
ISSN 2083-0157      IAPGOŚ 1/2014      69 
 

artykuł recenzowany/revised paper IAPGOS, 2014, nr 1, 69-71 

DOI: 10.5604/20830157.1093212 

MODELLING OF TRANSIENT HEAT TRANSPORT IN CRYSTALLINE 

SOLIDS USING THE INTERVAL LATTICE BOLTZMANN 

METHOD (TWO-DIMENSIONAL MODEL) 

Alicja Piasecka-Belkhayat, Anna Korczak 
Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Computational Mechanics and Engineering 

Abstract. In the paper the two-dimensional numerical modelling of heat transfer in crystalline solids is considered. In the mathematical description the 

relaxation time and the boundary conditions are given as interval numbers. The problem formulated has been solved by means of the interval lattice 

Boltzmann method using the rules of directed interval arithmetic. 
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MODELOWANIE PRZEPŁYWU CIEPŁA W DWUWYMIAROWYM CIELE KRYSTALICZNYM 

ZA POMOCĄ INTERWAŁOWEJ METODY SIATEK BOLTZMANNA 

Streszczenie. W artykule zaprezentowano dwuwymiarowy model numeryczny przepływu ciepła w ciele krystalicznym. W opisie matematycznym czas 

relaksacji i warunki brzegowe są zdefiniowane jako liczby przedziałowe. Sformułowane zagadnienie rozwiązano za pomocą interwałowej metody siatek 

Boltzmanna stosując skierowaną arytmetykę interwałową. 

Słowa kluczowe: równanie transportu Boltzmanna, interwałowa metoda siatek Boltzmanna, skierowana arytmetyka interwałowa 

Introduction 

In dielectric materials and also semiconductors the heat 

transport is mainly realized by quanta of lattice vibrations called 

phonons. Phonons always “move” from the part with the higher 

temperature to the part with the lower temperature. During this 

process phonons carry energy. This phenomena can be described 

by the Boltzmann transport equation transformed in the phonon 

energy density [4]. 
Such approach in which the parameters appearing in the 

problem analyzed are treated as constant values is widely used. 

Here, in the mathematical model describing the heat transfer in a 

thin silicon film the interval values of relaxation time and 

boundary conditions have been assumed. 

The problem analyzed has been solved using an interval 

version of the lattice Boltzmann method using the rules of directed 

interval arithmetic. 

1. Directed interval arithmetic 

Let us consider a directed interval a  which can be defined as 

a set D of all directed pairs of real numbers defined as [3, 6] 

  , :a a a a a , a         D R  (1) 

where a  and a  denote the beginning and the end of the 

interval, respectively. 

The left or the right endpoint of the interval a  can be denoted 

as  , ,sa s   , where s is a binary variable. This variable can 

be expressed as a product of two binary variables and is defined as 

follows 
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An interval is called proper if a a  , improper if a a   

and degenerate if a a  . The set of all directed interval 

numbers can be written as = D P I , where P denotes a set of all 

directed proper intervals and I denotes a set of all improper 

intervals. 

Additionally a subset =  P IZ Z Z D  should be defined, 

where 
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For directed interval numbers two binary variables are 

defined. The first of them is the direction variable 
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and the other is the sign variable 
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For zero argument   0, 0 (0)    , for all intervals 

including the zero element a Z ,  a  is not defined. 

The sum of two directed intervals ,a a a      and 

,b b b      can be written as 

 , , ,a b a b a b a b          D  (6) 

The difference is of the form 

 , , ,a b a b a b a b          D  (7) 

The product of the directed intervals is described by the 

formula 
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The quotient of two directed intervals can be written using the 

formula 
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In the directed interval arithmetic are defined two extra 

operators, inversion of summation 

 , ,a a a a       D D  (10) 

and inversion of multiplication 

 1/ 1/ , 1/ ,a a a a \    D D Z  (11) 
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So, two additional mathematical operations can be defined as 

follows 

 , , ,a b a b a b a b         D D  (12) 

and 
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Now, it is possible to obtain the number zero by subtraction of 

two identical intervals 0a a D
 and the number one as the 

result of the division / 1a a D
, which was impossible when 

applying classical interval arithmetic [5]. 

2. Boltzmann transport equation 

One of the fundamental equations of solid state physic is the 

Boltzmann transport equation (BTE) which takes the following 

form [1, 2] 
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where f is the phonon distribution function, 0f  is the equilibrium 

distribution function given by the Bose-Einstein statistic,  

v is the phonon group velocity, 
r  is the relaxation time  

and efg  is the phonon generation rate due to electron-phonon 

scattering. 

In order to take advantage of the simplifying assumption of 

the Debye model, the BTE can be transformed to an equation on 

carrier energy density of the form [1] 
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where e is the phonon energy density, 0e  is the equilibrium 

phonon energy density and vq  is the internal heat generation rate 

related to an unit of volume. The equation (15) must be 

supplemented by the boundary initial conditions. 

Using the Debye model the relation between phonon energy 

density and lattice temperature is given by 
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where 
D  is the Debye temperature of the solid, bk is the 

Boltzmann constant, T is the lattice temperature while   is the 

number density of oscillators and can be calculated using the 

formula 
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where  is the Planck constant divided by 2  and   is the 

phonon frequency. 

3. Interval lattice Boltzmann method 

The interval lattice Boltzmann method (ILBM) is a discrete 

representation of the Boltzmann transport equation. For two-

dimensional problems the interval Boltzmann transport equation can 

be written as 
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where e  is the interval phonon energy density, 0e  is the interval 

equilibrium phonon energy density, v is the phonon group 

velocity, vq  is the internal heat generation rate related to an unit of 

volume and ,r r r

        is the interval relaxation time. 

For two-dimensional model the discrete phonon velocities are 

expressed as [2] 
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where / /c x t y t       is the lattice speed, x  and y  are 

the lattice distances from site to site, 1f ft t t   is the time step 

needed for a phonon to travel from one lattice site to the neighboring 

lattice site and d is the direction. 

The interval lattice Boltzmann method algorithm has been 

used to solve the problem analyzed [1, 7]. 

The ILBM discretizes the space domain considered by 

defining lattice sites where the phonon energy density is 

calculated. 

The lattice is a network of discrete points arranged in a regular 

mesh with phonons located in lattice sites. Phonons can travel 

only to neighboring lattice sites by ballistically traveling with 

the certain velocity and collide with other phonons residing 

at these sites according to Fig. 1 [1]. 

The discrete set of propagation velocities in the main lattice 

directions can be defined as (see eq. 19) 
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Fig. 1. Two dimensional 5-speed (D2Q5) lattice Boltzmann model 

In the ILBM it is needed to solve five equations allowing to 

compute phonon energy in different lattice nodes according to the 

following equations 
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The set of equations (21) must be supplemented by 

the boundary conditions 
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and the initial condition 

 00 : ( , , 0) ( )t e x y e T   (23) 

where 1 1 1[ , ]b b bT T T  , 2 2 2[ , ]b b bT T T  , 3 3 3[ , ]b b bT T T   and 

4 4 4[ , ]b b bT T T   are the interval boundary temperatures, 0T  is the 

initial temperature. 
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The approximation of the first derivatives using right-hand 

and left-hand sides differential quotients is as 
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and 
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Thus one obtains the approximate form of the interval 

Boltzmann transport equations for 2D problem in five directions of 

the lattice [1, 2] 
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The total energy density is defined as the sum of discrete 

phonon energy densities in all the lattice directions 
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After subsequent computations the lattice temperature is 

determined using the formula 
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4. Results of computations 

As a numerical example the heat transport in a silicon thin film 

of the dimensions 200 nm   200 nm has been analyzed. The 

following input data have been introduced: the relaxation time 

[6.36675, 6.69325]psr  , the Debye temperature 640KD  , 

the boundary conditions 1 [780, 820]KbT   and 

2 3 4 [292.5, 307.5]Kb b bT T T   , the initial temperature 

0 300KT  . The lattice step 20nmx y     and the time step 

5pst   have been assumed. 
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Fig. 2. The interval heating curves at internal nodes for qv=0 

Figure 2 presents the courses of the temperature function at the 

internal nodes (40, 20) – 1, (160, 40) – 2 and (100, 100) – 3 for the 

heat source 0vq  . Figure 3 shows the courses of the temperature 

function at the same nodes like in Fig. 2 but for the heat source 
1810vq  3W/m . 
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Fig. 3. The interval heating curves at internal nodes for qv=1018W/m3 

5. Conclusions 

In the paper the Boltzmann transport equation with the interval 

values of the relaxation time and the boundary conditions has been 

considered. The interval version of the lattice Boltzmann method 

for solving 2D problems has been presented. The generalization of 

LBM allows one to find the numerical solution in the interval 

form and such an information may be important especially for the 

parameters which are estimated experimentally, for example the 

relaxation time. 
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