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Abstract. This paper presents numerical modelling of artificial hyperthermia treatment. Presented model takes into account not only the temperature 

distributions but also the thermal dose parameter. Obtaining of temperature distributions takes advantage of the generalized dual phase lag equation. 
For computer calculations the parallelized algorithm was prepared. 
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ANALIZA NUMERYCZNA ZABIEGU SZTUCZNEJ HIPERTERMII 

Streszczenie. Artykuł dotyczy numerycznego modelowania zabiegu sztucznej hipertermii. Analiza skuteczności zabiegu jest rozpatrywana nie tylko na 

podstawie czasoprzestrzennych rozkładów temperatury, ale także w oparciu o parametr dawki termicznej. Do modelowania przepływu ciepła 
w rozpatrywanym obszarze wykorzystano uogólnione równanie z dwoma czasami opóźnień. Na potrzeby obliczeń numerycznych napisano autorski 

program oparty o obliczenia równoległe. 

Słowa kluczowe: sztuczna hipertermia, metoda różnic skończonych, obliczenia równoległe, uogólnione równanie z dwoma czasami opóźnień 

Introduction 

From the medical point of view hyperthermia is the sudden, 

rapid rise in a body temperature. Artificial hyperthermia  

is a treatment, in which the body temperature is purposeful raised, 

usually to 42 - 46 °C. There are three types of artificial 

hyperthermia: local, regional and whole-body. In this paper, only 

the local is considered. Local artificial hyperthermia is usually 

used as cancer treatment often associated with chemo -  

or radiotherapy. When this treatment is used unsupported,  

in cancer cells it causes lack of oxygen and nutrients, what leads 

to the apoptosis. Heat shock causes inducing of the heat shock 

proteins. Rise of temperature results in better blood supply to the 

organ and therefore drug accumulation. Chemical reactions are 

faster at higher temperatures. Artificial hyperthermia associated 

with the radiotherapy perpetuates damage of DNA. 

It also should be noted, that the biological tissue is the 

material with particular nonhomogeneous inner structure  

and interwoven by blood vessels (Fig. 1). Sensitive influence  

on the temperature distribution has a volume of the blood vessels 

and blood velocity. The bioheat transfer process is multiscale, 

therefore it is necessary to consider delays of heat flux and 

temperature gradient [1]. 

 

Fig. 1. Tissue model 

To prevent damage of healthy tissue, as well heating  

the considered area to desirable temperature, the ability to predict 

the temperature distribution accurately, in a short calculation time  

is very important. 

A model, which allows one to take into account the tissue 

porosity and phase lags depending on the parameters of tissue  

is the generalized dual phase lag model [11]. It should be pointed 

out that the comparison of various bioheat transfer models was 

done by authors in [8, 9]. 

It should be remembered that the degree of tissue destruction 

depends not only on the temperature, but also the exposure time 

and can be described mathematically by means of the thermal dose 

parameter [14]. 

1. Generalized dual phase lag equation 

The tissue, as shown in figure 1, can be treated as a porous 

medium divided into two regions: the vascular region (blood 

vessel) and the extravascular region (tissue) [4, 11]. To describe 

temperature field in the heating regions (blood (1) and tissue (2)) 

the two-equation porous model [12] can be applied 
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where ε denotes the porosity (the ratio of blood volume to the total 

volume), α is the heat transfer coefficient, v is the blood velocity, 

A is the volumetric transfer area between tissue and blood, c is the 

specific heat, ρ is the density, λ is the thermal conductivity,  

T denotes temperature, t is the time, w is the blood perfusion rate, 

Qm is the metabolic heat source and Qex is the capacity of internal 

heat sources associated with the external heating of tissue [9] 

while subscripts t and b represent tissue and blood, respectively. 

Adding both (1) and (2) equations, the following equation can be 

obtain 
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In this paper is assumed that the coupling factor is equal to  

G = Aα + wcb and also that before reaching the equilibrium 

temperature of tissue and blood, the blood temperature changes 

according to the Minkowycz hypothesis [10] 
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Based on (4) the temperature of tissue is described as follows 
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Using (5) and (3), after some mathematical operations  

the equation for blood temperature can be written in the form 
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Now, the effectiveness parameters can be introduced: 

  λ ελ 1 ε λe b t     (7) 

and 
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Assuming the following form of relaxation time and the 

thermalization time 
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the equation (6) can be written as follows 
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In equation (11) the unknown is the blood temperature.  

To determine the equation where only unknown is the tissue 

temperature the dependence (5) should be transform 
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Based on (11), (12) and after some mathematical operations 

the equation for tissue temperature is described as follows 
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2. Concept of thermal dose 

Knowledge of time – dependent temperature field during  

the thermal treatment allows one to determine the thermal dose TD 

in terms of equivalent minutes at temperature 43°C. In particular, 

the following equation should be taken into account [14] 
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where t0, tF correspond to the initial and final times, respectively, 

T f is the temperature at the point considered for time t f, Δt is the 

time step, R = 0 for T ≤ 39 °C., R = 0.25 for 39 °C. < T < 43 °C. 

and R = 0.5 for T ≥ 43 °C. The TD value required for total necrosis 

in a case of muscle tissue (this type of soft tissue is considered 

here) is equal to TD = 240 minutes [14]. 

3. Formulation of the problem 

Assumed model is shown in figure 2. The domain of healthy 

tissue Ω1 is a cube with edge length of 0.05 m and centrally 

located subdomain of the tumor Ω2 with edge length of 0.01 m. 

The considered domain includes the blood vessels arranged in the 

direction of the X axis. 

The thermophysical parameters of tumor and healthy tissue 

are assumed to be the same, so only one equation describing  

the temperature field in domain Ω = Ω1  Ω2 is considered.  

The external heating of tissue is a constant function 
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where Q0 is constant nonzero component and tex is duration  

of heating (exposure time). 

 

 

Fig. 2. Domain considered 

4. Methods of solution 

Assuming constant value of metabolic heat source and using 

formula (15) the equation (13) can be written in the form 
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This equation is supplemented by boundary condition 

  λ , , , 0tn T x y z t     (17) 

where n is the normal outward vector [3]. The initial conditions 

are as follows 
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where Tp is the initial temperature of tissue.  

Let T f = Tt (x, y, z, f ∆t) where ∆t is the time step [7]. Then,  

for time t f = f ∆t (f ≥ 2) the following approximate form  

of equation (16) can be proposed 
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For simplification of notation the subscripts t and e are here 

omitted. The uniform grid of dimensions n × n × n is introduced 

and then the finite difference equation for internal node (i, j, k) has 

the following form [6] 
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where: 
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while s = f – 1 or s = f – 2 and h is the constant grid step. Finally, 

the temperature at the node (i, j, k) is calculated from 
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where 
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It should be pointed out that in the case of explicit scheme 

application a criterion of stability should be formulated.  

The solving system is stable if the coefficients in the difference 

equations (22) for time t f – 1 are non-negative. Hence it results that 

the following coefficient must be positive 
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5. CPU parallel algorithm 

All the time steps must be performed consecutively so the 

time loop can’t be divided into the parallel calculation. 

Temperature calculations at all nodes in each time step  

are executed in three nested loops: in the x direction, in the y 

direction and in the z direction. These calculations can be easily 

divided into the parallel because all temperatures at the points are 

calculated based on the f – 1 and f – 2 time steps. In figure 3 the 

example of parallelization of CPU calculations is shown.  

The number of threads “q” depends on the CPU cores. 

 

Fig. 3. CPU parallelization of calculations  

6. GPU parallel algorithm 

To achieve acceleration of computing time the CUDA 

technology of NVidia was implemented in computer program. 

This platform allows to use the graphics processing unit (GPU)  

for scientific computing. Unlike the CPU, the graphics processor 

is made up of hundreds of thousands cores (Fig. 4). Each of these 

cores may perform calculations independently. 

 

Fig. 4. Model of CPU and GPU [5] 

The main limitation of graphics cards is the speed of copying 

data from the host to the device and the access time to data in the 

memory. The idea of using the GPU to accelerate the calculations 

associated with the finite difference method application is based 

on the fact that in each successive time steps the calculated data 

are new data for next time step, so it is not necessary to copy these 

data from the host to the device. The program algorithm  

is presented in figure 5. 

The next very important factor which haves major impact  

on application efficiency is the idea of using shared memory.  

The global memory of the device has long access latencies and 

finite access bandwidth. Unlike to the previously, shared memory 

can be accessed at very high speed. The biggest problem in use  

of shared memory is limited amount of this memory [13]. 

 

Fig. 5. Algorithm 

Data for time steps f, f – 1 and f – 2 are stored in the memory 

as one dimensional arrays. In chosen approach each thread block 

loads a tile of data from those arrays. Proper choice of tile 

dimensions required some experimentations. It was decided to use 

a 4 × 4 × 25 block size. Then for calculated all nodes temperature, 

the two arrays, in each threads blocks, from previous time steps  

of size 6 × 6 × 27 are required (fig. 6). 

The part of the code of the device kernel function, which 

copies the data from the global to the shared memory  

and calculates node temperature is shown on figure 7. After 

determining the temperature, for every node the thermal dose was 

also calculated. 
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Fig. 6. Array of data from f-1 time step in shared memory 

 

Fig. 7. Device kernel function 

 

7. Results 

In numerical computations the following values of parameters 

have been assumed: thermal conductivity of blood λb, thermal 

conductivity of tissue λt = 0.5 W/(mK), blood density  

ρb = 1060 kg/m3, tissue density ρt = 1000 kg/m3, specific heat 

capacity of blood cb = 3770 J/(kgK), specific heat capacity  

of tissue ct = 4000 J/(kgK), metabolic heat source (of tissue and 

blood) Qmb = Qmt = 250 W/m3, blood temperature Tb = 37°C, 

initial temperature Tp = 37°C, porosity ε = 0.0137  

and G = 27097.8 W/(m3 K). The values of phase lag times τq and 

τT were determined using formulas (9) and (10). The spatial 

discretization creates 500×500×500 nodes and time step is equal 

to ∆t = 0.01 s. Following heating condition have been taken into 

account [9]: 35 s heating with a power density of 1 MW/m3. 

The program has been running on a computer with  

the processor Intel Core i7-3960X and the graphic card GeForce 

GTX 680. The processor has the six cores, each with two threads 

and the clock speed 3.3 GHz. The graphics processing unit has 

1536 CUDA cores with base clock 1006 MHz and 2048 MB  

of global memory. 

In figure 8 the temperature history at the central node of cube 

is presented. One can see that in the cube the maximum 

temperature 44°C. occurs and the temperature above 43°C  

is maintained only by 18 seconds. 

 

Fig. 8. Temperature history at central node of cube 

Figure 9 illustrates the temperature distribution at the cross 

section (z = 0) after 10 second. The temperature above 37°C  

is just inside the tumor region. 

 

Fig. 9. Temperature distribution at the central part of cross section after 10s 

 

 

__global__ void TimeStepKernel(float 

*arrF, const float 

*arrF1, const float *arrF2, 

Args arg) 

{ 

__shared__ float sF1[6][6][27]; 

__shared__ float sF2[6][6][27]; 

int dimI = arg.dimI; 

int dimJ = arg.dimJ; 

int dimK = arg.dimK; 

int tx = threadIdx.x; 

int ty = threadIdx.y; 

int tz = threadIdx.z; 

int i = blockDim.x * blockIdx.x + tx; 

int j = blockDim.y * blockIdx.y + ty; 

int k = tz + arg.shift; 

 

... 

... 

 

sF1[tx+1][ty+1][tz+1] = 

arrF1[i*dimJ*dimK+j*dimK+k]; 

sF2[tx+1][ty+1][tz+1] = 

arrF2[i*dimJ*dimK+j*dimK+k]; 

__syncthreads(); 

  

arrF[i*dimJ*dimK+j*dimK+k] =  

arg.A * sF1[tx+1][ty+1][tz+1] + arg.B 

* 

(sF1[tx][ty+1][tz+1] + 

sF1[tx+2][ty+1][tz+1] + 

sF1[tx+1][ty][tz+1] + 

sF1[tx+1][ty+2][tz+1] + 

sF1[tx+1][ty+1][tz] + 

sF1[tx+1][ty+1][tz+2]) –  

arg.C * (sF2[tx][ty+1][tz+1] + 

sF2[tx+2][ty+1][tz+1] + 

sF2[tx+1][ty][tz+1] + 

sF2[tx+1][ty+2][tz+1] + 

sF2[tx+1][ty+1][tz] + 

sF2[tx+1][ty+1][tz+2]) - arg.D * 

sF2[tx+1][ty+1][tz+1] + arg.F + arg.E 

* Qe; 

__syncthreads(); 

} 
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In Figure 10 the temperature distribution in the cross section 

of the cube after 35 second is shown. In healthy tissue  

the temperature above 37°C appeared. 

 

Fig. 10. Temperature distribution at the central part of cross section after 35s 

After 60 seconds the temperature began to decrease – figure 

11, but in the healthy tissue, there is still the temperature above 

37°C. Also, more of the area Ω1 is occupied by the elevated 

temperature. 

 

Fig. 11. Temperature distribution at the central part of cross section after 60s 

After 100 seconds the temperature in the entire domain is less 

than 39°C (figure 12). 

 

Fig. 12. Temperature distribution at the central part of cross section after 100s 

In figure 13 the thermal dose history at the central node  

of the cube is presented. It is clearly that TD rise is meaningful  

in time from 25 to 60 seconds. After this time the thermal dose 

rise a little. It should be noted that values of thermal dose do not 

exceed 240 minutes. 

 

Fig. 13. Thermal dose history at central node of cube 

In figure 14 the distribution of thermal dose in the central 

cross section is presented. It can be seen that all elevated values 

are inside the region Ω2. 

 

Fig. 14. Thermal dose distribution at the central part of cross section after 60s 

 

Fig. 15. Thermal dose distribution at the central part of cross section after 100s 

Most important thermal dose distribution is after 100s because 

then the temperature decreases under 39°C and then  

the coefficient R in the thermal dose concept is equal to zero. 
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This distribution is presented in figure 15. It should be 

emphasized that all values of TD above 0 minutes are still inside 

the tumor region. This means that the healthy tissue is heated, but 

it does not receive a significant thermal dose. 

As previously mentioned, the time step is equal to ∆t = 0.01s, 

while the analysis time is equal to 100s. Thus, the amount of time 

steps is equal to 10,000. Assumed number of nodes is equal to  

500 × 500 × 500, so the number of temperatures which is 

necessary to calculate in each time step is equal to 125,000,000. 

Computer program, which used only the CPU,  

all the calculations has been performed during 37 minutes  

and 43 seconds, at 95% of CPU utilization (Fig. 16).  

Computer program which used not only CPU but also GPU, 

the same calculations has been performed during 14 minutes  

and 1 second. As can be seen, the acceleration of calculations  

is very significant. 

 

Fig. 16. CPU utilization (without using CUDA) 

Table 1 provides a comparison of calculation times  

for different spatial discretizations. In all variants the same time 

step has been assumed. When changing the discretization for  

100 × 100 × 100 the tile sizes also have to be changed  

(2 × 2 × 25), of course. The maximum difference between the 

results of the GPU and CPU calculations was below 1.6∙10-9. 

Table 1. Times of calculations 

Spatial discret-

ization 

Calculation time 
Acceleration 

CPU / GPU 
GPU CPU 

500 × 500 × 500 14min 1s 37min 43s 2,7 

100 × 100 × 100 8 s 21 s 2,5 

50 × 50 × 50 2,6 6,4 2,46 

8. Results 

In this paper the bioheat transfer process in three dimensional 

domain including the healthy tissue and the tumor region has been 

considered. Some simplifications were adopted, for example: very 

regular tumor shape and heating only in domain Ω2. 

As can be seen in figures 9 – 12, the temperatures above 37°C. 

occur not only in the tumor, but also in the area of healthy tissue. 

During the treatment it is very important to prevent damage of 

healthy tissue and to provide adequate thermal dose  

in the tumor region. For a patient, the long duration of heating at 

high temperature will induce a feeling of discomfort and pain [8]. 

Based on the received thermal dose distribution it can be seen that 

not only the temperature is important, but also the exposure time. 

Figures 14 and 15 show that the thermal dose values above 

zero minutes are cumulated inside domain Ω2. 

Using CUDA platform significantly speeds  

up the calculations. Calculations on graphics processing units 

should be implemented to the program, which repeatedly performs 

the complex analysis. 
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