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Abstract. We consider the application of multiple pattern matching (Multi AOSO on q-Grams) algorithm for approximate pattern matching. We propose 

the on-line approach which translates the problem from approximate pattern matching into a multiple pattern one (called partitioning into exact search). 
Presented solution allows relatively fast search multiple patterns in text with given k-differences(or mismatches). This paper presents comparison 

of solution based on MAG algorithm, and [4]. Experiments on DNA, English, Proteins and XML texts with up to k errors show that the new proposed 

algorithm achieves relatively good results in practical use. 
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ZASTOSOWANIE ALGORYTMU WYSZUKIWANIA WIELU WZORCÓW OPARTEGO 

O TECHNIKĘ Q-GRAMÓW DO WYSZUKIWANIA PRZYBLIŻONEGO 

Streszczenie. Rozważamy zastosowanie algorytmu wyszukiwania wielu wzorców (Multi AOSO on q-Grams) do wyszukiwania przybliżonego. Proponujemy 

rozwiązanie on-line, upraszczające problem wyszukiwania przybliżonego do wyszukiwania wielu wzorców. Zaprezentowane rozwiązanie umożliwia 
relatywnie szybko wyszukiwać wiele wzorców dla odległości Levenshteina (lub Hamminga) z ograniczeniem do k. W artykule porównane jest rozwiązanie 

oparte na algorytmie MAG oraz [4]. Badania eksperymentalne przeprowadzone na zbiorach DNA, English, Proteins and XML z różnymi wartościami 

k wykazały, że zaproponowany algorytm osiąga relatywnie dobre wyniki w praktycznym zastosowaniu. 

Słowa kluczowe: przetwarzanie tekstu, wyszukiwanie przybliżone, algorytmy tekstowe, q-gram

Introduction 

Approximate string matching is well known and widely used 

problem in stringology, with applications in spell checking, spam 

filtering, matching of nucleotide sequences, etc. Given pattern 

P1..m, text T1..n, both consisting of σ characters (called alphabet Σ), 

where m ≤ n, find all positions in the text where the pattern 

matches the text up to k errors (which is the maximal number 

of differences/mismatches). We specify three operations that cause 

difference: insertion, deletion, and substitution. The difference 

between two strings is also called difference ratio which is defined 

as α = k / m. 

Multiple pattern matching is a classic problem with 

applications in bioinformatics, bibliographic data analysis, 

information retrieval, virus detection, data filtering, and other 

areas. The problem is to find positions of patterns P = {P1, …, Pr} 

in the text T of length n where text and patterns are over common 

alphabet Σ of size σ. The patterns may be considered as of the 

same size or different sizes.  

As stated before the approximate string matching problem 

is fundamental problem in text processing and heavily explored 

[1, 2, 4, 6–8, 10]. Most classical models are based on filtration 

method with verification, e.g., Levenshtein or Hamming distance. 

The pattern matching problems can be divided into two categories: 

on-line and off-line (index, semi-index). We consider the online 

approach in this paper. 

Our method is closely related to previous work [4]. Authors 

deeply explore the use of multiple pattern matching algorithm 

in approximate pattern matching problem. The algorithm is 

optimal on average for low and intermediate difference ratios 

(up to 1/2). Authors present a couple of variants of this algorithm 

and we refer to all of the variants using single name AOSMASM. 

The purpose of this research is to adapt MAG algorithm 

to approximate string matching with k-differences/mismatches, 

to examine its efficiency and to compare with other existing 

solution. 

1. Our Approach 

1.1. Multi AOSO on q-Grams (MAG) 

Multi AOSO on q-grams is on-line algorithm designed for 

multiple pattern matching. It scans the text only once to find a set 

of patterns and returns its positions in the text. MAG is a complex 

algorithm based on Shift-Or (AOSO) with use of many techniques 

widely adapted in text processing such as q-grams, pattern 

superimposition, bit-parallelism and alphabet size reduction. 

We chose this algorithm because it achieves quite good results 

in practical use, and fit to our requirements. 

MAG uses q-grams which are a contiguous (or non-

contiguous [3]) substring (factor) of q characters of a string. 

The q-grams have been widely used in approximate (single 

and multiple) string matching [10] as a filtering method, but also 

to speed up exact matching of a single pattern by treating 

the q-grams as a super-alphabet [5]. 

1.2. Counting filter 

Counting filter [2, 6, 7] is a filtration method used to discard 

most of the space which does not meet a certain criterion. It is the 

one of the most popular algorithms used for finding approximate 

patterns with k-differences (=matching with up to k Levenshtein 

errors) or k-mismatches (=matching with up to k Hamming 

errors). The filter is based on simple idea, the algorithm counts the 

number of each symbol of the alphabet in the pattern and then 

moves the window (of size m) through the text checking how 

much the number of corresponding symbols existing in the 

window differs from the pattern. If this number is less or equal k 

then verification is triggered and possible match reported. 

Lemma ([3]): If there are i ≤ j such that ed(Ti..j, P) ≤ k, then Tj 

– m + 1..j includes at least m – k characters of P. 

1.3. MAG for approximate pattern matching 

(MAGA) 

We present a solution that allows relatively fast searching for 

the pattern in text with given k-differences (or mismatches). Our 

solution is based on following Lemma: 

Lemma: If pattern P1..m can be divided into k+1 sub-patterns, 

the pattern with k-differences (or mismatches) can be found by 

searching all of the sub-patterns in the text T1..n and verifying all 

found positions for k-difference (or mismatches) matching. 

In other words, we search k+1 pieces of the pattern in the text 

using multiple pattern matching and when one of them is found 

we verify if the pattern with k-differences exists on found position. 

For example, if P = “abcdemogpcba” and k = 1, then we divide 

the pattern P into two pieces (sub-patterns) P1 = “abcdem”, 

P2 = “ogpcba”. As may be noticed now, if one character inside 

the pattern is modified, deleted or added, one of these two 

sub-patterns changes while the second one is exactly the same. 
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For instance we change the second position in P so that we have 

P’ = “axcdemogpcba” which is giving P’1 = “axcdem” and 

P’2 = “ogpcba”. Comparing sub-patterns of P and P’ we find that 

P2 and P’2 are still the same. These sub-patterns may be found 

with a single pattern matching algorithm by running it k+1 times, 

but a faster solution involves using a multiple pattern matching 

algorithm. 

We use the algorithm Multi AOSO on q-Grams (MAG) [9], 

described in section 1.1, for searching all the k+1 pieces of the 

pattern; if any piece is found in the text the verification 

is triggered. The verification uses the Counting Filter combined 

with dynamic programming (for Levenshtein distance). In order 

to find the exact position of match algorithm needs to determine 

where exactly the filter should be started (1) and finished (2): 

 koffsetpos=start   (1) 

 kmstartend *2  (2) 

where pos is the position of sub-pattern in the text, offset 

is the position of sub-pattern in the original pattern, and k 

is number of allowed differences. When filter finds position 

where the pattern with k-differences may occur, then verification 

method is executed. For example, for given k = 2 the 

pattern P = ”GGACACCAGAGGCGGGGA” is divided into 

three sub-patterns P1 = ”GGACAC”, P2 = ”CAGAGG”, 

P3 = ”CGGGGA” which are merged into single pattern 

P” = [CG][AG][AG][ACG][AG][ACG] where each of symbol 

is super symbol in super alphabet. The original sub-patterns 

are stored with the offset and used for later verification. If such 

pattern P” is found then algorithm looks up the sub-pattern that 

matches the position and then verifies if the pattern P matches 

with up to k-differences in text window that starts on (1) and ends 

on (2) position (Fig. 1). 

  

Fig. 1. Verification of searching pattern P=GGACACCAGAGGCGGGGA where 

the sup-pattern CAGAGG was found  

We use Levenshtein implementation to validate the position. 

If the validation is successful (the number of differences is less 

or equal k) then the match is reported. We can easily adapt it to 

k-mismatches by running the Hamming distance verification 

in place of Counting Filter on pos – offset position. 

2. Preliminary experimental results 

The performance of the proposed solution was evaluated on 

datasets from the widely used Pizza & Chili corpus 

(http://pizzachili.dcc.uchile.cl/); we used 200MB files of DNA, 

English, Proteins and XML texts. 

The codes of competitors were obtained from the authors and 

compiled as suggested. All our codes were implemented in C++ 

and compiled with g++ -O3. The computer was equipped with an 

Intel i3-2100 CPU 3.1 GHz (128KB L1, 512KB L2 and 3 MB L3 

cache) and 4 GB of 1333MHz DDR3 RAM, and running Debian 

3.2.63 x86 64. 

In all experiments we ran MAGA with AOSO parameters set 

to U = 4 and K = 2. The parameter q (i.e., the q-gram size) used in 

all tests was set to {2, 4, 6, 8}. We decided to choose two variants 

of MAG with different alphabet mapping. We used combined 

alphabet mapping (q-grams creation is done on the fly – without 

mapping table) mag_dna_lx for DNA and mag_lx for the other 

datasets, where x is the value of l parameter which specifies the

size of super alphabet (2l). We used different values of l parameter 

for DNA and other datasets as follows: for DNA we set l = 2 for 

m > 32 and l = 3 for m  ≤ 32, for all other datasets the l parameter 

was fixed to 3 for k = 1 and m = 128 but l = 4 for other m and k 

permutations.  

 

Fig. 2. Search speed of MAGA and AOSMASM for varying number of differences 

k = {1, 2, 3, 4}, r = 100, and m = 64. Results for a) english.200MB, b) dna.200MB, 

c) proteins.200MB, d) dblp.xml.200MB 

The pattern size is constrained by two major factors which are 

the q-gram size and number of differences (k), therefore we 

narrowed the parameters as follows: for k = 1, m ≥ 16, for k = {2, 

3}, m ≥ 32, and for k = 4, m ≥ 64. The AOSMASM algorithm was 

tested with all possible parameters described by authors (see [1] 

for more detail). There are too many variants of mentioned 

algorithms to present on chart so we decided to present only the 

most efficient variants (the best result) of the solution. 
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Fig. 3. Search speed of MAGA and AOSMASM for varying number of patterns 

r = {1, 10, 100, 1000, 10000}, k = 1, m = 64. Results for a) dna.200 MB, 

b) english.200 MB, c) proteins.200MB, d) dblp.xml.200 MB 

Figure 2 presents search speed (in MB/s) of 100 patterns 

in 200 MB file of DNA, English, Proteins, XML texts in function 

of k. MAGA is much more effective than AOSMASM for k less 

than 3 for English alphabet (Fig. 2b) but function of our solution is 

decreasing much faster giving worse speed for k equals 3. The 

results for DNA and Proteins (Fig. 2a, 2c) are worse so that 

AOSMASM is only little worse for k equals 1 but much better for 

bigger k (up to two orders of magnitude). It can be reason of quite 

small alphabet. A very small alphabet as in the case of DNA may 

cause that adjacent q chars practically never produce unique 

q-grams, which in turn triggers the verification more often. The 

worst case is for XML (Fig. 2d) file where MAGA has worse 

result for all k. This may be caused by the nature of XML files 

where tags many times repeat in the text. This phenomenon has 

impact on uniqueness of q-grams causing many verifications. 

 

Fig. 4. Search speed of MAGA and AOSMASM for varying number of 

differences k = {1, 2, 3, 4}, r = 10 000, and m = 64. Results for a) english.200 MB, 

b) dna.200 MB, c) proteins.200 MB, d) dblp.xml.200 MB 

Figure 3 illustrates the effectiveness of mentioned algorithms 

in function of r (number of patterns). The chart shows that the 

performance of both solutions is almost the same for one pattern, 

but the advantage of MAGA grows together with a growing 

number of patterns. The performance ratio (search speed of 

MAGA divided by speed of AOSMSAM) of both algorithms 

equals 1.03 for r = 1, while for r = 10000 it equals 6 for English 

(Fig. 3b) and up to 12 for DNA (Fig. 3a). MAGA having worse 

results (perf. ratio 0.76) for r = 1 for Proteins (Fig. 3c) got 

performance ratio on the level of 2.09 for r = 10000. The results 

are optimistic also for XML file (Fig. 3d) what is weak point in 

Fig. 2 but has much higher effectiveness for r = 1000 and 

r = 10000. 



50      IAPGOŚ 3/2017      p-ISSN 2083-0157, e-ISSN 2391-6761 

Figure 4 presents search speed of AOSMASM and MAGA 

in function of k. In this figure we examine the behaviour of both 

solutions when the number of patterns is increased from r = 100 

(Fig. 2) to r = 10000 (Fig. 4). As expected, the performance 

of MAGA is much improved (in comparison to AOSMASM) 

when number of pattern is increased. For DNA (Fig. 4a) and 

Proteins (Fig. 4c) MAGA is more efficient than AOSMASM for k 

less than 3, but for English and XML the results are higher for k 

less or equal 3. Overall, it cannot be clearly specified which 

solution is better for given k because many other parameters 

(i.e. alphabet size, number of patterns) have much influence on the 

performance.  

Figure 5 shows performance results of searching 100 patterns 

in DNA, English, Proteins and XML text in function of pattern 

length. The results show that MAGA achieves better results for 

patterns longer than 32 for English and DNA (Fig. 5a, 5b), for 

longer than 64 for XML (Fig. 5d) and longer than 16 for Proteins 

(Fig. 5c). MAGA is designed on the top of MAG algorithms 

which is using q-grams that have major impact on the 

performance. The speed may be raised by increasing q size what 

on the other hand is limited by pattern length. This enforces use 

of smaller q size for shorter patterns causing performance issue. 

This is one of the reasons why MAGA achieves much better 

results for long patterns than small ones. 

3. Conclusions and future work 

Experiments show that the proposed algorithm achieves 

relatively good results in practical use. MAGA is more efficient 

than AOSMASM if k is relatively small, but it can by improved 

if large number (i.e. 10k) of patterns is searched (6-fold speedup). 

Taking into account that MAGA handles searching of large 

number of patterns better than competitors the results may be 

more optimistic for a couple of tests we did for 100 patterns. 

MAGA achieves satisfactory results in all cases where is need 

to search large number (1000, 10000, etc.) of long (>32) patterns 

in datasets with quite big alphabet (>4) and small number 

of differences (≤3). We found that MAGA algorithm may be 

applied to different problems of approximate pattern matching. 

There is still a lot of research and experimental work to be done 

in the future, concerning using various AOSO parameter 

combinations, testing on a larger number of patterns, using 

different alphabet mapping (other variants of MAG) and different 

datasets. We believe there is a significant potential in the proposed 

approach, which should stimulate future research. 
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