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Abstract. In this paper testing for revealing data structure based on a hybrid approach has been presented. The hybrid approach used during the testing 

suggests defining a pre-clustering hypothesis, defining a pre-clustering statistic and assuming the homogeneity of the data under pre-defined hypothesis, 
applying the same clustering procedure for a data set of interest, and comparing results obtained under the pre-clustering statistic with the results from 

the data set of interest. The pros and cons of the hybrid approach have been also considered. 
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TESTOWANIE WYSTĘPOWANIA STRUKTURY DANYCH W OPARCIU 

O PODEJŚCIE HYBRYDOWE 

Streszczenie. W pracy tej przedstawiono testowanie występowania struktury danych w oparciu o podejście hybrydowe. Podejście to, podczas testowania 

wymaga zdefiniowania hipotezy wstępnego klastrowania; założenia homogeniczności danych na podstawie zdefiniowanej „statystyki”; zastosowania tej 

samej procedury klastrowania dla interesującego zbioru danych oraz porównania wyników uzyskanych na podstawie statystyki z wynikami uzyskanymi 
z interesującego nas zbioru danych. Zalety i wady podejścia hybrydowego zostały również rozważone. 

Słowa kluczowe: hipoteza wstępnego klastrowania, testowanie struktury danych, występowania struktury 

Introduction 

Cluster analysis serves as a tool for finding groups of objects 

in data sets. There are three notoriously hard problems in cluster 

analysis: the estimation of a number of clusters, checking whether 

the data set to be clustered is actually homogeneous or not and the 

validation of the clustering results.  

When clustering operation is applied to a set of data, objects in 

it are classified whether or not the data exhibit a true or natural 

grouping structure. If the unknown structure of the data is to be 

discovered, artificial clustering is not acceptable. Moreover, if the 

data do not possess any group structure and clustering is applied 

without the testing for absence/presence of data structure, the 

output of a clustering can provide a misleading group indication. 

Therefore, the logical starting point for a cluster analysis must be a 

test for revealing the group structure. 

In most applications, technical systems performing a 

clustering operation do not analyze its necessity. Thus, it is typical 

in automatic visual inspection systems [1], automatic event 

detection from video sequences [2], speaker clustering aided by 

visual dialogue analysis [3]. The performance of the clustering 

operation is erroneous when the data represent one cluster, while 

the technical system is “forced” for the automated clustering. 

Therefore, testing for revealing the data structure is the main 

objective of this paper. 

The hybrid approach used during the testing process at first 

suggests defining a pre-clustering hypothesis. The second step is 

to define a pre-clustering statistic and to assume the homogeneity 

of the data under pre-defined hypothesis. Then the same clustering 

procedure should be applied to a data set of interest and results 

obtained under the statistic are to be compared with the results 

from the data set of interest. 

Since testing for revealing the data structure is the main 

objective of this article, the problem of choosing the attribute 

space and the problem of discovering the optimal number of 

clusters will not be considered. 

1. Related works 

The following validation tests have been proposed to reveal 

the group structure. Tests of the Poisson model have been based 

on several assumptions, namely, the number of pairwise distances 

less than a specified threshold [4] or the largest nearest neighbor 

distance within a set of objects [5]. Some tests are based on the 

predefined thresholds or indicators searching for “gaps” in a data 

under the Poisson and unimodal models [6]. Alternative 

approaches specifying the presence of a structure in the data have 

been presented in [7] and [8]. These tests are based on the 

comparison of the calculated coefficients obtained from the 

original data and those from artificial pseudo-generated 

homogeneous data in conjunction with the validity of clustering 

indices.  

Tests for revealing the group structure in the data are not 

usually employed in practical clustering applications [9]. As it was 

noticed in [10], this situation is caused by the users’ strong 

presumption that their data do contain group structure. However, 

most tests that use the sequential calculation of a coefficient 

assuming homogeneity of data and thereby forming a set of 

statistics are based on the users’ specified thresholds while others 

are tailored mainly to the normal density situations with globular 

clusters of the same variance. Moreover, some of these tests use a 

number of assumptions about the form of the cluster, objects 

distribution or data type. However, the biggest problem is ignoring 

the tests and increasing attention that is paid in recent years to 

providing ways of testing the number of clusters that are more 

formal and obvious than tests described above. Nevertheless, the 

subject has some practical interest and, therefore, the test for 

revealing the data structure remains an integral part of clustering 

procedure which cannot be omitted. 

2. The general setup 

The set of n d-dimensional data objects 
1{ , , }nX x x  in 

Euclidean space d is given, where X  d and each object belongs 

to the set , where  is a non-empty, finite set called the data. 

Then there is a clustering method C, so that 

1( , ) { , , }kC X k C C  with k K , and, for 1, , : ii k C X  . In 

our case, C is a partitioning method assuming that i jC C  Ø for 

any i j . Furthermore, a set of p values in S (pre-clustering 

statistic) is given, so that ( , ( , ))S X C x k d under pre-clustering 

hypothesis 
1T  serves as an additional parameter for validation 

purpose (see Section 3). 

For a fixed number of clusters (default 2k  ) and fixed 

objects in the data set X, a test for revealing the data structure is 

defined by estimating the 
*

obsp -value.  
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where D is average pairwise distance within a data set X and it 

could be estimated as follows: 
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d1 and d2 are average pairwise distances within clusters C1 and C2 

respectively and are computed as follows: 
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In practice, for convenience, the categorical (qualitative) value of 
*

obsp  could be changed to the numerical (quantitative) value obsp  

and written in the form of real numbers. 

If *

obsp negative  or 0obsp  , and 
obsp S , this shows the 

homogeneity of data X, which therefore suggests that clustering 

needn’t be performed. Otherwise, the data have true, natural group 

structure and the use of the clustering operation is justified. 

3. Testing for manifestation of data structure 

Pre-clustering hypothesis 

For running the test for revealing the data structure, 

pre-clustering hypotheses need to be determined. The basis 

of a test is a statement of “no structure” or data randomness that 

is called a pre-clustering hypothesis. This requires researchers’ 

judgment, because it depends on what constitutes “homogeneity 

of data” in the given application.  

Let 
1 1{ , , }nT y y  d be n d-dimensional observations 

which represent n data objects under investigation and which are 

to be analyzed assuming the homogeneity of group structure. 

Probabilistic models should be used and therefore 
1, , ny y  are 

considered as variables of n independent d-dimensional random 

vectors
1, , nY Y  of unimodal distribution f(y), where mode of a 

distribution attains its maximum. In Figure 1 a homogeneous 

sample affirming the pre-clustering hypothesis has been depicted. 

 

Fig. 1. Data sample under the pre-clustering hypothesis 

The underlying assumption of the pre-clustering hypothesis is 

that there is only one general cluster in the data set. Furthermore, 

this hypothesis allows for the possibility that data objects are 

closer to one another when they are located nearer to the center 

of the cluster, then they are on the boundary, being thus in practice 

similar to normal distribution as it is shown in Figure 1.  

The pre-clustering hypothesis has to be defined in such a way 

that its parameters can be easily estimated by the different types 

of data (numerical, categorical, binary) using different partitioning 

clustering algorithms (k-medoid, k-kernel, k-median, etc.). 

 

Pre-clustering statistic 

If pre-clustering hypothesis 
1T  is already defined, next step 

is to determine a model, which assumes the data homogeneity. 

In statistical modeling, it is common practice that models are 

created after a study of data, and then, for the adequacy of these 

models, they are assessed on different similar data sets which 

are believed to have the same properties as the original one. With 

this in mind, pre-clustering statistic S under pre-clustering 

hypothesis is determined as follows:  

1) Calculate the p-value based on the pre-clustering 

hypothesis
1T .  

2) Calculate the same p-value for a large number (say, repN ) 

of data sets simulated independently under the pre-clustering 

hypothesis of no clustering and let these values 

be 1 2{ , , , }
repNS T T T . A number of simulated data sets repN  

is often purely heuristic. Data sets have been simulated 

according to normal unimodal distribution with a change 

in the standard deviation ranging 
min max{ , , }d    where 

min  

is an arbitrarily positive value, however small, but not zero; 

max  is an arbitrarily positive value that in theory tends 

to infinity, however in this article it is limited to 
max 2  , 

d  is a value that represents a size of a step. A graphical 

representation of pre-clustering statistic is shown in Figure 2. 

 

Fig. 2. Pre-clustering statistic 

From Figure 2 it can be concluded that standard deviation 

increases linearly in proportion to the reduction of p-value. 

It should also be noted that if the pre-clustering statistic is already 

determined, it can be used as a template for testing various data 

sets. 

The pre-clustering statistic is determined by repeated 

estimation of p-values for a data distributed according to Gauss’s 

law that form one globular cluster. The Gaussian cluster has been 

repeatedly generated with different values of standard deviation 

  to form a statistic and thus, p-value’s parameters, namely d1, 

d2, and D have been estimated under k-means clustering (always  

k = 2) separately for each repetition.  

 

Processing steps 

 Run the k-means clustering algorithm for a data set of interest, 

with k = 2. Estimate d1, d2 and D, within a cluster C1, C2 and X 

respectively. 

 Define the pre-clustering statistic S under the pre-clustering 

hypothesis 
1T  or use the already defined statistic as 

a predesigned template. 

 Compare obsp – value obtained from the set of interest with 

a statistic S which indicates pre-clustering hypothesis and thus 

reveals data structure.  
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The calculation of each individual p-value, while forming the 

S pre-clustering statistic, is made according to formula (1). 

The difference between p and obsp  values is that the first is 

calculated to form the statistic, whereas the second is calculated 

for the set of interest. The proposed approach for testing 

for revealing the data group structure is shown in Figure 3. 

 

Fig. 3. Data clustering procedure for revealing group structure using the hybrid 

approach 

Example: Let us suppose that we have a two-attribute artificial 

data set 
1{ , , }nX x x  with 100 objects and with normal 

distribution that is shown in Figure 4. Let us find out if the data set 

possesses some group structure by testing for revealing the data 

structure. 

 

Fig. 4. Artificial data set 

Thus, at first, the average pairwise distance D within a data set 

X is calculated. The obtained value is equal to D = 3.83. Then data 

clustering based on the partitioning method, namely k-means 

algorithm, is to be performed. The number of clusters is set to be 

two. Then the average pairwise distances d1 and d2 within a cluster 

C1 and C2 respectively are calculated. Therefore, d1 = 1.88, and d2 

= 1.71. The
obsp -value for a given data set is calculated. The 

obtained value 
obsp  is equal to 0.24 or *

obsp positive . Finally, 

we compare 
obsp -value with a pre-clustering statistic S and check 

out the possible revealing of the data group structure. Graphical 

presentation of the test for revealing data structure is shown in 

Figure 5. 

 

 

Fig. 5. Graphical presentation of the result of the test for revealing data structure 

Blue cross hatched area indicates a pre-clustering statistic and 

thus the acceptance of pre-clustering hypothesis. However, as 

Figure 5 shows, the observed obsp  value is located in a red cross 

hatched area and, therefore, 
obsp S  thereby indicates the 

rejection of pre-clustering hypothesis and, thus, the presence of 

group structure and a strong justification of further clustering. 

4. Experimental results 

The test for revealing data structure has been performed for a 

group of data sets, namely: 

Iris data set (150 data objects, 4 attributes, 3 classes), or the 

Iris flower data set, or Fisher’s Iris data set [11] is a multivariate 

data set introduced by Sir Ronald Aylmer Fisher (1936) as an 

example of discriminant analysis, where each class refers to a type 

of iris plant with different sepal/petal length/width. 

Sonar data set (208 data objects, 61 attributes, 2 classes) is the 

data set used by Gorman and Sejnowski in their study of the 

classification of sonar signals using a neural network [12]. The 

first 60 objects in the data set represent the energy within a 

particular frequency band, integrated over a certain period of time. 

The last column contains the class labels. There are two classes: 0 

if the object is a rock and 1 if the object is a mine (metal cylinder). 

Ripley data set (250 data objects, 3 attributes, 2 classes) is the 

nonlinear binary classification problem [13]. The data set consists 

of two classes, where each class represents a bimodal distribution 

of input features, which have been generated from two Gaussian 

mixture distributions with equal covariance. 

Artificial Gaussian Mixture Clusters (GMC) data set (300 data 

objects, 2 attributes) is an artificially generated data set with 

normal distribution and with three widely separated globular form 

clusters. 

http://en.wikipedia.org/wiki/Iris_flower_data_set
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Artificial Single/Double data set (200 data objects, 2 

attributes) is an artificial data set where the number of clusters is 

questionable and which can be considered as one elongated 

cluster, as well as two separate clusters that are close to each 

other. 

Artificial Three Cluster data set (150 objects, 2 attributes) 

shows the normal distribution of objects in two-attribute space. 

The number of clusters is known (k = 3). Clusters are well 

separated and distributed one above the other.  

The test for revealing the data structure with the use of the 

above presented data sets has been shown in Table 1.  

Table 1. Experimental results 

Name of data set 
*

obsp  obsp  

Iris positive 0.27 

Sonar negative -1.36 

Ripley negative -0.16 

Art. GMC positive 1.70 

Art. Single/Double negative -0.47 

Atr. Three Cluster positive 0.91 

 

In the case of Sonar, Ripley and Artificial Single/Double data 

sets, the acceptance of pre-clustering algorithm is justified, 

however Iris, Artificial GMC and Artificial Three Cluster data set 

shows the convincing rejection of a hypothesis.  

Most of the fundamental validation tests for revealing the data 

group structure are based on users’ specified thresholds unlike the 

presented approach. The hybrid test is applied to the real marginal 

distributions, for example skew or data sets with outliers etc. 

Moreover, the hybrid approach is not sensitive to changes of 

implemented data type or other clustering partitioning algorithm. 

However, a few drawbacks of this approach should also be noted. 

One of such drawbacks is the dependence on clustering procedure, 

i.e. on all known drawbacks of partitioning algorithms depending 

on which we use. This causes the inability to analyze all kinds of 

data. The critical cases could be artificially created toy data sets 

informally known as the “half-moons” data sets, where each data 

point belongs to one of the two “half-moons” or linearly non-

separable “ring” or “crater” (the data set consists of a very dense 

“crater” core with a less dense ring surrounding the core) data sets. 

Another important drawback is calculating the pre-clustering 

statistic. If the pre-clustering hypothesis changes a pre-clustering 

statistic, these changes also cause increase in time and resources 

for data group revealing. Nevertheless, the subject attracts some 

theoretical and practical interest and therefore testing for revealing 

the data group structure remains an integral part of clustering 

procedure, which cannot be omitted, and, moreover, it can be a 

viable alternative to the already known validation tests. 
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