
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2017 33

artykuł recenzowany/revised paper IAPGOS, 3/2017, 33–36

DOI: 10.5604/01.3001.0010.5211

COMPARISON OF PROGRAMMING LANGUAGES ON THE IOS PLATFORM

IN TERMS OF PERFORMANCE

Kamil Gut, Maria Skublewska-Paszkowska, Edyta Łukasik, Jakub Smołka
Lublin University of Technology, Institute of Computer Science

Abstract. In 2014, Apple unveiled a completely new programming language for the iOS and OS X platforms. Swift was presented as a modern

programming language, such as: safe, easy to learn and easy to use. This article presents the performance comparison between the Swift and Objective-C
languages. For the purpose of the research, two applications were developed, one in each language, implementing sorting algorithms and data structures

such as arrays, dictionaries and sets.

Keywords: Swift, Objective-C, performance, time of sorting algorithms

PORÓWNANIE JĘZYKÓW PROGRAMOWANIA NA PLATFORMIE IOS POD WZGLĘDEM

WYDAJNOŚCI

Streszczenie. W 2014 roku firma Apple zaprezentowała nowy język programowania na platformę iOS oraz OS X. Swift został przedstawiony jako

nowoczesny język programowania: bezpieczny, łatwy do nauki i prosty w użyciu. Artykuł przedstawia porównanie wydajności języków Swift i Objective-C

biorąc pod uwagę czasy wykonania algorytmów. W celu przeprowadzenia badań powstały w obu językach aplikacje implementujące algorytmy sortowania
oraz operacje na strukturach danych takich jak: tablice, słowniki oraz zbiory.

Słowa kluczowe: Swift, Objective-C, wydajność, czasy algorytmów sortowania

Introduction

The growing demand for mobile devices has contributed to the

creation of modern mobile operating systems. Because of the huge

demand for the expansion of their functionality, these systems

have been equipped with advanced development environments

and libraries in order to increase the efficiency of programmers.

One of these operating systems is iOS, created by Apple. The

factor making a platform attractive for software developers is the

language in which this software is developed. Creators of software

for the iOS platform use the Objective-C language, built in 1983.

It is based on the Small Talk language and is an extension of the C

language, giving the possibility of object-oriented programming.

This language was originally used in many different areas, and

eventually became known as the main programming language

used by Apple. Over time, Objective-C became difficult to

understand for new developers who had not previously dealt with

languages like C or Small Talk. Languages such as Java, C #,

Python or JavaScript have become widely used. They have set

new standards for modern programming languages. Developers

began to complain about Objective-C, which is often regarded as

difficult to learn, and very inconvenient to use. These difficulties

meant that more and more developers creating applications for

iOS and OS X began to shift to software development for

Android, which allows them to use the Java language. Apple could

not afford to completely change the programming language for its

platforms, as that would mean the need to completely rewrite

frameworks such as Cocoa [1] or Cocoa Touch [3]. One way to

solve this problem was introducing the possibility of using another

language while maintaining the option of using code written in

Objective-C.

In June 2014, during the annual WWDC conference, Apple

presented a new programming language for developers who

wanted to create applications for the platforms iOS and OS X. The

new programming language was named Swift [4]. This language

is quite different than Objective-C [2], nevertheless it ensures

compatibility with code written in Objective-C. As a result, Apple

may phase out an earlier programming language, replacing it with

a new one. Immediately after Swift reached a stable version 1.0,

the company began to accept in the App Store applications written

in the new language. Swift had been kept secret until the

announcement at the WWDC conference, which was a big

surprise to the developer community. Apple had to demonstrate to

developers that Swift was worth the extra effort and time required

for learning it. During the presentation, the company claimed that

the language was much more efficient in terms of speed than the

current Objective-C, and had all the features common to modern

new programming languages, being safe, easy to learn and simple

to use.

The aim of the article is to compare the Objective-C and Swift

languages in terms of performance time.

1. Applications

1.1. Applications that implement sorting

algorithms

In order to conduct performance tests, two applications were

developed: one using Objective-C, the other – the Swift language.

The applications have a graphical user interface shown in figure 1,

and were designed to operate on an iPhone 5s.

Fig. 1. Interface of applications implementing sorting algorithms

Both applications implement selected sorting algorithms [6].

The algorithms in Objective-C and Swift were implemented in as

similar a manner as was possible, while maintaining due diligence

to provide a meaningful comparison. Data types such as

NSMutableArray and NSNumber were used deliberately as

counterparts of Array and Int in Swift. Methods available in

language libraries have also been selected accordingly. Also

implemented was the possibility of a choice of test parameters,

such as the number of trials and the number of items to be sorted.

The applications measure the performance time of various sorting

34 IAPGOŚ 3/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

algorithms [5]. If more than one trial is selected, the application

calculates the arithmetic average for each of the sorting

algorithms.

1.2. Applications that use the XCTest library

The second part of the test was to see how much time it takes

to perform operations on data structures such as arrays,

dictionaries and sets. The applications implement additions of

elements, access to the value of the item and item deletion. To

measure the speed of operations performed the XCTest [7] library

was used – the default library for creating unit tests in the Xcode

environment, supporting two compared languages. The

applications do not have a graphical interface. To run them

requires a computer running the OS X system, the Xcode

development environment and a cable to connect the device to a

computer. The results can be read directly from the debugging

console or by going to the "Report Navigator" panel in Xcode.

Due to the use of its XCTest library, each tested method is

activated by default ten times, and the final result consists of the

average time of the ten trials.

2. Research methodology

One way to measure performance is to determine how much

time it takes to perform an operation. The faster the operation is

performed, the higher the performance of the programming

language. For analysis, the sorting algorithms such as quick

sorting (Quick Sort), heap sorting (Heap Sort), sorting by insertion

(Insertion Sort), by selection (Selection Sort), bubble sort (Bubble

Sort) and sorting in the standard library of each tested language

(Foundation) were used [8]. Another part of the study was to

measure the time of the operations performed on data structures

such as arrays, dictionaries and sets.

2.1. Sorting algorithms

Sorting data is one of the fundamental problems of

development. Sorting algorithms seem to be a good way to

compare the performance between programming languages

because their computational complexity is known. Implemented in

both languages studied with due diligence, that is the selection of

the corresponding data types and methods, they are only limited

by boundaries and paradigms of the programming languages in

which they were implemented.

Applications that use sorting algorithms have been compiled

on the corresponding levels of compiler optimisation for each

language, installed and running on the same device. Before

starting the sorting in both one and the other application, the same

parameters were set (the number of items to be sorted and the

number of trials). A trial consisted in generating a random array of

integers of the interval 0 to 4 294 967 298 (unit32.max), then

transferring a copy of the generated array to each of the six sorting

algorithms, followed by sorting. The performance time of each

sorting algorithm in the test was saved. When selecting more than

one trial, the application counts the arithmetic mean of all the

trials for each sorting algorithm. To achieve the most reliable and

system-independent results, 10 trials were made. During the tests

the iOS device worked in the "Aeroplane" mode.

2.2. Operations on data structures

Another way to measure the performance of the Swift

language as compared to Objective-C was to see how much time it

takes to perform operations such as adding, deleting, and access to

an item in the commonly used data structures such as arrays,

dictionaries and sets. Data types were suitably selected, thus for

Swift: Array Dictionary [2] and Set, and for Objective-C:

NSMutableArray, NSMutableDictionary and NSMutableSet [4].

The data structures for both applications were filled with a million

elements of the String and NSString type. Due to the use of the

XCTest library, each unitary method was run ten times. The result

consists of the arithmetic mean of ten trials, just as it did in the

case of tests using sorting algorithms.

2.3. Tests

All tests were carried out on the iPhone 5s with the following

parameters:

 processor: Apple A7 with 64-bit architecture, dual-core,

clocked at 1.3 GHz;

 RAM: 1 GB of RAM;

 internal memory: 32 GB;

 system: iOS 8.3 (12F70).

In the case of the application investigating the sorting time, ten

trials were made with ten thousands of items to sort.

Using applications investigating the time of operations on data

structures, the number of elements which filled the data structures

amounted to a million.

Applications were compiled at the default level of compiler

optimisation for both languages, suggested by the Xcode

environment for the "Release" version. In the case of Swift it

was the Fast [O] level, and for Objective-C – the Fastest, Smallest

[-Os].

Additionally, for applications that implement sorting

algorithms a test was conducted without optimisation. For this

purpose, applications were compiled at code optimisation levels

used during software development. For Swift the level was None

[-O0], and for Objective-C – None [-Onone].

3. Results

In order to visualise the exact results of the tests, graphs with

the obtained results were created. The tables show the calculated

values representing as the quotient the performance time

in Objective-C by the performance time in Swift language.

3.1. Sorting – standard level of optimisation

algorithms

The results for sorting at the standard level of optimisation are

shown in figures 2 and 3 and in table 1.

Fig. 2. Comparing the performance times of the sorting algorithms at the standard

optimisation level (part 1)

Table 1. The ratio of the performance time of algorithms in Objective-C to Swift

for the sorting algorithms

Sorting algorithm Objective-C / Swift

Lib 11.37

Quick 6.40

Heap 23.70

Insert 32.50

Select 17.44

Bubble 12.90

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2017 35

Fig. 3. Comparing the performance times of the sorting algorithms at the standard

optimisation level (part 2)

3.2. Operations on data structures – the standard

level of optimisation

The results of measuring the speed of operations on data

structures are shown in figures 4, 5 and 6. A summary for each

of the data structures can be found in tables 2.

Fig. 4. Comparison of operation performance time – arrays

Fig. 5. Comparison of operation performance time – sets

Fig. 6. Comparison of operation performance time – dictionaries

Table 2. The ratio of the time in Objective-C to Swift for operation on data structures

Data structure Add Access Remove

Arrays 2.04 1.92 3.92

Sets 0.64 1.17 0.49

Dictionaries 2.19 1.74 1.71

3.3. Sorting – without optimisation

The results of the test checking the sorting speed in Swift and

Objective-C in the "Debug" mode are shown in figures 7 and 8

and in table 3.

Fig. 7. Comparing the performance times of the sorting algorithms without code

optimisation (part 1)

Fig. 8. Comparing the performance times of the sorting algorithms without code

optimisation (part 2)

Table 3. The ratio of the performance time of algorithms in Objective-C to Swift

for the sorting algorithms without code optimisation

Sorting algorithm Objective-C / Swift

Lib 0.84

Quick 1.10

Heap 0.97

Insertion 0.68

Selection 1.06

Bubble 0.42

3.4. Operations on data structures – without

optimisation

The results of the test checking the sorting speed in Swift and

Objective-C in the "Debug" mode are shown in figures 9, 10 and 8

and in table 4.

36 IAPGOŚ 3/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

Fig. 9. Comparison of operation performance time without optimisation – arrays

Fig. 10. Comparison of operation performance time without optimisation – sets

Fig. 11. Comparison of operation performance time without optimisation –

dictionaries

Table 4. The ratio of the time in Objective-C to Swift for operation on data structures

without optimisation

Data structure Add Access Remove

Arrays 1.58 2.08 0.16

Sets 0.23 0.52 0.22

Dictionaries 0.18 0.26 0.33

4. Conclusions

Both in the tests using sorting algorithms and in operations on

data structures one can see the advantage of the Swift language in

speed operations. A special role is played here by the Swift

compiler, which is seen in figures 1 and 2, and 6 and 7. The

difference in performance time of the sorting algorithms at

a standard level of optimisation and that without optimisation is

huge. For operations without optimisation on the relevant data

structures: arrays, collections and dictionaries, Objective-C was

much faster. Swift with optimization reached lower execution

times on data structures.

Swift uses static typing, so that the compiler can use the

knowledge about the types to carry out a wide range of

optimisation.

Bibliography

[1] Hillegass A., Preble A., Chandler N.: Cocoa Programming for OS X: The Big

Nerd Rach Guide(5th Edition), Big Nerd Ranch, 2015.

[2] Hillegass A., Ward M.: Objective-C Programming: The Big Nerd Ranch Guide

(2nd Edition), Big Nerd Ranch, 2013.

[3] Kelley J.: Learn Cocoa Touch for iOS, Apress, 2012.

[4] Mathias M., Gallagher J.: Swift Programming: The Big Nerd Ranch Guide, Big

Nerd Ranch, 2015,

[5] Pollice G.: Algorithms in a Nutshell, O’Reilly, 2008.

[6] Wróblewski P.: Algorytmy, struktury danych i techniki programowania, Helion,

2015.

[7] About Testing with Xcode – Apple Developer,

https://developer.apple.com/library/content/documentation/DeveloperTools/Con

ceptual/testing_with_xcode/chapters/01-introduction.html, [15.07.2016]

[8] Framework Foundation, https://developer.apple.com/reference/foundation,

[12.09.2016]

M.Sc. Eng. Kamil Gut

e-mail: kamilgut01@gmail.com

A graduate of the Faculty of Computer Science,

Electronics and Telecommunications of the AGH

University of Science and Technology where he

received his Eng. He also graduated the Faculty of

Electrical Engineering and Computer Science of the

Lublin University of Technology, where he received

his M.Sc. specialization in Web Application. He

interests in market, motor sports, new technologies and

retro gaming. He works as .net developer.

Ph.D. Eng. Maria Skublewska-Paszkowska

e-mail: maria.paszkowska@pollub.pl

Researcher-lecturer in the Institute of Computer

Science at the Faculty of Electrical Engineering and

Computer Science of the Lublin University of

Technology, where she received her M.Sc. She

obtained her Ph.D. at the Silesian University of

Technology. Her research activity is connected with:

motion capture methods, 3D motion data analysis, 3D

algorithms and mobile programming.

Ph.D. Edyta Łukasik

e-mail: e.lukask@pollub.pl

Graduated in mathematics at the Marie Skłodowska-

Curie University in Lublin. Received her Ph.D. from

the Faculty of Mathematics, Physics and Computer

Science there. Since 1998 member of the academic

staff of the Lublin University of Technology. Her

research interests are mainly programming languages

and algorithmization, data structures, numerical and

optimization methods, mobile applications as well as

acquisition methods of 3D motion.

Ph.D. Eng. Jakub Smołka

e-mail: jakub.smolka@pollub.pl

Research worker at the Institute of Computer Science,

Faculty of Electrical Engineering and Computer

Science at the Lublin University of Technology.

Earned his master's degree there, and his doctoral

degree at the Silesian University of Technology. His

research activity is in the area of processing digital

images, in particular their segmentation and compres-

sion, 3D motion analysis and mobile programming.

otrzymano/received: 14.09.2016 przyjęto do druku/accepted: 14.08.2017

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/01-introduction.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/01-introduction.html
https://developer.apple.com/reference/foundation

