
50      IAPGOŚ 2/2017      p-ISSN 2083-0157, e-ISSN 2391-6761 

artykuł recenzowany/revised paper IAPGOS, 2/2017, 50–53 

DOI: 10.5604/01.3001.0010.4838 

PERFORMANCE ANALYSIS OF NATIVE AND CROSS-PLATFORM MOBILE 

APPLICATIONS 

Paweł Grzmil, Maria Skublewska-Paszkowska, Edyta Łukasik, Jakub Smołka 
Lublin University of Technology, Institute of Computer Science 

Abstract. This article presents the performance analysis of a cross-platform mobile application implemented with Xamarin and two native applications for 

Android and iOS platforms. The results concerning the time analysis for selected activities were compared in order to determine whether cross-platform 
tools are worth using in mobile application development. Native applications achieved better performance, however in some cases the cross-platform 

approach allows for significant development time reduction without deterioration in user experience. 

Keywords: mobile applications, cross-platform mobile applications, performance analysis of mobile applications development 

ANALIZA WYDAJNOŚCI NATYWNYCH I WIELOPLATFORMOWYCH APLIKACJI MOBILNYCH 

Streszczenie. Artykuł przedstawia analizę wydajności mobilnej aplikacji wieloplatformowej utworzonej za pomocą technologii Xamarin oraz dwóch 

natywnych dla platformy Android i iOS. Wyniki dotyczące analizy czasów wykonywania wybranych czynności zostały porównane, aby odpowiedzieć na 
pytanie, czy warto używać rozwiązań wieloplatformowych w wytwarzaniu aplikacji mobilnych. Aplikacje natywne osiągnęły lepsze wyniki, jednakże w 

pewnych scenariuszach wykorzystanie technik wieloplatformowych pozwoli na znaczne oszczędności czasu, bez spadku poziomu wrażeń odbieranych przez 

użytkownika. 

Słowa kluczowe: aplikacje mobilne, wieloplatformowe aplikacje mobilne, analiza wydajności wytwarzania aplikacji mobilnych 

Introduction 

The goal of any mobile application developer is to provide 

applications to the widest possible audience. In view of the 

structure of the mobile operating systems market and the lack of 

compatibility between them, applications must be prepared for 

each platform separately. The specificity of the market rewards the 

simultaneous  delivery of applications for all systems. For this 

reason, the development team must be divided into sub-teams 

responsible for the development of each version. This contributes 

to an increase in the number of programmers developing the 

application, and translates directly into an increase in the cost of 

the project. It is obvious that from a business point of view, 

reducing costs and delivering applications as soon as possible is a 

priority in decisions about the type of software produced. To meet 

these needs, methods of producing cross-platform applications 

have appeared. Thanks to their application, the application is 

implemented once, but can nevertheless be run on multiple 

systems. This allows to cut costs by shortening the development 

time and reducing the development team [2]. 

The purpose of this article is to analyze the performance of 

mobile applications produced natively and the cross-platform way. 

Three mobile applications were created: one dedicated to the iOS 

platform (implemented in the Objective-C programming 

language), one dedicated to the Android platform, and a cross-

platform one, implemented in the Xamarin environment. The 

analysis covers typical tasks in mobile applications, i.e. numerical 

calculations, file access, downloading an image from the Internet 

and determining location. 

1. Problems with generating mobile applications 

Regardless whether applications are created using the native 

or  multi-platform approach, programmers and designers face 

similar challenges during the development process. The most 

common problems include [2, 8]: the limited resources of mobile 

devices, wireless communications and the variety of mobile 

devices. 

1.1. Limited resources 

Year after year, mobile devices become more efficient, and 

their screen resolution increases. To maintain low weight and 

dimensions, particularly the thickness, the device’s battery is 

considerably limited in size. Accordingly, the process of creating a 

mobile application requires considerations of optimizing the 

energy use. Users are reluctant to use applications that cause 

significant battery drain. Designing the application logic should 

first and foremost cover the planning activities that the application 

carries out in the background, the manner it communicates with 

the server or the limiting CPU-intensive tasks. 

1.2. Wireless communication 

The most important feature of the smartphone is the ability to 

use multiple wireless communication links. Besides GSM phone 

calls and communication with other devices via Bluetooth it is 

also possible to access the Internet via mobile HSDPA and LTE 

networks, or by the conventional Wi-Fi network. The 

implementation of each route, depending on requirements, is only 

one problem. Wireless data transmission is characterized by the 

presence of interference, errors in communication and large 

differences in bandwidth. Therefore, a major challenge is to 

ensure smooth operation of applications regardless of the 

connection type and quality. Wireless networks are vulnerable to 

attacks and therefore, while designing applications that operate on 

sensitive data, one should be particularly careful to ensure 

encryption and authentication. 

1.3. The variety of mobile devices 

There is a great variety of mobile devices on the market. Both 

Android and iOS support a wide range of sizes, aspect ratios and 

screen resolutions. From the 4-inch mobiles at the lower end, via 

high-end models of about 5-inch high pixel density screens, to  

large tablets in which the resolution reaches up to the 4K. 

Regardless of the device type, mobile applications should work 

correctly. The set of internal device components is not 

standardized. By creating a mobile application that uses a 

particular built-in sensor, one must handle the scenario where 

there is no such sensor in the device (or it is damaged). 

2. Multi-platform applications in the Xamarin 

environment 

A cross-platform mobile application is designed to run on 

many mobile systems. Such applications are usually created using 

technologies that provide an additional layer of abstraction above 

the system API, uniform for each platform [7]. 

The Xamarin Platform is a solution for creating cross-platform 

and native applications using the C# programming language. It 

was developed by the creators of Mono, Mono Touch and Mono 

for Android - implementations of the .NET Framework for Linux, 

iOS and Android correspondingly. Xamarin supports application 



p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 2/2017      51 

development for Android, iOS and Windows Phone. In February 

2016, Microsoft took over Xamarin and at the same time open-

sourced the whole platform [4]. The technology offers two ways 

to create cross-platform applications. 

Xamarin Native is an approach that uses Android and iOS 

SDKs, which have been mapped to C# classes. Creators provide 

almost one hundred percent coverage of the Android and iOS API. 

Because of this, it is possible to realize everything in Xamarin that 

one can do in a native application. In this approach, the user 

interface is created separately for each platform, using the 

appropriate solutions for each of the systems [10]. 

The second approach to creating applications is using Xamarin 

Forms. This is a library that provides a platform-independent 

programming interface. It is thus possible to achieve a maximum 

amount of code shared between platforms. The application 

interface is created once for all platforms in the XAML language, 

using shared controls library. When the application is running, 

they are mapped to native components of the platform. This 

allows to achieve native performance and quality of the user 

interface [5]. 

These solutions have their advantages and disadvantages. 

Preparing a user interface in Xamarin Native requires more time, 

but at the same time provides full control over the views structure. 

Xamarin Forms allows a much higher degree of code sharing 

between platforms. The manufacturer recommends using the 

Native approach in applications that have complicated GUI and 

require use of multiple functions associated with the system API. 

Xamarin Forms is proposed for use in situations when the time of 

product development and code sharing is more important than a 

robust user interface [11]. 

The basic and most important advantage of cross-platform 

application development is shortening the development time. This 

allows for faster delivery of applications to stores and thus to 

users. Shortening production contributes significantly to the 

reduction of the project cost. Saving is also achieved by reducing 

the number of teams – creating a cross-platform application 

instead of two or more native ones it is enough to hire one team of 

programmers. One application means one set of technologies, 

tools and additional libraries used during the software 

development process. This simplifies the management of changes 

in the later stages of the application’s life cycle. Sharing code 

between applications makes it easier to provide the same 

functionality on all supported platforms. Also, in the case of 

change of requirements, work on updating needs only be 

performed once. If you add a supported platform, the conversion 

of a hybrid application is much faster and easier than creating 

a native solution from scratch. Depending on the knowledge and 

experience of the team, the implementation of cross-platform 

technology can be quite effective. For example, if the 

programmers are familiar with .NET, it will be easier for them to 

get to know Xamarin than to learn Objective-C and iOS SDK. 

The most often mentioned disadvantage of hybrid solutions is 

their lower performance compared to native methods. In the case 

of technologies based on running applications in a browser, this 

problem is particularly noticeable [6]. Cross-platform applications 

run slower because of loading the required runtime and numerous 

libraries at the beginning. Typically, technologies that enable the 

creation of hybrid applications provide their own wrapper 

interface for functionality offered by the system. Due to the 

differences in operating systems for mobile devices, often a cross-

platform API provides a set of functionality that is the common 

for all supported platforms. Potentially, there may be some gaps in 

relation to the native API [9]. To achieve the performance and 

aesthetics of the user interface similar to native applications, it 

may be necessary to adjust some elements specifically for a 

particular platform. As with any new solution, developers need to 

have time to familiarize themselves with the technology used or 

may need some training. The use of hybrid methods in creating 

applications introduces a dependency on an external library.

This can cause problems with support or occurring errors. One 

should also be aware that in creating a cross-platform application 

one may use technologies and languages not provided by the 

system manufacturer. Software developed in this way can have 

unforeseeable and difficult to detect errors [1, 2]. 

3. The performance analysis of native and cross-

platform applications 

In order to compare the performance of mobile applications 

created natively and in a hybrid-fashion, an examination was 

carried out to measure execution times of selected tasks. For the 

experiments the Android and iOS systems were selected due to 

their largest market share. Globally, both systems are installed on 

95% of mobile devices in the world [3]. A cross-platform 

application has been created in the Xamarin environment. The 

choice of this technology was dictated by its high popularity and 

rapid growth [4]. 

The study was divided into 4 parts. Time is the element having 

the greatest impact on the user experience resulting from the use 

of a mobile application. Each of the experiments concerns another 

area of the system API use:  

 numerical calculations – the test measured the time to 

calculate the number π to ten thousand decimal places; 

 saving and reading from a file – the test measured the writing 

and reading times of a text file containing the result of the 

calculation of  the number π from the previous test. The data 

to be written to the file are calculated once and kept in 

memory. The calculation time is not included in the result of 

the experiment; 

 network support – the test measured the time needed to 

download from the Internet a large graphic file (about 7 MB). 

In the study, each application uses the same file placed on a 

publicly accessible server. Smartphones were connected to the 

same Internet connection via Wi-Fi; 

 determination of location – the test measured the time to 

determine latitude and longitude using the mobile phone's 

sensors. In modern mobile devices the location can be 

determined using the GPS system, the BTS transmitter 

location or on the basis of the available Wi-Fi networks. In the 

absence of the choice of location method in iOS, the test in 

both systems was carried out using the default system settings. 

The time was counted from the moment of execution of the first 

instruction of the application logic. Updating the user interface 

and presentation of the result was not included in the results. For 

each study a separate view was prepared in the application. In 

order to simulate conditions closest to the real ones, every test run 

is preceded by re-entering the appropriate screen in the 

application. 

Six test applications were set up for the study – three for each 

system: native, cross-platform using the Xamarin Native approach 

and cross-platform using the Xamarin Forms libraries. Due to the 

differences in the systems architecture and the performance of the 

mobile components, the results obtained in the study will be 

compared only within the system platform. Figure 1 shows 

a comparison of the user interface in the native and multi-platform 

application. 

In order to ensure the reliability of the results, each test was 

carried out with attention to the repeatability of the conditions. 

Applications ran on the same smartphones. For Android it was the 

LG G4, and for iOS – iPhone 6 16GB. In order to use all features 

of the system, the applications were tested on the latest operating 

system versions available for the devices. In the case of Android it 

was Android 6.0 “Marshmallow”, and for iOS it was version 

9.3.2. Applications were built with the “release” compiler setting 

and installed on the phone. Each test was performed 20 times for 

each system and each application. The networking tests were 

made using the same connection. Location tests were performed in 

the same location. 



52      IAPGOŚ 2/2017      p-ISSN 2083-0157, e-ISSN 2391-6761 

 

Fig. 1. Comparison of the user interface of a native application for Android (left) and 

a cross-platform one (right) 

4. Results of analysis 

The analysis was divided into subsections – one for each test. 

4.1. Computing performance 

Table 1 shows the results of the computing performance test. 

In both systems, native applications coped with the test much 

better than the cross-platform ones. However, the difference 

between the results of the native and cross-platform applications is 

much higher on Android. The calculations were performed about 

five times faster natively than in the cross-platform fashion. In the 

case of iOS, this difference was approximately 60%. 

Table 1. Results of the computing performance study 

 Android [s] iOS [s] 

A
v

er
ag

e 

co
m

p
u
ti

n
g

 

ti
m

e
 

Native 4.515 3.215 

Xamarin Native 22.315 5.116 

Xamarin Forms 20.804 5.121 

4.2. File access 

The results of the file write and read speeds are described in 

Table 2. In the file read test the Android native application turned 

out to be the slowest, but in other tests both multi-platform 

applications achieved worse results. The differences between the 

application versions are even several times, but the results are in 

milliseconds, so in real-life use these differences may not be so 

important. 

Table 2. The results of the file read performance test 

 
Android 

[ms] read 
Android 

[ms] write 
iOS [ms] 

read 
iOS [ms] 

write 

A
v
er

ag
e 

ti
m

e 
 

Native 26.502 2.722 0.714 16.945 
Xamarin 

Native 5.114 6.751 1.484 18.475 

Xamarin 

Forms 8.256 10.309 5.614 21.246 

4.3. Image downloading 

Table 3 shows the results of the network connection 

performance test. All applications achieved similar results. The 

differences are insignificant. They are most likely caused by 

temporary variations in the connection bandwidth, that was used 

for the test. 

Table 3. Results of testing the download speed of an image. 

 Android [s] iOS [s] 

A
v
er

ag
e 

d
o
w

n
-

lo
ad

 t
im

e
 

Native 6.853 6.726 

Xamarin Native 6.667 6.476 

Xamarin Forms 7.039 6.830 

4.4. Determining location  

The results of the time to location fix (TTF) test are presented 

in Table 4. The most important is the scale of the results 

difference between the two systems. Android determined the 

location within a few seconds whereas iOS needed for it a few 

tens of milliseconds. As in previous tests, native applications 

achieved the best results. 

Table 4. Results of the determining location test 

 Android [s] iOS [ms] 

A
v
er

ag
e 

T
T

F
 

Native 3.196 12.109 

Xamarin Native 9.617 14.363 

Xamarin Forms 4.589 52.136 

5. Conclusions 

The very rapid development of the mobile market creates a 

huge demand for mobile applications. Among mobile operating 

systems the largest share falls to Android and iOS. They are 

installed on 95% of all mobile devices [3]. For software 

developers the need to reach the largest possible audience is 

obvious. In the current situation the market requires that 

applications be produced for both platforms. However, the 

production of native applications is quite expensive. Xamarin, by 

providing the ability to create cross-platform software, can 

significantly save time and resources. 

Running the same program on many systems had to be paid 

for by certain compromises. Analyzing the results of performance 

comparison between native a hybrid applications, one can easily 

see the differences in the speed of implementation of the basic 

tasks. Tables 1–4 and Figures 2 and 3 present the results of a study 

broken up with regard to system platforms. 

 

0

5

10

15

20

25

30

Native Xamarin Native Xamarin Forms

 

Fig. 2. Results of tests on the Android platform 



p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 2/2017      53 

In the network performance test the differences between the 

particular versions of the applications are negligible. The native 

iOS application achieved better results in every test compared to 

hybrid applications. 

 

0

10

20

30

40

50

60

Native Xamarin Native Xamarin Forms

 
Fig. 3. Results of tests on the iOS platform 

On Android only the file reading test came out worse off than 

in the multi-platform application. On the Google OS there are also 

more significant differences between the application versions  than 

on iOS. In the computing performance test the native iOS 

application was approximately 60% faster than the hybrid, while 

on Android this test natively executed five times faster. Similarly, 

in the file recording test iOS performed natively about 10% faster, 

while the Android hybrid application performed the test almost 

three times more slowly. It should be noted that in the case of the 

file access and location determination tests in the iOS the results 

were counted in milliseconds, so that even several times difference 

in performance may be imperceptible to application users. 

The Xamarin Platform performs very well in many situations. 

If one is aware of the disadvantages of cross-platform applications 

and the characteristics of the project allow to accept them, then 

Xamarin is worth using. The interface created by this technology 

is almost as good as the native solution. This is all the more 

important given that users expect from an application an aesthetic 

and smoothly-functioning interface. The Xamarin Platform offers 

the creation of high-quality products, while allowing for 

shortening the delivery to market time, and thus also for reducing 

costs. 

Bibliography 

[1] Corral L., Janes A., Remencius T.: Potential advantages and disadvantages of 

multiplatform development frameworks – A vision on mobile environments. 

Procedia Computer Science 10/2012, 1202–1207.  

[2] El-Kassas W. S., Abdullah B. A., Yousef A. H., Wahba A. M.: Taxonomy of 

Cross-Platform Mobile Applications Development Approaches. Ain Shams 

Engineering Journal 8(2)/2017, 163–190. 

[3] Epstein Z.: September data shows sharpest iOS market share drop in months as 

Android gains. http://bgr.com/2015/10/01/iphone-market-share-q3-2015-

android/ (available: 16.05.2016). 

[4] Foley M. J.: Microsoft open sources Xamarin's software development kit. 

http://www.zdnet.com/article/microsoft-open-sources-xamarins-software-

development-kit/ (available: 21.05.2016). 

[5] Jensen D.: Xamarin.Forms Succinctly, Syncfusion Inc., 2015.  

[6] Kataria M.: Native vs cross platform development – Performance & limitations. 

https://www.simform.com/blog/native-vs-cross-platform-development (avaible: 

26.05.2016). 

[7] Nitze A., Schmietendorf A.: Cross-Platform Mobile Application Development, 

ASQT, 2013.  

[8] Redda Y. A.: Cross platform Mobile Applications Development. Institutt for 

datateknikk og informasjonsvitenskap, 2012.  

[9] Optimus Information, Cross-Platform Framework Comparison: Xamarin vs 

Titanium vs PhoneGap, 

http://www.optimusinfo.com/cross-platform-framework-comparison-xamarin-

vs-titanium-vs-phonegap/ (avaible: 26.05.2016). 

[10] Xamarin, Introduction to Mobile Development.  

https://developer.xamarin.com/guides/cross-

platform/getting_started/introduction_to_mobile_development/ 

(avaible 28.05.2016). 

[11]  Xamarin, Which Xamarin approach is best for your app? 

https://www.xamarin.com/forms (avaible  28.05.2016). 

 

 

Eng. Paweł Grzmil  

e-mail: pawel.grzmil@gmail.com 

 

Graduate of Computer Science at the Lublin 

University of Technology. From 2012 to 2014 

Microsoft Student Partner and President of the 

scientific circle Grupa.Net at the University. Organizer 

of the IT Academic Days conference there and speaker 

at the Check.it conference. Professional developer of 

mobile applications. 

 

Ph.D. Eng. Maria Skublewska-Paszkowska 

e-mail: maria.paszkowska@pollub.pl 

 

Academic employee at the Institute of Computer 

Science, Faculty of Electrical Engineering and 

Computer Science at the Lublin University of 

Technology. Received her master's degree there. 

Obtained her doctoral degree at the Silesian University 

of Technology. Her research activities include: traffic 

acquisition methods, 3D motion data analysis, 3D 

algorithms, mobile programming 

 

Ph.D. Edyta Łukasik 

e-mail: e.lukasik@pollub.pl 

 

Graduated in mathematics at the Marie Skłodowska-

Curie University in Lublin. Received her Ph.D. from 

the Faculty of Mathematics, Physics and Computer 

Science there. Since 1998 member of the academic 

staff of the Lublin University of Technology. Her 

research interests are mainly programming languages 

and algorithmization, data structures, numerical and 

optimization methods, mobile applications as well as 

acquisition methods of 3D motion. 

 

Ph.D. Eng. Jakub Smołka 

e-mail: jakub.smolka@pollub.pl 

 

Research worker at the Institute of Computer Science, 

Faculty of Electrical Engineering and Computer 

Science at the Lublin University of Technology. 

Earned his master's degree there, and his doctoral 

degree at the Silesian University of Technology. His 

research activity is in the area of processing digital 

images, in particular their segmentation and 

compression, 3D motion analysis and mobile 

programming. 

 

otrzymano/received: 20.06.2016 przyjęto do druku/accepted: 01.06.2017

 


