε ε ε ε εf f O+ D = + D +J .  (13) 

where ( )εJ  is a partial derivative matrix and ( )O ε  represents the 

components of the higher order. Neglecting higher order 

components, the following relationship is obtained:  

 ( ) ( )ε ε ε1 f-D = - J   (14) 

where eD  is the increase defined by the tangent to the function at 

a point ε  or in other words the distance from this point to the 

intersection of the tangent with the abscissa. From the above 

equation and using linear approximation of function h , the 

following iterative formula can be obtained: 
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where 
( ) ( )( )ε
i i

=J J .  

The matrix 1-J  does not exist in most cases in electric 

capacitance tomography because the problem is undetermined. 

Instead of the direct inverse the left pseudoinverse can be used 

what leads to the formula known as the Gauss-Newton method:  
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If we introduce regularization parameter 2m I  , where m  is a 

positive number, and I  is the identity matrix, we get regularized 

Gauss-Newton algorithm called Levenberg-Marquardt (LM) 

algorithm [11]. Additionally, if we take into account the step 

length 
( )i

a  , we obtain the following iterative formula: 
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where 
( ) ( )( )ε
i i

=J J . If the function is highly non-linear, Jacobi 

matrix (sensitivity matrix) should be calculated in each step of the 

algorithm. However, if a function within a certain range is 

approximately linear, Jacobi matrix does not change much. If we 

assume that the function domain could be divided into several 

ranges where the function is approximately linear, it is possible to 

modify the algorithm, so that the Jacobi matrix will be constant in 

each range and it will change only when moving to an adjacent 

range [18]. Then the algorithm takes the form: 
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where ( )g i  is the function describing moments of updating of 

sensitivity matrix. The problem is to determine linear ranges in 

this method. There are different approaches, including simple, 

assuming that the linear approximation is valid for a certain 

number of steps, during which the Jacobi matrix is not updated.  

In this approach, the function has the form of a step function given 

by the formula (4), as in the modified algorithm Landweber with 

sensitivity matrix updating. A more sophisticated method for 

determining the moment of Jacobi matrix calculation can consist 

in observation of changes of the estimated vector ε . If the change 

of the estimated vector from the last modification of Jacobi matrix 

exceeds a certain preset threshold, the Jacobi matrix should be 

recalculated. In this method, the function describing the update 

moments of the sensitivity matrix may be in the form given by (5). 

3. Results of image reconstruction 

The described above linear over ranges algorithms were 

verified experimentally using numerical simulated data and real 

measurements. Here, exemplary results of the experiments will be 

shown only for modified Levenberg-Marquardt algorithm. The 

sensitivity matrix updating scheme used in both algorithms is 

similar. The Levenberg-Marquardt algorithm switches between 

the Gauss-Newton algorithm (when the regularization parameter is 

very small) and steepest descent algorithm (where the 

regularization parameter is large). 

Measurements were performed using ET3 tomograph build at 

our Division [2]. The multichannel device worked with different 

gains for pairs of adjacent (low amplification) and opposite 

electrodes (high amplification). The cylindrical sensor with one 

ring of 16 electrodes was used. The diameter of the cylinder was 

equal to 160 mm. The height of the electrodes was equal to the 

cylinder diameter (the dimension in the direction of the axis of the 

cylinder). The physical object used in the experiments consisted of 

6 Perspex rods with relative permittivity value equal about 2.9. 

The diameter of the rods was equal 20 mm. The length of rods was 

much greater than electrode height. The shape of the test object 

was selected arbitrary to allow two-dimensional modeling of the 

electric field distribution in a tomographic sensor. The object 

placed in the sensor is shown in Fig. 1. The collected data for the 

object were normalized using the measurements for empty and 

fully filled with Perspex sensor. 

Two-dimensional simulations of measurements were 

performed using Matlab toolbox ―ECTsim‖ developed by our 

group. The numerical modeling of the sensor and the object, 

electric field calculation and sensitivity matrix calculation is 

performed using regular Cartesian grid. The size of discretization 

matrix of sensor model used in that simulation was 5252 

elements. The shape of the object does not change in the Z-axis so 

that the two-dimensional approximation of the electric field 

distribution is close to the three-dimensional distribution. The 

numerical representation of the object used in the real 

measurements is shown in Fig. 2. The capacitance measurements 

were simulated for the object. To simulate a measurement process 

in electrical capacitance tomography so called forward problem 

has to be solved. The potential distribution in the sensor with 

boundary conditions imposed by voltage applications on the 

electrodes has to be calculated. Knowing the voltage distribution 

the mutual capacitance formed by two electrodes selected from the 

set of electrodes surrounding the object can be calculated using the 

Gauss's law. An alternative method of capacitance calculation is 

application of discrete linear approximation 

 =c Sε . (19) 

This method was used in ECTsim toolbox. The potential 

distribution was calculated for all application electrodes for the 

specified sensor geometry and the permittivity distribution inside 

the sensor. The mutual impedance principle is used for sensitivity 

matrix calculation. The sensitivity distributions for all electrode 

pairs are calculated. The calculated two-dimensional sensitivity 

maps constitute the rows of the sensitivity matrix. Because the 

measured value of capacitance formed by two electrodes is the 

same independently of the fact which electrode is an application or 

measuring electrode, there are ( )1 2M L L= -  measurements 

for L  electrodes. For 16L =   electrodes, there are 120M =  

measurements.  

The Gaussian noise was added to the generated data. The 

measurement error (standard deviation) corresponds to around 

0.1 % of the measurement range limited by the maximum value 

measured for the sensor full filled with the material of high 

permittivity. 

The modified LM algorithm was implemented using the 

equation (18). The regularization parameter was calculated 

automatically by the L-curve method [4]. The value of the 

regularization parameter is a compromise between the value of 

residual error and the norm of the regularized solution. The norm 

of a regularized solution versus the norm of the residual norm for 

different value of regularization parameter is plotted in log-log 

scale. The value of the regularization parameter is selected as a 

point that corresponds to the corner of L-curve. The curves for 

reconstruction from simulated data and real measurement are 

shown in Fig. 3 and Fig. 4 respectively. The value of the 

regularization parameter is calculated after every update of the 

sensitivity matrix. The step length 
( )i

a  was constant for all 

iterations. The value was set arbitrarily and equal 0.15 for 

reconstruction from simulated data and 0.1 for reconstruction from 

real measurements. 

The sensitivity matrix (Jacobian) was calculated only a few 

times in the iterative process. In the shown example the sensitivity 

matrix was updated every 100 steps. The moments of sensitivity 

matrix recalculation are visible on the plot of reconstruction error. 

The algorithm was stopped arbitrarily after 650 steps when the 

algorithm reached a steady state. The reconstructed distribution of 

permittivity for simulated and real data are shown in Fig. 5 and 

Fig. 6.  

To evaluate the reconstruction quality quantitatively a square 

norm was used. The norm was calculated in image space, 

capacitance measurements space and sensitivity matrix space. In 

image space, the norm is a discrepancy between the reconstructed 
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and true permittivity distribution. In case of real measurement 

data, the numerical representation of the object is used as true 

permittivity. In capacitance space, the capacitance residual error is 

the normalized discrepancy between the measured capacitances 

and the values calculated for the given estimate of permittivity. In 

sensitivity matrix space the error is the norm between the 

sensitivity matrix computed for a true permittivity distribution and 

the sensitivity matrix computed for given estimate of a 

permittivity distribution. In case of real data the sensitivity matrix 

for a true permittivity distribution is calculated using the 

numerical model of a physical object. The presented in this paper 

nonlinear iterative algorithm updates the sensitivity matrix. The 

norm in sensitivity space shows how the approximated model fits 

to the true model. The square norm is normalized using the 

formula: 

 
2 2

0i

t t
err = - -x x x x   (20) 

For example in image space 
t

x  denotes the true permittivity 

distribution. 0x  is the start solution and ix  is the permittivity 

estimate at i-th step of iterative algorithm.  

The plots of reconstruction error for simulated and real data 

are shown in Fig. 7 and Fig. 8. The points of discontinuity in 

sensitivity matrix error corresponds to the moments of sensitivity 

matrix recalculation. The sensitivity 2D map calculated for 

uniform distribution and obtained after 6 updates are shown in 

Fig. 9 and Fig. 10 respectively. 

  

 

Fig. 1. The test object (six Perspex (PMMA) rods) placed in the cylindrical sensor  

 

Fig. 2. Numerical representation of permittivity distribution in the axial cross section 

of the sensor with the test object. Relative permittivity of PMMA rods: PMMA = 3, 

permittivity of air in sensor: air = 1 

 

Fig. 3. L-curve for reconstruction from simulated data. Plot of regularized solution 

norm in function of residuum norm for different value of regularization parameter 

(value of regularization parameter given for selected points) 

 

Fig. 4. L-curve for reconstruction from real measurements. Plot of regularized 

solution norm in function of residuum norm for different value of regularization 

parameter (value of regularization parameter given for selected points) 

 

Fig. 5. Permittivity distribution in axial cross-section of sensor reconstructed using 

modified LM algorithm from simulated data 

 

Fig. 6. Permittivity distribution in axial cross-section of sensor reconstructed using 

modified LM algorithm from real measurements 
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Fig. 7. Reconstruction error in function of number of iterations. Capacitance 

measurement error (+), image error (O), sensitivity matrix error ().Reconstruction 

for simulated data 
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Fig. 8. Reconstruction error in function of number of iterations. Capacitance 

measurement error (+), image error (O), sensitivity matrix error ().Reconstruction 

for real measurements 

 

Fig. 9. Two dimensional sensitivity map for opposite electrodes calculated for 

uniform permittivity distribution in a sensor 

 

Fig. 10. Two dimensional sensitivity map for opposite electrodes obtained after six 

recalculation of sensitivity matrix 

4. Conclusions 

The linear over ranges algorithms were introduced in this 

paper. The results of image reconstruction using modified 

Levenberg-Marquardt algorithm were presented. The linear over 

ranges LM algorithm was convergent. The reconstruction quality 

norms decrease in function of iteration number with one 

exception. The discrepancy norm for a sensitivity matrix increases 

after first update of sensitivity matrix but decreases after next 

updates. This behavior was observed for both cases: 

reconstruction from simulated data and reconstruction from real 

measurements.  

Only a few updates of the sensitivity matrix were enough to 

obtain acceptable image quality. The limited number of updates of 

Jacobi matrix up to six for dozens of iterations of the modified LM 

algorithm did not degrade image quality, and significantly reduces 

the number of calculations. Moreover, in the experiments the 

simplest method of selection of the moments when the sensitivity 

matrix was recalculated was used. 

The carried out experiments had shown that the linear over 

ranges algorithm are very effective in terms of picture quality 

relative to the number of calculations. The application of the 

custom finite element method previously elaborated for sensitivity 

matrix calculation [19] accelerates the computations but the 

forward problem computations are still very time consuming 

comparing to the computation of the inverse transform. 
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