
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2017 47

artykuł recenzowany/revised paper IAPGOS, 3/2017, 47–50

DOI: 10.5604/01.3001.0010.5214

APPLYING A Q-GRAM BASED MULTIPLE STRING MATCHING

ALGORITHM FOR APPROXIMATE MATCHING

Robert Susik

Lodz University of Technology

Abstract. We consider the application of multiple pattern matching (Multi AOSO on q-Grams) algorithm for approximate pattern matching. We propose

the on-line approach which translates the problem from approximate pattern matching into a multiple pattern one (called partitioning into exact search).
Presented solution allows relatively fast search multiple patterns in text with given k-differences(or mismatches). This paper presents comparison

of solution based on MAG algorithm, and [4]. Experiments on DNA, English, Proteins and XML texts with up to k errors show that the new proposed

algorithm achieves relatively good results in practical use.

Keywords: text processing, approximate string matching, string algorithms, q-gram

ZASTOSOWANIE ALGORYTMU WYSZUKIWANIA WIELU WZORCÓW OPARTEGO

O TECHNIKĘ Q-GRAMÓW DO WYSZUKIWANIA PRZYBLIŻONEGO

Streszczenie. Rozważamy zastosowanie algorytmu wyszukiwania wielu wzorców (Multi AOSO on q-Grams) do wyszukiwania przybliżonego. Proponujemy

rozwiązanie on-line, upraszczające problem wyszukiwania przybliżonego do wyszukiwania wielu wzorców. Zaprezentowane rozwiązanie umożliwia
relatywnie szybko wyszukiwać wiele wzorców dla odległości Levenshteina (lub Hamminga) z ograniczeniem do k. W artykule porównane jest rozwiązanie

oparte na algorytmie MAG oraz [4]. Badania eksperymentalne przeprowadzone na zbiorach DNA, English, Proteins and XML z różnymi wartościami

k wykazały, że zaproponowany algorytm osiąga relatywnie dobre wyniki w praktycznym zastosowaniu.

Słowa kluczowe: przetwarzanie tekstu, wyszukiwanie przybliżone, algorytmy tekstowe, q-gram

Introduction

Approximate string matching is well known and widely used

problem in stringology, with applications in spell checking, spam

filtering, matching of nucleotide sequences, etc. Given pattern

P1..m, text T1..n, both consisting of σ characters (called alphabet Σ),

where m ≤ n, find all positions in the text where the pattern

matches the text up to k errors (which is the maximal number

of differences/mismatches). We specify three operations that cause

difference: insertion, deletion, and substitution. The difference

between two strings is also called difference ratio which is defined

as α = k / m.

Multiple pattern matching is a classic problem with

applications in bioinformatics, bibliographic data analysis,

information retrieval, virus detection, data filtering, and other

areas. The problem is to find positions of patterns P = {P1, …, Pr}

in the text T of length n where text and patterns are over common

alphabet Σ of size σ. The patterns may be considered as of the

same size or different sizes.

As stated before the approximate string matching problem

is fundamental problem in text processing and heavily explored

[1, 2, 4, 6–8, 10]. Most classical models are based on filtration

method with verification, e.g., Levenshtein or Hamming distance.

The pattern matching problems can be divided into two categories:

on-line and off-line (index, semi-index). We consider the online

approach in this paper.

Our method is closely related to previous work [4]. Authors

deeply explore the use of multiple pattern matching algorithm

in approximate pattern matching problem. The algorithm is

optimal on average for low and intermediate difference ratios

(up to 1/2). Authors present a couple of variants of this algorithm

and we refer to all of the variants using single name AOSMASM.

The purpose of this research is to adapt MAG algorithm

to approximate string matching with k-differences/mismatches,

to examine its efficiency and to compare with other existing

solution.

1. Our Approach

1.1. Multi AOSO on q-Grams (MAG)

Multi AOSO on q-grams is on-line algorithm designed for

multiple pattern matching. It scans the text only once to find a set

of patterns and returns its positions in the text. MAG is a complex

algorithm based on Shift-Or (AOSO) with use of many techniques

widely adapted in text processing such as q-grams, pattern

superimposition, bit-parallelism and alphabet size reduction.

We chose this algorithm because it achieves quite good results

in practical use, and fit to our requirements.

MAG uses q-grams which are a contiguous (or non-

contiguous [3]) substring (factor) of q characters of a string.

The q-grams have been widely used in approximate (single

and multiple) string matching [10] as a filtering method, but also

to speed up exact matching of a single pattern by treating

the q-grams as a super-alphabet [5].

1.2. Counting filter

Counting filter [2, 6, 7] is a filtration method used to discard

most of the space which does not meet a certain criterion. It is the

one of the most popular algorithms used for finding approximate

patterns with k-differences (=matching with up to k Levenshtein

errors) or k-mismatches (=matching with up to k Hamming

errors). The filter is based on simple idea, the algorithm counts the

number of each symbol of the alphabet in the pattern and then

moves the window (of size m) through the text checking how

much the number of corresponding symbols existing in the

window differs from the pattern. If this number is less or equal k

then verification is triggered and possible match reported.

Lemma ([3]): If there are i ≤ j such that ed(Ti..j, P) ≤ k, then Tj

– m + 1..j includes at least m – k characters of P.

1.3. MAG for approximate pattern matching

(MAGA)

We present a solution that allows relatively fast searching for

the pattern in text with given k-differences (or mismatches). Our

solution is based on following Lemma:

Lemma: If pattern P1..m can be divided into k+1 sub-patterns,

the pattern with k-differences (or mismatches) can be found by

searching all of the sub-patterns in the text T1..n and verifying all

found positions for k-difference (or mismatches) matching.

In other words, we search k+1 pieces of the pattern in the text

using multiple pattern matching and when one of them is found

we verify if the pattern with k-differences exists on found position.

For example, if P = “abcdemogpcba” and k = 1, then we divide

the pattern P into two pieces (sub-patterns) P1 = “abcdem”,

P2 = “ogpcba”. As may be noticed now, if one character inside

the pattern is modified, deleted or added, one of these two

sub-patterns changes while the second one is exactly the same.

48 IAPGOŚ 3/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

For instance we change the second position in P so that we have

P’ = “axcdemogpcba” which is giving P’1 = “axcdem” and

P’2 = “ogpcba”. Comparing sub-patterns of P and P’ we find that

P2 and P’2 are still the same. These sub-patterns may be found

with a single pattern matching algorithm by running it k+1 times,

but a faster solution involves using a multiple pattern matching

algorithm.

We use the algorithm Multi AOSO on q-Grams (MAG) [9],

described in section 1.1, for searching all the k+1 pieces of the

pattern; if any piece is found in the text the verification

is triggered. The verification uses the Counting Filter combined

with dynamic programming (for Levenshtein distance). In order

to find the exact position of match algorithm needs to determine

where exactly the filter should be started (1) and finished (2):

 koffsetpos=start  (1)

 kmstartend *2 (2)

where pos is the position of sub-pattern in the text, offset

is the position of sub-pattern in the original pattern, and k

is number of allowed differences. When filter finds position

where the pattern with k-differences may occur, then verification

method is executed. For example, for given k = 2 the

pattern P = ”GGACACCAGAGGCGGGGA” is divided into

three sub-patterns P1 = ”GGACAC”, P2 = ”CAGAGG”,

P3 = ”CGGGGA” which are merged into single pattern

P” = [CG][AG][AG][ACG][AG][ACG] where each of symbol

is super symbol in super alphabet. The original sub-patterns

are stored with the offset and used for later verification. If such

pattern P” is found then algorithm looks up the sub-pattern that

matches the position and then verifies if the pattern P matches

with up to k-differences in text window that starts on (1) and ends

on (2) position (Fig. 1).

Fig. 1. Verification of searching pattern P=GGACACCAGAGGCGGGGA where

the sup-pattern CAGAGG was found

We use Levenshtein implementation to validate the position.

If the validation is successful (the number of differences is less

or equal k) then the match is reported. We can easily adapt it to

k-mismatches by running the Hamming distance verification

in place of Counting Filter on pos – offset position.

2. Preliminary experimental results

The performance of the proposed solution was evaluated on

datasets from the widely used Pizza & Chili corpus

(http://pizzachili.dcc.uchile.cl/); we used 200MB files of DNA,

English, Proteins and XML texts.

The codes of competitors were obtained from the authors and

compiled as suggested. All our codes were implemented in C++

and compiled with g++ -O3. The computer was equipped with an

Intel i3-2100 CPU 3.1 GHz (128KB L1, 512KB L2 and 3 MB L3

cache) and 4 GB of 1333MHz DDR3 RAM, and running Debian

3.2.63 x86 64.

In all experiments we ran MAGA with AOSO parameters set

to U = 4 and K = 2. The parameter q (i.e., the q-gram size) used in

all tests was set to {2, 4, 6, 8}. We decided to choose two variants

of MAG with different alphabet mapping. We used combined

alphabet mapping (q-grams creation is done on the fly – without

mapping table) mag_dna_lx for DNA and mag_lx for the other

datasets, where x is the value of l parameter which specifies the

size of super alphabet (2l). We used different values of l parameter

for DNA and other datasets as follows: for DNA we set l = 2 for

m > 32 and l = 3 for m ≤ 32, for all other datasets the l parameter

was fixed to 3 for k = 1 and m = 128 but l = 4 for other m and k

permutations.

Fig. 2. Search speed of MAGA and AOSMASM for varying number of differences

k = {1, 2, 3, 4}, r = 100, and m = 64. Results for a) english.200MB, b) dna.200MB,

c) proteins.200MB, d) dblp.xml.200MB

The pattern size is constrained by two major factors which are

the q-gram size and number of differences (k), therefore we

narrowed the parameters as follows: for k = 1, m ≥ 16, for k = {2,

3}, m ≥ 32, and for k = 4, m ≥ 64. The AOSMASM algorithm was

tested with all possible parameters described by authors (see [1]

for more detail). There are too many variants of mentioned

algorithms to present on chart so we decided to present only the

most efficient variants (the best result) of the solution.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2017 49

Fig. 3. Search speed of MAGA and AOSMASM for varying number of patterns

r = {1, 10, 100, 1000, 10000}, k = 1, m = 64. Results for a) dna.200 MB,

b) english.200 MB, c) proteins.200MB, d) dblp.xml.200 MB

Figure 2 presents search speed (in MB/s) of 100 patterns

in 200 MB file of DNA, English, Proteins, XML texts in function

of k. MAGA is much more effective than AOSMASM for k less

than 3 for English alphabet (Fig. 2b) but function of our solution is

decreasing much faster giving worse speed for k equals 3. The

results for DNA and Proteins (Fig. 2a, 2c) are worse so that

AOSMASM is only little worse for k equals 1 but much better for

bigger k (up to two orders of magnitude). It can be reason of quite

small alphabet. A very small alphabet as in the case of DNA may

cause that adjacent q chars practically never produce unique

q-grams, which in turn triggers the verification more often. The

worst case is for XML (Fig. 2d) file where MAGA has worse

result for all k. This may be caused by the nature of XML files

where tags many times repeat in the text. This phenomenon has

impact on uniqueness of q-grams causing many verifications.

Fig. 4. Search speed of MAGA and AOSMASM for varying number of

differences k = {1, 2, 3, 4}, r = 10 000, and m = 64. Results for a) english.200 MB,

b) dna.200 MB, c) proteins.200 MB, d) dblp.xml.200 MB

Figure 3 illustrates the effectiveness of mentioned algorithms

in function of r (number of patterns). The chart shows that the

performance of both solutions is almost the same for one pattern,

but the advantage of MAGA grows together with a growing

number of patterns. The performance ratio (search speed of

MAGA divided by speed of AOSMSAM) of both algorithms

equals 1.03 for r = 1, while for r = 10000 it equals 6 for English

(Fig. 3b) and up to 12 for DNA (Fig. 3a). MAGA having worse

results (perf. ratio 0.76) for r = 1 for Proteins (Fig. 3c) got

performance ratio on the level of 2.09 for r = 10000. The results

are optimistic also for XML file (Fig. 3d) what is weak point in

Fig. 2 but has much higher effectiveness for r = 1000 and

r = 10000.

50 IAPGOŚ 3/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

Figure 4 presents search speed of AOSMASM and MAGA

in function of k. In this figure we examine the behaviour of both

solutions when the number of patterns is increased from r = 100

(Fig. 2) to r = 10000 (Fig. 4). As expected, the performance

of MAGA is much improved (in comparison to AOSMASM)

when number of pattern is increased. For DNA (Fig. 4a) and

Proteins (Fig. 4c) MAGA is more efficient than AOSMASM for k

less than 3, but for English and XML the results are higher for k

less or equal 3. Overall, it cannot be clearly specified which

solution is better for given k because many other parameters

(i.e. alphabet size, number of patterns) have much influence on the

performance.

Figure 5 shows performance results of searching 100 patterns

in DNA, English, Proteins and XML text in function of pattern

length. The results show that MAGA achieves better results for

patterns longer than 32 for English and DNA (Fig. 5a, 5b), for

longer than 64 for XML (Fig. 5d) and longer than 16 for Proteins

(Fig. 5c). MAGA is designed on the top of MAG algorithms

which is using q-grams that have major impact on the

performance. The speed may be raised by increasing q size what

on the other hand is limited by pattern length. This enforces use

of smaller q size for shorter patterns causing performance issue.

This is one of the reasons why MAGA achieves much better

results for long patterns than small ones.

3. Conclusions and future work

Experiments show that the proposed algorithm achieves

relatively good results in practical use. MAGA is more efficient

than AOSMASM if k is relatively small, but it can by improved

if large number (i.e. 10k) of patterns is searched (6-fold speedup).

Taking into account that MAGA handles searching of large

number of patterns better than competitors the results may be

more optimistic for a couple of tests we did for 100 patterns.

MAGA achieves satisfactory results in all cases where is need

to search large number (1000, 10000, etc.) of long (>32) patterns

in datasets with quite big alphabet (>4) and small number

of differences (≤3). We found that MAGA algorithm may be

applied to different problems of approximate pattern matching.

There is still a lot of research and experimental work to be done

in the future, concerning using various AOSO parameter

combinations, testing on a larger number of patterns, using

different alphabet mapping (other variants of MAG) and different

datasets. We believe there is a significant potential in the proposed

approach, which should stimulate future research.

References

[1] Baeza-Yates R.A., Navarro G.: New and faster filters for multiple approximate

string matching. Random Structures and Algorithms 20(1), 2011, 23–49.

[2] Baeza-Yates R., Navarro G.: New and Faster Filters for Multiple Approximate

String Matching. Random Structures and Algorithms 20/2002, 23–49.

[3] Burkhardt S., Kärkkäinen J.: Better filtering with gapped q-grams. Fundam.

Inform. 56(1-2)/2003, 51–70.

[4] Fredriksson K., Navarro G.: Average-optimal single and multiple approximate

string matching. ACM J. Exp. Alg. 9(1.4)/2004, 1–47.

[5] Fredriksson K.: Shift–or string matching with super-alphabets. Information

Processing Letters 87(1)/2003, 201–204.

[6] Grossi R., Luccio F.: Simple and efficient string matching with k mismatches.

Information Processing Letters 33(3)/1989, 113–120.

[7] Jokinen P., Ukkonen E.: Two algorithms for approximate string matching in

static texts. Proc. MFCS 16/1991, 240–248.

[8] Landau G.M., Vishkin U.: Fast string matching with k differences. Journal of

Computer and System Sciences 37(1)/1988, 63–78.

[9] Susik R., Grabowski S., Fredriksson K.: Multiple Pattern Matching Revisited.

Proceedings of PSC 2014, 59–70.

[10] Ukkonen E.: Approximate string-matching with q-grams and maximal matches.

Theoretical Computer Science 92/1992, 191–211.

Fig. 5. Search speed of MAGA and AOSMASM for varying pattern length

m = {16, 32, 64, 128}, r = 100, and k = 1. Results for a) english.200 MB,

b) dna.200 MB, c) proteins.200 MB, d) dblp.xml.200 MB

M.Sc. Eng. Robert Susik

e-mail: rsusik@kis.p.lodz.pl; robert.susik@gmail.com

M.Sc. Eng. Robert Susik graduated from Lodz

University of Technology, Faculty of Electrical,

Electronic, Computer and Control Engineering.

In 2012 he participated in the Erasmus student

exchange programme and studied at the University

of Eastern Finland. Currently Ph.D. student at the

Institute of Applied Computer Science of Lodz

University of Technology. He is interested in data

processing, data archiving and string matching

algorithms.

otrzymano/received: 06.10.2015 przyjęto do druku/accepted: 14.08.2017

