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Abstract. The article presents two elements associated with the practice of application of the boundary element method. The first is associated with BEM 

ability to analyze an open boundary objects and application of infinite boundary elements in the area of mammography. The second element is associated 
with the damped wall investigations. Wall humidity and moisture represents heterogeneous environment (Functionally Graded Materials) which has to be 

treated in a special way. 
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MODYFIKACJE METODY ELEMENTÓW BRZEGOWYCH ZASTOSOWANE W WYBRANYCH 

ASPEKTACH TOMOGRAFII IMPEDANCYJNEJ I OPTYCZNEJ 

Streszczenie. Artykuł prezentuje dwa elementy związane z praktyką stosowania metody elementów brzegowych w zagadnieniach mammografii i środowisk 

niejednorodnych. Pierwszy związany możliwością analizy obszarów nieograniczonych i zastosowaniem tym celu elementów brzegowych nieskończonych w 

zagadnieniach mammograficznych. Drugi związany jest z badaniami zawilgoceń murów stanowiących z punktu widzenia obliczeń środowisko 
niejednorodne. 

Słowa kluczowe: MEB, elementy brzegowe nieskończone, środowiska niejednorodne, tomografia impedancyjna. 

Introduction 

One of the advantages of the Boundary Element Method is its 

ability to handle open boundary problems. It is useful either when 

it is necessary to analyze outer field distribution or when there are 

some problems describing object surface and related boundary 

conditions. Another important tomograpic task is to find internal 

properties spatial distribution within non-homogenous region. 

A good example of open boundary and related infinite 

boundary element is an application for early detection or screening 

examination of breast cancer using Optical Tomography. Using 

infinite boundary elements  to create an open boundary breast 

model results in the significant reduction of  the mesh size and 

allows us to avoid problems with unknown boundary conditions. 

In consequence, hardware requirements are much lower and the 

results are received faster without accuracy losses. The 

implementation of two main lines of infinite boundary elements 

will be discussed on the example of a typical hemispherical breast 

model. 

Boundary Element Method (BEM) is employed in breast 

cancer investigations to find a forward problem solution and in 

turn to receive the internal image of breast tissue solving the 

reverse problem, as it is not possible to place detectors or to 

precisely define boundary conditions on the surface between 

breast and chest.  

The traditional method used to avoid errors near the breast and 

chest boundary is to extend the mesh outside the region of interest, 

deep into the chest and to truncate it at some distance from the 

investigated breast tissue. Wrong boundary conditions or improper 

placement of such artificial boundary can introduce an unknown 

error if the truncation occurs too near. On the other hand, 

excessive mesh received while setting that boundary too far, 

increases the number of boundary elements and decreases the 

computational efficiency. One of the alternative solutions is to use 

infinite boundary elements and to create an open boundary model. 

The implementation of these elements can reduce the mesh and 

help avoid the problem of incorrect boundary conditions 

assumption.  

Moreover, despite constant hardware development the process 

of finding the inner breast image in computer tomography is still a 

time-consuming task. The implementation of infinite boundary 

elements is an attractive option to solve these issues. Results can 

be found faster due to the significant reduction of the mesh size 

and without accuracy losses.  

There are two main lines of infinite boundary elements 

development: decay functions infinite elements and mapped 

infinite elements. The first type uses special decay functions in 

conjunction with ordinary boundary element interpolation 

functions [2, 3, 5, 23]. In that case the field variable tends 

monotonically to its far field value while reaching the element 

boundary adjacent to the infinite surroundings. Consequently, 

along finite element length, the variable changes in the way that 

reflects the physics of the problem up to infinity. The second type 

transforms the element from finite to infinite domain. The field 

variable will reach its far value following geometrical coordinates 

which extend into infinity [5, 12, 25]. Changing the basic 

interpolation functions interferes in the Boundary Element Method 

fundamental rules. The application of infinite elements in the open 

edge of the object usually requires using special quadratic 

boundary elements. This constitutes another complication for most 

mesh generators. On the other hand, the process of infinite 

elements incorporation into BEM is quite logical and results in 

significant hardware requirements and calculation time reduction. 

All major aspects of the implementation of both infinite elements 

types into BEM will be presented on the example of optical 

mammography. 

Second presented subject – application of Functionally Graded 

Materials into BEM do not allow us to decrease BEM mesh size, 

like infinite elements mentioned above. Substituting multilayer 

BEM model related to non-homogenous environment by single 

layer model with applied FGM keeps full advantage of an 

important BEM feature, ie. reduction of model size. 

Serious problem form many brick masonry historic buildings 

are their excessive moisture. Too much moisture causes a 

reduction in the compressive strength of both brick and mortar and 

to reduce the durability of the walls. Water, usually containing 

aggressive chemicals (chlorides, sulfates and nitrates), is 

transmitted to higher altitudes of the wall. High humidity of the 

walls encourages growth of fungi and mold, which have a 

negative impact on the human health. Humidity distribution, the 

type and concentration of salt in the wall are helpful in assessing 

the causes of damage and should be the basis for selecting the 

appropriate security methods related to excessive humidity and 

salinity. 

Typical method used to find humidity distribution performed 

by drilling, sampling and checking samples moisture cannot be 

applied for continuous monitoring of dehumidification process. 

Relatively inexpensive method based on Electrical Impedance 

Tomography (EIT) [4, 6, 7, 9, 15, 18] can be implemented. The 

wall conductivity is changing with humidity of the wall and its 

salinity, so object properties – conductivity - varies smoothly with 

one ore more co-ordinates. Boundary Element Method (BEM) [10, 

17] was used to solve the EIT forward problem. BEM 

implementation requites to use either multiregional model or 
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Functionally Graded Materials (FGM) to find spatial distribution 

of wall humidity. 

Laboratory walls with 26 electrode impedance tomograph 

were investigated [7, 9]. 

Some theoretical aspects of BEM and FGM usage in wall 

dampness investigations [4], are within the scope of this paper. 

1. Infinite boundary elements application 

for mammography 

1.1. Theory of infinite elements 

The basic idea of the decay function infinite boundary element 

construction is that the standard basis interpolation functions Ni  

are multiplied by so called decay functions Di [2, 3, 5, 23]. Two 

types of decay functions will be considered: reciprocal and 

exponential. Reciprocal decay functions for the decay in positive 

direction of ξ are as follows [5]: 

       niiD 00    (1) 

where i corresponds to the node number, (ξo ,ηo) is some origin 

point. This point must be outside the infinite element on the 

opposite side to the one which extends to infinity, n has to be 

greater than the highest power of ξ encountered in Ni . If the decay 

is in the positive ξ direction then ξo < −1. Respectively ηo < −1 

for the decay in the positive η direction. This avoids a singularity 

within the element. 

For second order, eight-node quadrilateral elements, basis 

interpolation functions n=3 was chosen. Decay function infinite 

basis interpolation function becomes: 

         00,,   iii NM  (2) 

For the exponential decay function of the form: 

     LD ii   exp  (3) 

where L[m] is the length which determines the severity of the 

decay, basis infinite interpolation functions are given by: 

       LNM iii   exp,,  (4) 

The basis interpolation function Ni for standard eight-node 

quadrilateral isoparametric boundary elements are given by the 

following formulas (5): 
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Decay function infinite elements based on 8 nodes, the second 

type, quadrilateral standard boundary elements are presented in 

figure 1. It should be noticed that it consists of 8 nodes. The only 

important thing is to keep the correct relation between decay 

function and node numbers, which decides in which direction the 

element, or more exactly the element properties (geometry 

remains unchanged) extends into infinity. 

Mapped infinite boundary elements based on 8 nodes, the 

second type, quadrilateral standard boundary elements are 

presented in figure 2. It should be noticed that in this  case the 

element will consist only of five nodes. Nodes 2, 3, 4 tend to 

infinity and will not take part in the calculations. 

 

 

Fig. 1. Transformation of standard 8 node quadrilateral boundary element into decay 

type infinite element: (a) in one positive ξ direction, (b) in two positive ξ and η 

directions 

 

Fig. 2. Transformation of standard 8 node quadrilateral boundary element into 

mapped infinite element: (a) in one positive ξ direction, (b) in two positive ξ and η 

directions 

Corresponding, so called, serendipity type basis interpolation 

functions 
iM̂  for mapped infinite elements are given by formula 

(6). 
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Despite its name the procedure for deriving these functions is 

quite logical and clearly described by Bettess [5, in chapter 4]. 

The infinite basis interpolation functions 
iM̂  grow without limit 

as a coordinate approaches infinity, and are applied to the 

geometry. The ordinary basis interpolation functions Ni are 

applied to the field variables [5, 12, 23].  

It is necessary to use these infinite basis interpolation 

functions to calculate the Jacobian and regularization 

transformations. The Jacobian is related to the transformation 

from two-dimensional intrinsic mesh structures to the global three 

dimensional coordinate system. In other words, we need to define 

the way in which we can pass from the x,y,z global Cartesian 

system to the ξ,η,ζ system defined over the element, where ξ and η 

are oblique coordinates and ζ is in the direction of the normal. The 

transformation for a given function Φ is related through the 

following: 
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where the square matrix is the Jacobian matrix (or Jacoby matrix). 
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A transformation of this type allows us to describe 

differentials of surface in the Cartesian system in terms of the 

curvilinear coordinates. A differential of area will be given by: 
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and n is a normal vector to the surface element.  

The coordinates  x, y, z  of a point on an element with the 

intrinsic coordinates ξ and η are given by: 
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where: Mi is a basis interpolation function at node i, xi , yi , zi 

represent coordinates of i-th node of the element. 

The required components of the unit outward normal (nx, ny, 

nz) from Equation (8) are given by: 
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The analyzed area as well as the corresponding integral 

equation will consist of both parts: finite and infinite surrounding 

of an open edge. 

For debugging purposes, in case of ordinary basis 

interpolation functions one has to check if the sum of all basis 

interpolation functions is unity and if the sum of all their 

derivatives is zero. A simple test checks if each function has unit 

value at its own node and zero at the other nodes. For decay type 

functions and for nodes remaining in the calculations in case of 

mapping functions that condition is also fulfilled. There is no 

exact analogy for the nodes which escape into infinity at mapped 

infinity elements. Further tests using Zienkiewicz type of mapped 

infinite elements [25] are devised by Bettess [5]. 

1.2. Breast models descriptions 

Three simple theoretical models of human breast were 

investigated. For all models one placement of the light source was 

presented - located near the bottom of the hemisphere model. The 

first model presented in fig.3 corresponds to the hemisphere with 

an additional cylindrical part at the bottom.  

 

Fig. 3. Hemisphere breast model with an additional cylindrical part of chest at the 

bottom 

The next two open boundary models use infinite boundary 

elements instead of the additional cylindrical part. The area of 

interest is limited to the hemisphere. The extra cylindrical part or 

the infinite elements rings are necessary to be added just to avoid 

possible errors, which would occur in case of mesh truncation at 

the bottom of the hemisphere. The standard boundary element 

model (Fig. 3) was constructed from 1536 second order, eight-

node quadrilateral boundary elements and 4610 nodes. Half of the 

elements cover the hemisphere. 

 

Fig. 4. Open boundary hemisphere breast model with mapped infinite boundary 

elements at the bottom 

 

Fig. 5. Open boundary hemisphere breast model with decay function infinite 

boundary elements at the bottom 

The open boundary model consists of 832 standard boundary 

elements and 64 infinite elements based on eight-node second 

order quadrilateral boundary elements [12]. The number of nodes 

was reduced to 2625 nodes in the model with incorporated 

mapped infinite boundary elements and to 2753 nodes in the decay 

function infinite element usage. 

The governing equation for the problem is the diffusion 

approximation of the transport equation [1, 16, 21, 24] (Helmholtz 

(11) - assuming scattering and absorption are homogeneous). 

There are Robin boundary conditions (12) on surfaces [1, 16, 24]. 

In Diffusive Optical Tomography the distribution of the absorbing 

coefficient 
a  and the  reduced scattering coefficient 

S  are 

investigated. 
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Where Φ stands for photon density,   2
1

= cDjDk a    a 

complex wave number,    ]mm[3= 11 
 SaD   a diffusion 

coefficient, 
S  is a reduced scattering coefficient, 

a  is an 

absorbing coefficient, c the speed of light in the medium, q0 is a 

source of light (number of photons per volume unit emitted by 

concentrated light source located in position r with modulation 

frequency ω). 
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with different coefficients for breast tissue and for skeletal 

muscles on the basis [1, 3, 25] imposed. In the analyzed example 

the following breast tissue properties were taken [1, 2, 16]: 

]mm0.025[= 1

a , ]mm2[= 1
s , 1= , MHz100=f . 
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The relevant boundary integral equation for surfaces covered 

by standard and infinite elements can be written as: 
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where 
SQ  is the magnitude of the concentrated source 

 )(=0 SS rQq   and 
Sn  is the number of these sources, Φ stands for 

the photon density and G is the fundamental solution for the 

diffusion equation [1,16,21,24]. In 3D space for the diffusion 

equation the fundamental solution is [16]: 
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The normal derivative of the Green function in the direction n 

can be written as: 
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1.3. Results and discussion 

The values of /n were already presented above in figures 

3, 4 and 5. It is difficult to compare these color maps, especially as 

each model and its solution have its own range of values, so the 

same color on all maps does not correspond to the same value. 

Taking that into account standard graphs were used to compare the 

results precisely. The values of /n module and the phase of the 

light at nodes lying on hemisphere circumference cross-section for 

y=0 are presented in figures 7 and 9 respectively. The values in 

nodes are presented in relation to angle Ψ (Fig. 6). 

 

Fig. 6. Hemisphere circumference cross-section, /n() at y=0 

To estimate the solution differences, the model with the 

extended bottom part (Fig. 3) was compared to those with infinite 

boundary elements implemented (Fig. 4 and 5). 

As it was mentioned in the introduction the implementation of 

infinite boundary elements requires  changing one of its 

fundamental elements – the basic interpolation functions. So, to 

present and to compare the different types of infinite boundary 

elements it was necessary to write our own BEM software in C++. 

The software uses some mathematical libraries from TOAST 

package [22]. 

 

Fig. 7. Results comparison for /n() module 

 

Fig. 8. /n(Ψ) module solution differences compared to hemisphere model 

 

Fig. 9. Results comparison for /n() phase 

Generally, all results are almost identical. Differences for 

module and phase are presented in figures 8 and 10 respectively. 

Only the part far from the light source shows some fluctuations, 

less than 1%, in results but it should be noticed that in that region 

the module is 10 orders of magnitude lower than near the source.  
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Fig. 10. /n() phase solution differences compared to hemisphere model 

2. Functionally Graded Materials applications 

in BEM 

2.1. Laboratory model and problem formulation 

Tested wall parameters, measurements and theoretical aspects 

of EIT will be presented. Real, prepared for the experiment brick 

wall presented in figure 11 was 1m height, 1m long and 0.51m 

thick. It was flooded up to half height by water. The 

measurements were made a day after the water was drained. 

Location of electrodes (marked by e1, e2, e3 … e26) and bore-

holes for drying-weighing verification (marked 1, 2 and 3) are 

presented in figure 12. 

Projections angles and measurements corresponds to the 

voltage of 7V with 1kHz frequency applied between pairs of 

electrodes 1-26, 2-25, 3-24, ... 12-15, 13-14 like presented in 

figure 13. 

 

Fig.11. Investigated dumped wall [1] 

 

Fig.12. Investigated dumped wall with 26 electrodes for Electrical Impedance 

Tomography and 3 bore-holes for drying-weighing verification method 

 

Fig.13. Applied projection angles: 1-26, 2-25, 3-24, ... 12-15, 13-14 

Two-dimensional model with 174 (7017) second order 

boundary elements of the damped wall was used. Conductivity 

distribution was interpolated by quadratic function [10]: 

     22

20110000, yxayaxaayx   (16) 

where coordinate x corresponds to wall thickness and y to wall 

height. 

Coefficients a00, a10, a01, a11 and a2 where calculated in 

inverse problem solution in accordance with data measured in 

Impedance Tomography. 

In a simple BEM usage fundamental solutions are known and 

tabulated. For Functionally Graded Materials it is necessary to 

find the adequate Green's function [8, 11, 13, 14, 19, 20]. 

Green’s function in two dimensions is derived for graded 

material represented by damped wall. The corresponding 

boundary integral equation formulations for this problem is 

derived, and the two-dimensional case is solved numerically. 

2.2. Theoretical considerations 

Boundary Integral Equation (BIE) [10,17] corresponding to 

the problem is: 
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Comparing the above equation to the similar BIE for 

homogenous materials [10,17] two new elements can be found. At 

first (r) in equation (2) represents conductivity spatial distribution 

and secondly G* stands for so called modified Green function for 

non-homogenous materials. Curve Γ corresponds to the wall 

boundaries. 

Modified Green function G* is not a Laplace equation 

fundamental solution. The differential equation for a potential 

function  defined on a surface S bounded by a wall boundary 

curve Γ, with an outward normal n, can be written as: 

    .0 Φr  (18) 

The kernels are based on the Green's function G* defined as: 

       r'r,r'r,r   *G  (19) 

where: r and r' are load and source points respectively. 

Following E. Kurgan [11] or A. Sutradhar and G. H. Paulino 

[13,14,19,20] and assuming that conductivity will fulfil a 

condition: 

    02  r  (20) 

we will receive applicable solution: 
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where G is a typical Green's function for Laplace equation [10, 

17]. Matrices elements A and B [10, 17] can be written as follows: 
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3. Remarks and conclusion 

3.1. Mammography 

All three types of infinite boundary elements: mapped, 

reciprocal decay functions and exponential decay functions offer 

almost identical results, similar to these achieved by using the 

standard model, which contains only finite boundary elements. 

The role of the infinite elements is to receive the correct solution 

in the area of interest, so all additional parts like the bottom 

cylinder in the standard model (Fig. 3) as well as the ring built 

from infinite elements around the hemisphere (Fig. 4 and 5) are 

neglected.  

The advantages of using infinite elements are to avoid 

incorrect and unknown boundary conditions such as those on the 

surface between breast and chest in the breast models, to shorten 

the calculation time and to keep the accuracy similar to the 

standard solution (based on mesh extension, in our case mesh 

outside the hemisphere). All extended models were built from the 

same number of standard 8-node, second order, quadrilateral 

boundary elements. Mesh density on the additional surface related 

to the cylindrical part of the model was lower than on the 

hemisphere surface. This is a typical practical solution, as the 

additional part represents the region outside the zone of interests. 

Reducing the number of mesh elements almost to 50% is 

fundamental to the inverse problem solution when the forward 

problem has to be calculated many times. The implementation of 

infinite boundary elements into the boundary element method 

improves the computational efficiency in the breast model almost 

4 times and enables us to avoid the problem of setting incorrect 

boundary conditions. 

The forward problem calculations took 4 minutes and 47 

seconds in the case of 4160-node model. The model with infinite 

elements built, in total, from 2625 nodes, with incorporated 

mapped infinite boundary elements, and the model built from 

2753 nodes, with the decay function infinite elements, took 

respectively 1 minute and 24 seconds and 1 minute and 30 

seconds.. The reverse problem solution used to find the inner 

image of the analyzed objects requires calculating the forward 

problem many times. 

The process of incorporating infinite elements into BEM 

calculation scheme is quite logical and generally related to the 

incorporation of new infinite basic approximation function and all 

further steps for its implications. 

The main disadvantage of using infinite boundary elements is 

that not all mesh generators allow us to create a pure quadrilateral 

mesh or to distinguish separately both the areas covered by the 

most popular triangular elements and the infinite part covered by 

quadrilateral 8-node elements. Moreover, the authors are not 

familiar with the generator which would create 5-node infinite 

quadrilateral mapped elements. Therefore, a self-made generator 

was used to build a mesh containing only quadrilateral elements.  

Fortunately, in optical mammography light sensors and 

sources are located in a special hemispherical or cone shape 

constant form, so the effort related to the manual creation of the 

infinite element mesh, which surrounds the area of interest, has to 

be made only once. 

3.2. Damped walls 

Measured potential values were compared to these calculated 

with BEM (used to solve forward problem) and additionally with 

calculation results taken from FEM. 

Inverse problem solution required 7 iterations to find 

interpolation coefficients related to investigated conductivity 

function (16). 

Potentials - measured and calculated – for selected projection 

angles: 7 (electrodes 7-20) and 10 (electrodes10-17), as defined in 

figure (13), are presented in figures 14 and 15. Projection 7-20 

presents the best achieved results and projection 10-17 the worst. 

 

Fig.14. Successive EIT measurements, BEM 2D calculation and FEM 2D calculation 

results corresponding to the voltage of 7V with 1kHz frequency applied between pairs 

of electrodes 7-20 

 

Fig.15. Successive EIT measurements, BEM 2D calculation and FEM 2D calculation 

results corresponding to the voltage of 7V with 1kHz frequency applied between pairs 

of electrodes 10-17 

Application of Functionally Graded Materials theory into 

Boundary Element Method used to find spatial distribution of 

humidity and salinity into damped walls seems to be better idea 

than using multiregional BEM due to simpler mesh and boundary 

conditions. 

Described method will be used to find thomographic image of 

dumped wall. 

Most of articles discusses objects where FGM changes their 

properties only in one direction [8, 13, 19, 20].  

Damped wall presented above represents the graded material 

where humidity and salinity varies in at least two directions 

(corners of the buildings will require 3 dimensional model). 
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Achieved results are quite promising although are worse than 

ones received during theoretical calculations based on flat 

capacitor model with known analytical solution or dumped wall 

model calculated by BEM and FEM where material properties 

varied only in one direction. 

Possible reason of low accuracy in some projection angles (see 

Fig. 15) can be caused by the insufficient data associated with too 

few angle projections. Possessed measurements are more suitable 

for the model where conductivity distribution varies only in one 

direction corresponding to the thickness of the wall and not its 

height. 

Next stage will be to calculate theoretical model of the wall 

where material properties varies in two directions x and y (along 

wall thickness and height respectively) and compare FEM and 

BEM results. 

We believe that new measurements which will include all 

possible projections angles allows us to receive results with much 

better accuracy. 

Final model will also include infinite boundary elements to 

avoid an unknown height of wall humidity and possible related 

errors. BEM is known to be well suited to handle open boundary 

models containing infinite elements. 
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