
24       IAPGOŚ 1/2014      ISSN 2083-0157 
 

artykuł recenzowany/revised paper IAPGOS, 2014, nr 1, 24-26 

 

DOI: 10.5604/20830157.1093192 

BUILDING OPTIMAL BOUNDARY CONTROL BY THE SUCCESSIVE 

APPROXIMATIONS METHOD 

Marat Orynbet, Gulmira Bayandina, Gula Tolebayeva  
K.I. Satpayev Kazakh National Technical University. Institute of Information and Communication Technologies 

Abstract. The article suggests a method for calculating the boundary control in the tape bearings optimal program using the method of successive 

approximations. 
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OPRACOWANIE OPTYMALNEGO STEROWANIA Z OGRANICZENIAMI 

Z WYKORZYSTANIEM METODY KOLEJNYCH APROKSYMACJI 

Streszczenie: Przedstawiono metodę opracowania optymalnego sterowania z ograniczeniami w taśmociągach z wykorzystaniem metody kolejnych 

aproksymacji.  
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Introduction 

Technical systems with gas dynamic lubrication processes 

have been widely applied at modern enterprises of mechanical 

engineering, textile industry and instrumentation. Gas lubrication 

has interesting and important applications in different types  

of bearings, in particular in the so-called tape bearings (TB). 

Lubrication of tape bearings by air or some other gas provides 

advanced technical solutions giving significant advantages over 

other engineering systems. In technical systems lubricated by air 

friction is much lower. The wear and tear of tape bearings 

lubricated by air or gas considerably decreases. The use of an 

external gas or air supply under pressure significantly expands the 

scope of application of such tape bearings, as they successfully 

work at both low and high speeds and efforts. 

Tape bearings are often used in processes of continuous 

production and processing of plastic film, metal ribbon, paper, 

textile materials and fibers. Tape bearings are used in self adjusted 

supports of increased stability for high-speed rotors. 

The processes taking place in tape bearings are generally 

described by systems of partial combined equations relative to the 

main inter-related parameters characterizing the state of tape 

bearings. These parameters are primarily: thickness of the air film 

between the flexible and rigid surfaces: overpressure generated  

by the relative motion of two surfaces or external power; and 

tension of the flexible tape in their area of interaction through  

a thin layer of air. The processes taking place in tape bearings are 

complex physical and mechanical processes; so the desired state 

of tape bearings with the required values of the basic parameters 

in the area of interaction of flexible and rigid surfaces is not 

always achieved in practice. Specific numerical values of these 

parameters depend on the most number of factors and may  

go beyond the permitted values in the process of work. The task  

of more accurate calculation of tape bearing parameters and 

keeping them within the necessary range is of current interest. 

The performance of specified technical systems can be 

achieved through continuous search for the best conditions of the 

processes on the basis of fast processing of information about their 

condition, as well as an optimal process control strategy in real 

time. 

Solving these problems is possible on the basis of the 

apparatus of mathematical physics and the theory of optimal 

control of processes with distributed parameters. The 

mathematical aspects of this problem were dealt with in the papers 

by A.G. Butkovsky [3, 4], and T.K. Sirazetdinov [9], K.A. Lurye 

[7], J.L. Lions [6], and other researchers. 

Many problems of control of objects with distributed 

parameters are characterized by the fact that the spatial variations 

of the object parameters in the evaluation of dynamic properties  

of processes in the object are fully determined by the boundary 

conditions of the boundary value problem. The control problem  

is reduced to the problem of control of the border state  

or boundary control problem. The mechanism of any boundary 

control is reduced to the formation of such boundary conditions 

under which the processes occurring in the object give the desired 

result. 

The mathematical theory of optimal boundary control  

in systems with distributed parameters was developed in works  

[5, 6, 8, 9, 10, 11,12, 13]. 

The problems of programming open-loop control have been 

considered in hydrodynamics in connection with the fluid flow 

stabilization problem in the boundary layer. It was proposed  

to control the flow in the boundary layer by drawing heat off from 

the surface of the stream-lined body [1], the suction of fluid 

through porous streamlined body surface [2], as well as traveling 

elastic wave generated on the surface of the body. The issues of 

boundary control in closed-loop control systems with distributed 

parameters have been considered in the problems  

of stabilization of unstable states in plasma, hydrodynamics, 

charged particle beams with feedback operators implemented  

in the boundary conditions of distributed control systems and 

provide suppression of these unstable states [7]. 

However, the range of solved problems of boundary control  

of complex physical and mechanical processes does not include 

complex technical systems consisting essentially of the physical 

processes of different nature. Tape bearings described by the 

Reynolds equation and the equation of the moment-free shell state 

may be an example. 

1. Statement of the problem 

The main content of the optimal control problem is the 

selection of one of various possible implementations of the 

considered process which would provide for the best process 

according to some pre-specified criterion. A possibility of choice 

of different realizations of a process is conditioned by the presence 

of controls by modifying which we can interfere in its course and 

apply the desired trajectory. As a rule, this situation  

is mathematically expressed by the fact that a set of mathematical 

relations describing processes includes parameters that can be 

changed within certain limits. In a particular case these parameters 

may be included in the boundary conditions of the problem and 

thus affect the behavior of the solution of the constitutive 

equation. 

Let us consider the quasi-static formulation of the problem  

of calculating the optimal control program. The calculation of the 

optimal boundary condition of the program for distributed systems 

in a quasi-static formulation allows the use of modern numerical 

methods for solving nonlinear partial differential equations using 
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the necessary extremum conditions. These methods are aimed  

at finding a function that directly meets the necessary  

and sufficient conditions of optimality. The problem of finding  

the minimum of the function by means of the necessary conditions 

is reduced to the problem of finding the roots of the function.  

And the problem of calculating the optimal boundary of the 

program is reduced to the solution of boundary value problems for 

systems of ordinary differential equations. They are easy for 

programming and allow the use of simple standard programs. This 

method is similar to the so-called method of adjoint equations 

with a free right end, yet taking into account the specifics of the 

boundary control and the restrictions on the control actions. When 

constructing optimal boundary control, an efficient method  

of successive approximations is used. There are many methods  

of successive approximations, such as Euler method, Ritz method, 

Kantarovich method, and the so-called direct methods to minimize 

the functional so that it took the smallest possible value. 

   ∫ [ (   )    (   )] 
  

  
dΩ  (1) 

Here Ω is the current angular coordinate, t is the current time, 

Q (Ω, t) is the actual state of the controlled parameter, Q * (Ω, t)  

is the desired state of the controlled parameter. In all the above 

said cases it is necessary to calculate the functional gradient. Since 

the controlled object is described by partial differential equations, 

the computation of the gradient is reduced to the calculation of the 

partial derivatives on all the variables included in the minimized 

functional. In the numerical implementation these operations are 

quite time-consuming and take up much CPU time, thus making 

the use of modern computers inefficient. For efficient calculation 

of the gradient we use the approach which allows taking into 

account the specifics of the boundary control and solving the 

optimization problem while reducing the number of computational 

procedures. The reduction in computation and consideration of the 

specificity of a solved problem can be made at the expense of the 

conjugated system, and more exactly with the use of necessary 

and sufficient conditions of optimality. For this problem with 

extra conditions that impose restrictions on control action of the 

type: 

  [  ( )]      (       ) (2) 

we construct an algorithm of optimal boundary control. Thus we 

formulate the problem as follows. In the plane Ω, t there  

is a rectangular area Dab, in which systems of differential 

equations are given. 

    

  
   (   )  (       )  (            ) (3)  

On the boundary Г function Qi is subject to boundary 

conditions of the first order 

   (   )    ( )      (4) 

The control variables in this system are some of the main 

parameters included in the boundary conditions 

   (    )    ( )  (         ) (5) 

Due to the fact that the controlled parameter changes 

differently with time, the value of     is a function of the two 

variables      (   ). By varying the boundary values   (    ) 
subject to the condition (2) it is necessary to select their meaning 

so that the criterion (1) had the smallest value for an arbitrary  

time t. 

2. Solution of the problem of optimal boundary 

control 

We divide the spatial coordinate   and the time coordinate  

  into small segments. The segment [     ] into M parts by the 

points                        ; and the segment [   ] - 

into the N parts by the points                     . Then we 

draw the right lines parallel to the coordinate axes Ω and t via the 

ends of each of the segments [     ] and [   ] lines. Then the 

rectangular area D will be divided into MN small rectangular areas 

Dab (                 )  (                ). We shall look 

for the optimization problem solution in the set of control 

functions   (    )       ( ) (                 ) of the 

constants in each small area Dab, and uniques   (   ) providing 

condition (4). Thus, the solution of the formulated problem is 

reduced to minimizing the function   (   ) of Nm variables, 

where 

   (   )   (6)  

are defined by (1), provided that the system (3) was solved  

in   (    )    (    ) for Dab. Thus we have the problem  

of minimizing the function of a finite number of variables. If we 

use the gradient method, it is necessary to make calculations  

by the formula (6) Nm times, i.e. to solve a system of differential 

equations (3) Nm times. However, if we use the necessary 

optimality conditions for the determination of the first variation  

of the variables of Functional I on variables Ur
b, it is possible  

to organize effective computational methods to significantly 

reduce the number of computations. For their implementation 

there is a kind of function  [  
 (  )] used, as well as functions 

  (    ). The solution will be sought in the form of a piecewise 

constant function 

   (    )  ∑    
    (           ) 
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Let us consider the functional 
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We shall put the integral (8) as follows: 
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The expression for the variation of Functional I* can be 

written as follows:  

  I*= ∫ [  (   )     (   )]
  

  
   (   )+ 

 ∑     
   ∫ ∫ ∑   

   
  

  

    

 i[∑   
   fi

   

   
    ∂Qi/∂Ω]dΩdt (10) 

By integrating the expression (10) part by part we obtain: 

  I*= [  (   )     (   )]- с +∫  
    

 
r(Ω0,t)dt 11) 

The following condition should be satisfied:  

  [  (   )     (   )]=с 

Then the formula (10) to express the variation is presented in 

the following form: 

     ∫   
    

 
(    )   ( )   (12) 

If functions Q0(Ω,t), £(Ω,t) at arbitrary control U0(t) satisfy 

the system (3), the increment of I under the influence of variation  

  ( )of boundary control U(t) is calculated by the formula (12). 

Let the variation of the functional   ( ) of boundary control 

U(t) have the following form:  

   ( )={
                

            
 

Taking into account (12) we obtain the following formula  

to calculate the derivative: 
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r(Ω0,t)dt (13) 

Or  

  
  (   )

    
=∫  

    

 
r(Ω0,t)dt  (14) 

Let us suppose that function £r(Ω,t) is continuous along Ω and 

piecewise continuous along t. The required derivative 
  (  

 )

   
  for all 
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Nm derivatives can be defined by a piecewise constant function 

U(t) by solving a system of differential equations (3) with the 

boundary conditions (4) and carrying the Q (t) in sufficient 

number of points. Then it is necessary to solve the dual system: 

    

  
  ∑

   

   

 
        (       ) (15) 

To the system (3) with  

   (   )                (        ) (16) 

   (   )     

After that, the desired derivative 
  

   
  can be defined by the 

formula (14) in cross section     . 

In other words, there is no need to solve system (3) Nm times 

and it is reduced solving this system and its conjugate system (15) 

just once with the boundary conditions (5) and (16). 

Next, using the method of successive approximations it is 

necessary to solve the system at the next control impact by the 

formula:  

   
     

   
       

    (17) 

where: 

     
      | |       (         ) (          ) 

In formula (17) j is a step of approximations. 

If the original system solution (3) under the boundary 

conditions (4) is stable, it can be expected that when we integrate 

the adjoint system (15) with the boundary conditions (16) in the 

negative direction of the axes, its solution will also be stable and it 

does not cause computational difficulties, which sometimes can 

take place in nonlinear systems. 

 If there are restrictions for the control action parameters when 

the algorithm of calculating the optimum boundary program  

is made, it is necessary to meet the necessary requirements at each 

step:  

   
       

     
( )    

   . 

3. Conclusion 

The described method is used to derive the necessary  

and sufficient conditions for optimality of the boundary control  

of tape bearings. The optimality conditions are derived using 

indirect methods, by means of the direct satisfaction of optimality 

necessary conditions based on the classical variations calculus 

with application of Lagrange multipliers. 

The authors suggested a method for calculating the boundary 

control in the tape bearings optimal program using the method  

of successive approximations. The calculation method is based  

on the solution of the so-called systems of coupled equations, 

taking into account the specifics of the boundary control and using 

a simplified algorithm for solving a quality boundary function. 
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