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Abstract. This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine 

Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography 

is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was 
performed in this work. 
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ZASTOSOWANIE SIECI NEURONOWYCH I ALGORYTMÓW GŁĘBOKIEGO UCZENIA  

W ELEKTRYCZNEJ TOMOGRAFII IMPEDANCYJNEJ 

Streszczenie. W artykule zaprezentowano dwa przypadki dotyczące zastosowania sztucznych sieci neuronowych i konwolucyjnych sieci neuronowych 

w tomografii impedancyjnej. Uczenie maszynowe może znaleźć zastosowanie przy rozwiązywaniu różnorodnych problemów technicznych. 

W tomograficznej rekonstrukcji obrazów można stosować konwencjonalne sieci neuronowe. W niniejszej pracy przedstawiono przykład zastosowania 
metod głębokiego uczenia w obszarze elektrycznej tomografii impedancyjnej. 
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Introduction 

Artificial Neural Network (ANN) imitates the action of the 

human brain [3, 4]. It consists of neurons – which are the 

counterparts of nerve cells. Individual neurons are interconnected 

by creating a network. Neural networks have found wide use in 

modelling nonlinear, complex, and multi-dimensional data and 

also in analysing experimental, industrial, and satellite data. The 

neural network methods are successfully applied to X-ray 

tomography [6], electron tomography [1] and different kinds of 

tomographic purposes [5]. For years researchers try to invent and 

adopt the mix of different methods to get the better results. In this 

way, various new techniques arise. An example of such approach 

is the use of capacitance tomography to discriminate the number 

of fruit passing through an industrial process [10, 11]. Neural 

networks are also utilized in optical tomography. For neural 

networks, it is important to choose the proper training method. 

The model for an image reconstruction consists of a neural 

network trained with the Bayesian framework by maximizing a 

posteriori probability. In order to solve the mixed binary and 

continuous optimization problem, a coupled gradient neural 

network was proposed. The optimization was realized following 

the evolution of the neural network by a proper definition of the 

energy function of it [13]. Another area of ANN application is a 

possibility to investigate the anomalies in the breast tissue using 

electrical impedance tomography supported by neural network 

algorithms [9]. 

The common feature of Machine Learning methods is that 

they can be used to teach computers in a manner that is analogous 

to how people learn by example. One of the Machine Learning 

techniques is Deep Learning, which is usually associated with 

Convolutional Neural Networks (CNN). Describing the 

extraordinary neural network workflow as "deep" distinguishes 

CNN model from the well-known Artificial Neural Networks 

(ANN) shallow architecture. Deep learning takes place if the 

neural network structure contains so-called convolutional layers 

and pooling layers. Another difference is the number of hidden 

layers. While typical ANNs usually contain no more than 2-3 

hidden layers, CNN can have them more than a hundred. CNNs 

can be used for applications such as:  

• image classification, object detection, localization; 

• face recognition; 

• speech and natural language processing; 

• medical imaging and interpretation; 

• seismic imaging and interpretation etc. 

1. Determining the location of an object using 

an artificial multilayer perceptron neural 

network (multilayer perceptron) 

The efficient use of conventional artificial neural networks in 

tomography is possible, but the effectiveness of this tool depends 

on many conditions. First of all, ANN (artificial neural networks) 

are able to effectively visualize objects that many parameters are 

already known. An example is the problem of determining the 

location of an object inside another substance (wall, dam, ground, 

etc.), which impedes standard video identification. 

If the number and size of objects in the area are known and the 

purpose of the tomographic process is to determine their location, 

the classic ANN can be used successfully. Where the electrical 

tomography measuring element is based on 16 electrodes, the 

input signal vector (voltage) counts 208 values. These are real 

numbers that reflect the voltages between the different 

combinations of pairs of electrodes. It should be noted that the 

208-element vector of voltages refers only to one cross-section, 

which is insufficient for 3D objects. If there is a registered set of 

training records, consisting of pairs of input vectors and 

corresponding output vectors determining the location and size of 

the object being recognized by the CT (computed tomography) 

scanner, a good solution is to use a multilayer perceptron in 

conjunction with a supervised training procedure (training with 

teacher data) [7, 8, 12]. 

The results of the research for two problem cases are 

presented below. In both cases it is assumed that the shape of the 

hidden object is round (spherical). The first case concerned an 

ANN study to determine the location and size (radius) of the 

hidden object. The second case refers to the similar problem, 

however, it takes into account two objects located in the area 

affected by the CT scanner. Each of mentioned above problem 

cases were considered in two variants. The first variant was based 

on positioning using Cartesian coordinates, while the second 

variant performed this task using polar coordinates. 

In this case, the input vector consisted of 208 measurement 

cases (1). Each element contained a voltage between the specified 

pair of electrodes. 

                     (1) 

 

The output vector contained three elements: the coordinates 

and the radius of the object being sought (2). 
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              (2) 

where:  

y1 – horizontal coordinate of the centre of mass of the object,  

y2 – vertical coordinate of the centre of mass of the object,  

y3 – radius R of the cross section of the spherical object. 

 

Fig. 1 shows the schema of the applied neural network model. 

The network has 208 inputs, 10 neurons in the hidden layer and 3 

neurons in the output layer. The hidden layer uses a logistic 

transfer function. In the output layer, the transfer function is 

linear. 

 

Fig. 1. ANN structure 

A dataset of 320 cases was used to train the neural network. 

The following results apply to the Levenberg-Marquardt training 

variant. This algorithm typically requires more memory but less 

time. Training automatically stops when generalization stops 

improving, as indicated by an increase in square mean error 

of validation samples. 

The results of training the best developed networks are 

presented in Fig. 2. 

 

Fig. 2. ANN training results 

The data set was divided into 3 parts: training set (224 cases), 

validation set (48 cases) and test set (48 cases). The highest Mean 

Squared Error (MSE) was obtained with the test set and it was 

0.00257. A slightly smaller error of 0.00172 was noted for the 

validation set. Mean Squared Error is the average squared 

difference between outputs and targets. Lower values are better. 

Zero means no error. The learning set was burdened with the 

lowest learning error, which is the most common and correct 

situation. The low MSE error of the learning set is due to the fact 

that the network is best adapted to learning cases. Another quality 

indicator of network quality was regression of R. An R value of 1 

means a close relationship, 0 a random relationship. As can 

be seen in Fig. 2 in all three cases, R is close to 1. This 

is particularly true of the test and validation set, which 

is particularly valuable. Values close to 1 testify to a good 

matching of the resultant output (output vectors) to the patterns 

contained in individual sets (training, validation, and test). 

The validation set is used to determine when the training 

process stops. When the dynamics of the gradient change 

approach zero, then the learning process ends. The test set 

is applicable after the training phase. It is used to verify the quality 

of the network. The results obtained by testing a network with the 

test set are the most reliable indicator of network efficiency, 

because cases in this set do not participate in the training process. 

The good indicators (MSE and R) for the training set show that 

there was no overtraining and that the network has the ability 

to generalize knowledge (i.e., correctly transforming input into 

output not only for the training set). 

Fig. 3 shows the correlation diagrams of the discussed 

network. The scattering of results that go beyond the pattern is 

visible, but the level of correlation is still high. This is evidenced 

by overlapping correlation lines for all studied cases: the training 

set, validation set, test set and collectively. 

 

Fig. 3. Network learning correlational diagrams 

Fig. 4 presents three graphs of training process parameters 

according to epoch (the next calculation of all training variables 

in an iterative loop). The training ended after the 48th iteration. 

The gradient graph shows that the gradient has stabilized at an 

even level since the preceding epoch (the change dynamics was 

close to zero). By analyzing an analogous point in the momentum 

graph (mu), it can be seen that in 48th epoch it reaches 

its minimum. The last (bottom) curve of the graph corresponds 

to the number of preceding epochs that did not improve 

the validation deviation. It was assumed that if after another six 

epochs the validation error does not fall, the training process 

should be terminated. That is why the process of training ended 

at 48th epoch. 

 

Fig. 4. Graphs of selected parameters of ANN training process  
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Fig. 5 shows a graph of the Mean Square Error value recorded 

during the network training process. The MSE values are low and 

the graph shapes (lack of large fluctuations) indicate a lack 

of overtraining and thus the good quality of the tomographic 

analysis system obtained. 

 

Fig. 5. Graph of average square error while network training 

2. Determining the position of a single object 

by polar coordinates 

As in the case of Cartesian coordinates, the input vector 

consisted of 208 measurement cases (1). The output vector 

contained three elements: the polar coordinates (angle α and the 

leading radius R) and the radius r determining the size of the 

object sought (Fig. 6). 

 

Fig. 6. Polar coordinate system 

The structure of the neural network model is the same as in the 

previous case. The network has 208 inputs, 10 neurons in the 

hidden layer and 3 neurons in the output layer. The hidden layer 

uses a logistic transfer function. In the output layer, the transfer 

function is linear. 

The output vector represents the relationship (3). 

           (3) 

where:  

α – directed angle,  

R – leading radius,  

r – radius of the cross-section of the spherical object. 

A collection of 3210 cases was used to train the neural 

network. Levenberg-Marquardt algorithm was used to train the 

network. The results of learning the best of the developed 

networks are presented in the Fig. 7.  

 

Fig. 7. ANN training results 

The data set was divided into 3 parts in the following 

proportions:  

• 70% – training part (2246 cases),  

• 15% – validation part (482 cases), 

• 15% – testing part (482 cases).  

The highest Mean Squared Error (MSE) was found in the 

training set and was 48.3. A slightly smaller error of 44.4 was 

noted for the testing set. The level of regression for all three sets 

was very high. For the testing set it equals 0.98. Comparison 

of the R-coefficients of the Cartesian coordinate-based variant 

(Fig. 3) with the variant of polar coordinates shows some 

differences in the output values distribution, but the regression 

is higher for the second variant. 

3. Tomographic imaging with the use of Deep 

learning   

The most perfect variant of tomographic imaging is the ability 

to convert a set of measured values into a high-resolution pixel 

map and a rich colour palette. Such a solution would make 

it possible to accurately identify hidden objects by tomographic 

reconstruction. This method doesn’t require any preliminary 

assumptions on, for example, the quantity and shape of identified 

objects. This kind of conversion is a difficult challenge, due to its 

high degree of complexity and no obvious rules for converting 

input variables into an output image. To solve the mentioned 

above problem, the model based on Convolutional Neural 

Networks (CNN) which is a relatively new field of science called 

Deep Learning, was invented [2]. In this example, it is assumed 

that the entire background image (cross-section of the sought 

object) consists of pixels with constant values, such as zero. Each 

learning case (pattern of the output image) contains eight pixels 

with the same non-zero value, e.g.       [
 

 
]. Pixel values 

correspond to the specific conductivity, which allows the proper 

identification of the material of investigated hidden object. With 

this approach, non-zero pixels can create differentiated images 

on a uniform background. If the above problem could be solved 

(imaging will be effective), the next step should be to differentiate 

the input pixel values.  

The input vector was a 208-element set of measurements 

                    – the same one that was used in the 

previous examples (1). The output matrix is shown in Fig. 8. 

This is a 128-element set of real numbers that correspond 

to values 0 or 1,2. 

 

Fig. 8. Indexed output matrix (image) 

To simplify the calculation, it is assumed that each pattern 

contains eight pixels with values other than the background. 

In Fig. 9, we see two objects consisting of eight pixels (4+4). 

Fig. 10 shows the structure used in the CNN experiment along 

with the parameters of the given layers. It consists of an input 

layer, three convolution layers, and an output layer. Besides, 

the convolution layers (1, 3 and 5) are separated by pooling layers. 

 

Fig. 9. Sample output image with pixel numbering 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

3 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

4 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

5 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

6 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

7 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

8 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
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In addition, Fig. 11 also shows the parameters of individual 

layers, such as support, filter dimensions, stride, pad etc. Fig. 12 

shows the course of CNN training. The shape of the energy drop 

curve, corresponding to the deviation gradient from the pattern, 

indicates that the network is learning properly. 

 

Fig. 10. CNN network diagram 

 

Fig. 11. CNN layers and parameters 

 

Fig. 12. The course of CNN training 

4. Remarks and conclusion 

This paper presents two approaches for tomographic 

reconstruction. The first two chapters refer to cases of 

implementation of multilayer perceptron. The received results 

show the high efficiency of common artificial neural networks 

in case the number of controller outputs is not high. The results 

are similar in both Cartesian and polar coordinates. 

In the chapter 3 the first step of implementation Deep 

Learning methods in Electrical Impedance Tomography was 

presented. The idea of the presented solution assumed that 

a convolutional neural network could convert a vector of electrical

values into a vector (or matrix) of a reconstructed image of a CT 

scan object. Conventional networks are most commonly used 

in classification problems, but in this case the nature of the 

problem is regressive. The model was based on Convolutional 

Neural Networks which is a relatively new field of science. 

An open question that requires further investigation is to 

determine the following CNN parameters: 

• proper design of the fully connected layer – the last (original) 

layer of the network, 

• adjustment of the number of CNN layers, 

• selection of parameters of individual network layers 

(dimensions of filters, bias, stride, pad), 

• dimensions of filters in different layers, 

• number of channels and number of filters in each layer, 

• Learning Rate parameter selection, 

• set a condition for stopping the training process. 
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