
ISSN 2083-0157 IAPGOŚ 1/2013 5

SPECIALIZED SYMBOLIC COMPUTATION FOR STEADY
STATE PROBLEMS

Marcin Sowa
Silesian University of Technology, Faculty of Electrical Engineering

Abstract. An implementation of symbolic computation for steady state problems is proposed in the paper. A mathematical basis is derived in order
 to specify the quantities that the implementation will concern. An analysis is performed so that an optimal algorithm can be chosen in terms of the two
chosen criteria – the operation time and memory needed to store symbolic expressions. The implementation scheme of the specialized class for symbolic
computation is presented with the use of a general figure and by an example. The implementation is made in C++ but the presented idea can also
be applied in other programming languages that share similar properties. A program using the proposed algorithm was studied for its efficiency in terms
of calculation time and memory used by symbolic expressions. This is made by comparing the calculations made by the author’s program with those made
by a script written in Mathematica.

Keywords: symbolic computation, steady state, C++ implementation

SPECJALISTYCZNE OBLICZENIA SYMBOLICZNE DLA PROBLEMÓW
W STANACH USTALONYCH

Streszczenie. W artykule zaproponowano implementację obliczeń symbolicznych dla problemów w stanach ustalonych. Wyprowadzono podstawę
matematyczną aby sprecyzować wielkości, dla których dokonana jest implementacja. Przeprowadzono analizę dzięki której dobrano optymalny algorytm
pod względem wybranych kryteriów użyteczności tj. czasu wykonywania operacji oraz pamięci wymaganej do zapisu wyrażeń symbolicznych. Schemat
implementacji specjalistycznej klasy do obliczeń symbolicznych przedstawiono za pomocą ogólnego schematu oraz z wykorzystaniem przykładu.
Implementacji dokonano w języku C++ lecz ogólna idea przedstawiona jest w ten sposób, aby można ją było wykorzystać również w innych językach
programowania o podobnych cechach. Wydajność programu wykorzystującego proponowany algorytm sprawdzono pod względem czasu wykonywania
obliczeń i zajmowanej pamięci przez wyrażenia symboliczne. Dokonano tego poprzez porównanie obliczeń z autorskiego programu z wykonanymi przez
skrypt napisany w programie Mathematica.

Słowa kluczowe: obliczenia symboliczne, stany ustalone, implementacja w C++

Introduction

Symbolic computation is applicable in analyses that require
the presentation of relationships between parameters or certain
quantities and quantities that are observed. Among programs for
mathematical analysis with a featured ability of symbolic
computation, one can distinguish popular software such
as Mathematica [1] or Maple [2]. These include a wide range
of methods when it comes to operations on (or between) symbolic
expressions. Symbolic computation can also be performed
in Matlab [3], where the Symbolic Math Toolbox [4] was created
for these purposes. The mentioned commercial software mostly
has symbolic computation implemented in such ways that it is
possible to present symbolic expressions in various forms i.e. they
can be expanded, reduced etc.

A versatile approach such as the one proposed by the
mentioned software has many benefits. However, in many cases
the calculations require a long time to be completed. They also
require much computer memory for complicated and large
expressions to be stored.

An implementation of a specialized case of symbolic
computation is considered i.e. dealing only with specific
problems. Here the implementation is proposed for certain steady
state problems.

The paper addresses a case where in an engineering problem,
the symbolic expression form is known i.e. all symbolic
expressions can be presented in the one desired form. This also
means that any operations performed on the symbolic expressions
will allow to obtain an expression following the same general
rules. This allows to reduce the overall description of possible
symbolic expressions.

The paper aims at proving that an implementation
of a specialized symbolic computation algorithm can be useful
in steady state problems. Results of two chosen criteria are
of interest. The first is an observation of the amount of memory
used in order to store the symbolic expressions. Secondly,
the presented implementation is examined in terms
of the calculation time required to perform an operation between
symbolic expressions. Observations are made with reference
to results obtained by a chosen commercial program (in this case
Mathematica). The paper also presents the simplicity
of the chosen implementation of symbolic computation.

Symbolic computation in steady states can be useful in many
technical genres that contain complicated mathematical
calculations e.g. the author has shown that the presented
implementation can be used for certain nonlinear electromagnetic
field problems [5, 6, 7].

1. Mathematical background

This section provides the mathematical basis of the selected
symbolic expressions and the operations that they undergo. First,
it must be mentioned that the further presented expressions
concern only steady state problems. The numerical presentation of
a single quantity dependent on time can be (among other forms)
made with the use of a cosine Fourier series:

 .)cos()(
max

0
0∑

=

+=
h

h
hh thBtx ξω (1)

If a presentation using symbols must be made, the above can
be written with taking into account that Bh = Bh(s) and ξh = ξh(s),
where s is introduced as a vector of base symbolic expressions.

If the implementation is to be made so that every result of
operations performed on the time dependent quantities of the form
(1) is to yield a result following the same general rules, an
assumption must be made that between two expressions of the
form (1) only mathematical operations of either addition,
subtraction or multiplication are performed.

Because a presentation through cosine Fourier series was
chosen, it is assumed that the base symbolic expressions are those
determining amplitudes and phase shifts of the Fourier series.
Because various dependencies on the base expressions can be
present at each harmonic, a description can be introduced, which
depicts each harmonic through sub-terms. These are described by
a unique j index each and together form subsequent time harmonic
functions:

 () ,))(cos()()(
max

0 1
,,0,,∑ ∑

= =










++=

h

h

M

j
jhjhjhjh

h

fthaAtx αc θω (2)

where the base symbolic expressions determining the amplitudes
are:
 [],...21 nccc=c (3)
and phase shifts are determined by the following vector of base
symbolic expressions:
 []....21 mααα=α (4)

6 IAPGOŚ 1/2013 ISSN 2083-0157
As mentioned, the discussed symbolic expressions are either
added, subtracted or multiplied hence a general form of the time
function can be derived:


















++⋅










⋅







=

∑

∑ ∑ ∏

=

= = =

m

k
kkjhjh

h

h

M

j

n

i

p
ijh

gth

cAtx
h

ijh

1
,,,0

0 1 1
,

cos

)(
max

,,

αθω

 (5)

where it can be observed that p ∈ ℕ0, g ∈ ℤ. One can notice that
the form (5) is derived in such a way that when the mentioned
mathematical operations (addition, subtraction or multiplication)
are made on the given expressions then the result will also be
obtained in the above form.

One can notice, that the number of sub-terms (given by Mh for
each harmonic) represents the number of dependencies on the base
symbolic expressions c and α. The smaller the Mh value, the less
the amount of memory the algorithm will use to store the symbolic
expressions. This also affects the time that will be used for the
operations on the symbolic expressions. A minimal amount of
sub-terms for a given time harmonic can be provided by such an
implementation that will ensure that the product:

 ,)(
1

,
,,∏

=

=
n

i

p
ijh

ijhca c (6)

and sum:

 ,)(
1

,,, ∑
=

=
m

k
kkjhjh gf αα (7)

are not repeated in a single time harmonic.
A simplification is made in the implementation so that it deals

with objects of inputs given as Fourier series of unknown
amplitudes and phase shifts. The output is given also by Fourier
series (Fig. 1). Further simplifications can be made when the
specifications of the object S are known. In the current
considerations it is assumed that during the calculation of the
output vector y(t), the Fourier series with symbolic expressions
undergo only the three mentioned basic mathematical operations.

Fig. 1. Exemplary system where the presented implementation may be used

If the base symbolic expressions are amplitudes and phase
shifts of certain initial time functions then it can be assumed that:
 .mn = (8)
The implementation (as will be shown in the next paragraph) is
made so that if the above equality is not fulfilled then the

implementation will also work properly. Modifications can also be
made to the algorithm for similar dependencies if needed.

It can be noticed, that although the implementation has been
brought forth for systems of a certain type (Figure 1) one can also
use the proposed symbolic computation for parametric analysis
where additional base expressions in the c or α vectors can
represent the properties of the object S. These would respectively
affect the amplitudes or phase shifts of certain functions.

2. Specialized symbolic class implementation

The previous section presented a detailed description of the
mathematical basis of the discussed implementation. This
paragraph explains how the mathematical basis is used for the
implementation. Possibilities of various ideas are mentioned in
order to find an optimal solution satisfying the criteria of memory
and operation time.

The form (5) allows the first partition to be made so that it
does not concern symbolic expressions directly i.e. the partition
into harmonic terms. For this purpose, a separate class may be
implemented. In order to present each harmonic separately, it is
useful to apply complex numbers. At the initial ramification, the
form (5) can be presented through the vector:
],...[max10 hxxx=x (9)
where the element of index h, responsible for the respective
harmonic can be expressed as follows:

 .)(iexp
1 1

,,,
1

,
,,∑ ∏

= ==






 ∑+










=

h
ijh

M

j

m

k
kkjhjh

n

i

p
ijhh gcAx αθ (10)

At the stage of the symbolic expressions (10), vectors can be
used to represent consecutive terms with a varying j index.
However, if taking into account the aforementioned property that
p and g are both integers, then the indexing according to j can be
replaced by an indexing by the integers p and g. The latter idea has
a specific advantage that when the indexing is used, the existing
dependencies between the complete symbolic expressions and
individual base symbolic expressions can be directly retrieved.

The simplest manner in which the above idea can be
accomplished in C++ is the presentation through a 2n-dimensional
dynamic array. The exponentiations p and the multipliers g would
(along with certain auxiliary variables) allow to point out the
complex value Ah,jexp(iθh,j). The indexing allows to assure that the
(6) and (7) expressions are not repeated in a single time harmonic
(what was mentioned in the previous section). This could aid both
in memory and calculation time efficiency (the search for the same
existing dependence on c and α would require additional
computation time).

To leave the idea in the form of a 2n-dimensional array would
however leave a serious flaw. This is because if symbolic
expressions are large then they would be presented as data of

∏
=

n

N
Ni

2

1

 elements (including an i1×i2×…×i2n array). In the case of

rare occurrences of certain dependencies (exponentiations p and
multipliers g) this would lead to a large amount of zero elements
(which would mainly lead to unneeded memory being occupied
and, what follows, the operation time would be increased). In
order to reduce the said drawbacks, an implementation has been
applied that uses consecutive object links. The object sequences
express dependencies on the base symbolic expressions. The last
objects in the sequences then link to appropriate Ah,jexp(iθh,j)
complex values.

If additionally the assumption (8) is made, then the
dependencies on ci and αi can be represented through a single
object in each sequence. It can be then assumed that the
consecutive objects express the relationship with base complex
symbolic expressions c understood as:
 .ei i

ii cc α= (11)
The general idea of how the proposed implementation deals with
storing a symbolic expression is depicted in Figure 2.

ISSN 2083-0157 IAPGOŚ 1/2013 7

If, like mentioned in paragraph 1, one would want n≠m to be
assumed, the class can be modified so that instead of 2D dynamic
arrays, one can construct 1D arrays in objects for each base
symbolic expression alone. The most important part is that the
code must know how to handle each variant.

Fig. 2. Sketch of the idea of symbolic computation objects

An exemplary configuration of symbolic object chains is
presented in Figure 3 in order to clarify the idea even further.

Fig. 3. Example of how a set of symbolic object chains formulates a symbolic
expression

3. Test problems

A comparative analysis is performed which aims at verifying
whether the proposed implementation is made properly i.e. if, in
accordance with the intent, the description’s simplifications and
implementation idea create an efficient algorithm with respect to
the chosen criteria of memory and computation time reduction.

Mathematica is an efficient environment for the analysis of
various mathematical problems and features a wide variety of
operations on expressions in symbolic form. Therefore, it has been
chosen as a referential program for the comparative analysis in

order to verify the correctness of the proposed method. The results
of a few calculations have been compared to ascertain whether a
specially written C++ program and Mathematica yield equivalent
expressions. Furthermore, the comparison is made with respect to
the mentioned efficiency criteria.

The implementation has been made in C++ but it can also be
applied in other languages that allow for such linking of data types
as discussed here.

The implementation of the specialized symbolic computation
uses a harmonic balance vector (9) that expresses the Fourier
series terms by complex numbers. This representation has also
been adapted in exemplary Mathematica scripts which will be
used in the comparative analysis. Thus, from the point of view of
operations on time harmonics, the C++ implementation will
generally not differ from the Mathematica scripts. It is the
symbolic expressions that will be dealt with much differently.
Mathematica includes an extensive assortment of tools, which
allow operations on symbolic expressions, but it is not guaranteed
that an optimal operation will be performed with respect to
memory and computation time efficiency. Several drawbacks of a
versatile implementation are worth mentioning:
• because one does not specify the intermediate or final form,

the expressions often become larger than necessary, hence
much more memory is used,

• because of the expressions being larger, operations between
the symbolic expressions have a longer completion time,

• separate functions used for simplifying large expressions and
putting them into the desired form need to be implemented
because one can never guarantee that the result will be
obtained in the desired form.
However the author has made an effort so that the

Mathematica scripts used in the comparative analysis will be
improved in order for them to be more efficient in the sense of the
chosen criteria of efficiency. For the comparative analysis, two
exemplary operations made on symbolic expressions in steady
state are brought forth. The results of these operations are the time
functions as follows:
 () ,)3cos()cos()(9

22022110111 αθωαθω +++++= tcAtcAtr (12)

 ()
() .)3cos()cos(

)3cos()cos()(
7

4404433033

4
22022110112

αθωαθω

αθωαθω

+++++⋅

⋅+++++=

tcAtcA

tcAtcAtr (13)

Two variants of a Mathematica function have been proposed
to deal with the multiplication of symbolic expressions in steady
state. They both differ only by the function Reduc that changes
the form of the symbolic expression. The script is as follows:

multharmsWD[v1_,v2_,harms_]:=Module[{s1,s2,retv,i1,i2},
 s1=Dimensions[v1,1][[1]];
 s2=Dimensions[v2,1][[1]];
 retv=ConstantArray[0,harms+1];
 For[i1=1,i1≤s1,i1++,
 For[i2=1,i2≤s2,i2++,
 If[i1+i2-2≤harms,
 retv[[i1+i2-1]]+=v1[[i1]]*v2[[i2]]/2;];
 If[Abs[i1-i2]≤harms,
 If[i1-i2≥0,
 retv[[i1-i2+1]]+=

v1[[i1]]* Reduc[Conjugate[v2[[i2]]]]]/2;
 ,
 retv[[i2-i1+1]]+=

v2[[i2]]* Reduc[Conjugate[v1[[i1]]]]]/2;
];
];
];
];
 retv];

In the first case the Reduc function is:
Reduc[x_]:=TrigToExp[ComplexExpand[x]];

and in the second variant:
Reduc[x_]:=TrigToExp[Simplify[ComplexExpand[x]]];

An additional function can be written for an exponentiation of the
symbolic expression:

harmsdonWD[v1_,n_]:=Module[{i1,s1,retvec,s2},
 retvec=v1;

8 IAPGOŚ 1/2013 ISSN 2083-0157
 For[i1=1,i1≤n-1,i1++,
 s1=Dimensions[retvec,1][[1]];
 s2=Dimensions[v1,1][[1]];
 retvec=multharmsWD2[retvec,v1,s1+s2+1];
];
 retvec
];
The script checking the time and memory used by the operations
(12) and (13) is:

t0=SessionTime[];
r1=harmsdonWD[{0,(25+410I)*A1*Exp[I*fi1],0,(45+86I)*A3*

Exp[I*fi3]},9];
t1=SessionTime[]-t0;
Print[t1]
Print[Floor[ByteCount[r1]/1024]]

t0=SessionTime[];
r2=multharsWD[harmsdonWD[{0,(25+410I)*A0*Exp[I*fi0],0,(45

+86I)*A1*Exp[I*fi1]},4],
harmsdonWD[{0,(41+41I)*A2*Exp[I*fi2],

0,(34+26I)*A3*Exp[I*fi3]},7],50];
t1=SessionTime[]-t0;
Print[t1]
Print[Floor[ByteCount[r2]/1024]]

Naturally, both scripts allowed to obtain different (though
equivalent) expressions at a different computing duration. It is
possible that when using other functions, different results could be
obtained.

Results of both quantities determining the efficiency (in the
understanding of the chosen criteria) are presented in Tables 1 and
2. These are respectively – the time needed to perform the given
operation in order to obtain the symbolic expressions (i.e. r1(t) and
r2(t)) and the memory used for the storage of the symbolic
expression resulting from the mathematical operation.

Table 1. Time needed to perform the operations of the chosen symbolic expressions

 Time used for operation (s)

Obtained
expression

Program using
the symb class

Mathematica
script

(variant 1)

Mathematica
script

(variant 2)
r1(t) 0.046 43.166 58.400
r2(t) 1.109 198.641 255.254

Table 2. Memory required to store the given symbolic expression

 Memory used (KB)

Obtained
expression

Program using
the symb class

Mathematica
script

(variant 1)

Mathematica
script

(variant 2)
r1(t) 144 73293 41097
r2(t) 2664 114316 27611

A clear relation can be noticed that both the author’s program

and Mathematica take more time to complete the calculation of
obtaining r2(t). It is however interesting that the second variant of
the Mathematica code needs more memory to store r1(t) rather
than the more complicated expression r2(t). It is clear that more
studies need to be performed on the choice of the Mathematica
functions that change the form of symbolic expressions. It is
possible that a more efficient script can be written than the ones
proposed in this paper.

The proposed algorithm has proven to be useful because of its
efficiency in terms of the chosen criteria. Very complicated and
large symbolic expressions were computed in a very short time.
Additionally the symbolic expressions resulting from the
operations given in (12) and (13) require an insignificant amount
of memory in comparison to the Mathematica scripts.

The calculations have been performed on Windows 7
Professional 64Bit SP1 on Intel™ Core™2 Quad CPU Q3900 @

2.5GHz and total available 3.25GB RAM. Both Mathematica and
the author’s program have used a single core for the calculations.
Mathematica for Students 8 has been used.

4. Conclusions

The author’s proposition of an implementation of specialized
symbolic computation for steady state problems has been
presented. The mathematical basis has been given that determined
the rules for the algorithm to follow.

In accordance with a derived mathematical basis an analysis
has been performed that allowed to choose the proper algorithm
which could be effective in terms of the chosen criteria.

The chosen implementation has been explained with the aid of
a general figure along with an exemplary set of object chains in
order to clarify the symbolic expression presentation.

To verify whether the implementation is useful, it was
ascertained if the algorithm allows to store a symbolic expression
with the use of a small amount of memory. Furthermore, another
verification has been made (which is also affected by the previous
criterion) i.e. the time needed to perform certain operations on
symbolic expressions has been observed.

The implementation has been made for chosen problems but
certain propositions are also mentioned to extend its use for
similar mathematical tasks.

In order to perform a comparative analysis, Mathematica has
been chosen as it allows to perform a wide variety of operations
on symbolic expressions. Additionally, it contains functions that
allow for various presentations of symbolic expressions (their
reductions, expansions etc.).

The author has written two scripts in Mathematica that allow
to perform the comparative analysis in terms of the mentioned
criteria of efficiency. It has been noticed that, in accordance with
the intent, the proposed implementation is efficient i.e. a lot less
memory is used to store symbolic expressions and the calculations
are performed a lot quicker. This supports the idea of applying
such specialized schemes of symbolic computation for certain
problems instead of general algorithms during which all types of
different symbolic expression forms are supported.

References

[1] Mathematica, Wolfram, http://www.wolfram.com/mathematica/
[2] Maple, Maplesoft, http://www.maplesoft.com/products/maple/
[3] http://www.mathworks.com/products/matlab/
[4] http://www.mathworks.com/products/symbolic/
[5] Sowa M., Spałek D.: Analytical solution for certain nonlinear electromagnetic

field problems, Computer Applications in Electrical Engineering Issue 69,
(2012).

[6] Sowa M., Spałek D.: Nonlinear boundary condition application: numerical-
symbolic scheme of formulation, 35th International Conference of
Electrotechnics and Circuit Theory IC-SPETO 2012. Gliwice-Ustroń (2012).

[7] Sowa M., Spałek D.: Cylindrical structure with superconducting layer in a
uniform electromagnetic field – analytical solution. Advanced Methods of the
Theory of Electrical Engineering 2011, Klatovy, Czech Republic (2011).

Mgr inż. Marcin Sowa
e-mail: marcin.sowa@polsl.pl

PhD student at the Institute of Industrial Electrical
Engineering and Informatics in Faculty of Electrical
Engineering at Silesian University of Technology. The
author or co-author of 13 works published in Przegląd
Elektrotechniczny and other journals, where he
discussed the ongoing results of selected analytical and
numerical methods for solving nonlinear boundary
problems in the theory of the electromagnetic field

Artykuł recenzowany

