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Abstract. An implementation of symbolic computation for steady state problems is proposed in the paper. A mathematical basis is derived in order 
 to specify the quantities that the implementation will concern. An analysis is performed so that an optimal algorithm can be chosen in terms of the two 
chosen criteria – the operation time and memory needed to store symbolic expressions. The implementation scheme of the specialized class for symbolic 
computation is presented with the use of a general figure and by an example. The implementation is made in C++ but the presented idea can also  
be applied in other programming languages that share similar properties. A program using the proposed algorithm was studied for its efficiency in terms 
of calculation time and memory used by symbolic expressions. This is made by comparing the calculations made by the author’s program with those made 
by a script written in Mathematica. 
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SPECJALISTYCZNE OBLICZENIA SYMBOLICZNE DLA PROBLEMÓW  
W STANACH USTALONYCH 

Streszczenie. W artykule zaproponowano implementację obliczeń symbolicznych dla problemów w stanach ustalonych. Wyprowadzono podstawę 
matematyczną aby sprecyzować wielkości, dla których dokonana jest implementacja. Przeprowadzono analizę dzięki której dobrano optymalny algorytm 
pod względem wybranych kryteriów użyteczności tj. czasu wykonywania operacji oraz pamięci wymaganej do zapisu wyrażeń symbolicznych. Schemat 
implementacji specjalistycznej klasy do obliczeń symbolicznych przedstawiono za pomocą ogólnego schematu oraz z wykorzystaniem przykładu. 
Implementacji dokonano w języku C++ lecz ogólna idea przedstawiona jest w ten sposób, aby można ją było wykorzystać również w innych językach 
programowania o podobnych cechach. Wydajność programu wykorzystującego proponowany algorytm sprawdzono pod względem czasu wykonywania 
obliczeń i zajmowanej pamięci przez wyrażenia symboliczne. Dokonano tego poprzez porównanie obliczeń z autorskiego programu z wykonanymi przez 
skrypt napisany w programie Mathematica. 

Słowa kluczowe: obliczenia symboliczne, stany ustalone, implementacja w C++ 

Introduction 

Symbolic computation is applicable in analyses that require 
the presentation of relationships between parameters or certain 
quantities and quantities that are observed. Among programs for 
mathematical analysis with a featured ability of symbolic 
computation, one can distinguish popular software such  
as Mathematica [1] or Maple [2]. These include a wide range  
of methods when it comes to operations on (or between) symbolic 
expressions. Symbolic computation can also be performed  
in Matlab [3], where the Symbolic Math Toolbox [4] was created 
for these purposes. The mentioned commercial software mostly 
has symbolic computation implemented in such ways that it is 
possible to present symbolic expressions in various forms i.e. they 
can be expanded, reduced etc. 

A versatile approach such as the one proposed by the 
mentioned software has many benefits. However, in many cases 
the calculations require a long time to be completed. They also 
require much computer memory for complicated and large 
expressions to be stored. 

An implementation of a specialized case of symbolic 
computation is considered i.e. dealing only with specific 
problems. Here the implementation is proposed for certain steady 
state problems. 

The paper addresses a case where in an engineering problem, 
the symbolic expression form is known i.e. all symbolic 
expressions can be presented in the one desired form. This also 
means that any operations performed on the symbolic expressions 
will allow to obtain an expression following the same general 
rules. This allows to reduce the overall description of possible 
symbolic expressions. 

The paper aims at proving that an implementation  
of a specialized symbolic computation algorithm can be useful  
in steady state problems. Results of two chosen criteria are  
of interest. The first is an observation of the amount of memory 
used in order to store the symbolic expressions. Secondly,  
the presented implementation is examined in terms  
of the calculation time required to perform an operation between 
symbolic expressions. Observations are made with reference  
to results obtained by a chosen commercial program (in this case 
Mathematica). The paper also presents the simplicity  
of the chosen implementation of symbolic computation. 

 

Symbolic computation in steady states can be useful in many 
technical genres that contain complicated mathematical 
calculations e.g. the author has shown that the presented 
implementation can be used for certain nonlinear electromagnetic 
field problems [5, 6, 7]. 

1. Mathematical background 

This section provides the mathematical basis of the selected 
symbolic expressions and the operations that they undergo. First, 
it must be mentioned that the further presented expressions 
concern only steady state problems. The numerical presentation of 
a single quantity dependent on time can be (among other forms) 
made with the use of a cosine Fourier series: 
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If a presentation using symbols must be made, the above can 
be written with taking into account that Bh = Bh(s) and ξh = ξh(s), 
where s is introduced as a vector of base symbolic expressions. 

If the implementation is to be made so that every result of 
operations performed on the time dependent quantities of the form 
(1) is to yield a result following the same general rules, an 
assumption must be made that between two expressions of the 
form (1) only mathematical operations of either addition, 
subtraction or multiplication are performed. 

Because a presentation through cosine Fourier series was 
chosen, it is assumed that the base symbolic expressions are those 
determining amplitudes and phase shifts of the Fourier series. 
Because various dependencies on the base expressions can be 
present at each harmonic, a description can be introduced, which 
depicts each harmonic through sub-terms. These are described by 
a unique j index each and together form subsequent time harmonic 
functions: 
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where the base symbolic expressions determining the amplitudes 
are: 
 [ ],...21 nccc=c  (3) 
and phase shifts are determined by the following vector of base 
symbolic expressions: 
 [ ]....21 mααα=α  (4) 
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As mentioned, the discussed symbolic expressions are either 
added, subtracted or multiplied hence a general form of the time 
function can be derived: 
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where it can be observed that p ∈ ℕ0, g ∈ ℤ. One can notice that 
the form (5) is derived in such a way that when the mentioned 
mathematical operations (addition, subtraction or multiplication) 
are made on the given expressions then the result will also be 
obtained in the above form. 

One can notice, that the number of sub-terms (given by Mh for 
each harmonic) represents the number of dependencies on the base 
symbolic expressions c and α. The smaller the Mh value, the less 
the amount of memory the algorithm will use to store the symbolic 
expressions. This also affects the time that will be used for the 
operations on the symbolic expressions. A minimal amount of 
sub-terms for a given time harmonic can be provided by such an 
implementation that will ensure that the product: 
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and sum: 
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are not repeated in a single time harmonic. 
A simplification is made in the implementation so that it deals 

with objects of inputs given as Fourier series of unknown 
amplitudes and phase shifts. The output is given also by Fourier 
series (Fig. 1). Further simplifications can be made when the 
specifications of the object S are known. In the current 
considerations it is assumed that during the calculation of the 
output vector y(t), the Fourier series with symbolic expressions 
undergo only the three mentioned basic mathematical operations. 
 

 

Fig. 1.  Exemplary system where the presented implementation may be used 

If the base symbolic expressions are amplitudes and phase 
shifts of certain initial time functions then it can be assumed that: 
 .mn =  (8) 
The implementation (as will be shown in the next paragraph) is 
made so that if the above equality is not fulfilled then the 

implementation will also work properly. Modifications can also be 
made to the algorithm for similar dependencies if needed. 

It can be noticed, that although the implementation has been 
brought forth for systems of a certain type (Figure 1) one can also 
use the proposed symbolic computation for parametric analysis 
where additional base expressions in the c or α vectors can 
represent the properties of the object S. These would respectively 
affect the amplitudes or phase shifts of certain functions. 

2. Specialized symbolic class implementation 

The previous section presented a detailed description of the 
mathematical basis of the discussed implementation. This 
paragraph explains how the mathematical basis is used for the 
implementation. Possibilities of various ideas are mentioned in 
order to find an optimal solution satisfying the criteria of memory 
and operation time. 

The form (5) allows the first partition to be made so that it 
does not concern symbolic expressions directly i.e. the partition 
into harmonic terms. For this purpose, a separate class may be 
implemented. In order to present each harmonic separately, it is 
useful to apply complex numbers. At the initial ramification, the 
form (5) can be presented through the vector: 
 ],...[ max10 hxxx=x  (9) 
where the element of index h, responsible for the respective 
harmonic can be expressed as follows: 
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At the stage of the symbolic expressions (10), vectors can be 
used to represent consecutive terms with a varying j index. 
However, if taking into account the aforementioned property that 
p and g are both integers, then the indexing according to j can be 
replaced by an indexing by the integers p and g. The latter idea has 
a specific advantage that when the indexing is used, the existing 
dependencies between the complete symbolic expressions and 
individual base symbolic expressions can be directly retrieved. 

The simplest manner in which the above idea can be 
accomplished in C++ is the presentation through a 2n-dimensional 
dynamic array. The exponentiations p and the multipliers g would 
(along with certain auxiliary variables) allow to point out the 
complex value Ah,jexp(iθh,j). The indexing allows to assure that the 
(6) and (7) expressions are not repeated in a single time harmonic 
(what was mentioned in the previous section). This could aid both 
in memory and calculation time efficiency (the search for the same 
existing dependence on c and α would require additional 
computation time). 

To leave the idea in the form of a 2n-dimensional array would 
however leave a serious flaw. This is because if symbolic 
expressions are large then they would be presented as data of 
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 elements (including an i1×i2×…×i2n array). In the case of 

rare occurrences of certain dependencies (exponentiations p and 
multipliers g) this would lead to a large amount of zero elements 
(which would mainly lead to unneeded memory being occupied 
and, what follows, the operation time would be increased). In 
order to reduce the said drawbacks, an implementation has been 
applied that uses consecutive object links. The object sequences 
express dependencies on the base symbolic expressions. The last 
objects in the sequences then link to appropriate Ah,jexp(iθh,j) 
complex values. 

If additionally the assumption (8) is made, then the 
dependencies on ci and αi can be represented through a single 
object in each sequence. It can be then assumed that the 
consecutive objects express the relationship with base complex 
symbolic expressions c understood as: 
 .ei i

ii cc α=  (11) 
The general idea of how the proposed implementation deals with 
storing a symbolic expression is depicted in Figure 2. 
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If, like mentioned in paragraph 1, one would want n≠m to be 
assumed, the class can be modified so that instead of 2D dynamic 
arrays, one can construct 1D arrays in objects for each base 
symbolic expression alone. The most important part is that the 
code must know how to handle each variant. 

 

Fig. 2.  Sketch of the idea of symbolic computation objects 

An exemplary configuration of symbolic object chains is 
presented in Figure 3 in order to clarify the idea even further. 

 

Fig. 3.  Example of how a set of symbolic object chains formulates a symbolic 
expression 

3. Test problems 

A comparative analysis is performed which aims at verifying 
whether the proposed implementation is made properly i.e. if, in 
accordance with the intent, the description’s simplifications and 
implementation idea create an efficient algorithm with respect to 
the chosen criteria of memory and computation time reduction. 

Mathematica is an efficient environment for the analysis of 
various mathematical problems and features a wide variety of 
operations on expressions in symbolic form. Therefore, it has been 
chosen as a referential program for the comparative analysis in 

order to verify the correctness of the proposed method. The results 
of a few calculations have been compared to ascertain whether a 
specially written C++ program and Mathematica yield equivalent 
expressions. Furthermore, the comparison is made with respect to 
the mentioned efficiency criteria. 

The implementation has been made in C++ but it can also be 
applied in other languages that allow for such linking of data types 
as discussed here. 

The implementation of the specialized symbolic computation 
uses a harmonic balance vector (9) that expresses the Fourier 
series terms by complex numbers. This representation has also 
been adapted in exemplary Mathematica scripts which will be 
used in the comparative analysis. Thus, from the point of view of 
operations on time harmonics, the C++ implementation will 
generally not differ from the Mathematica scripts. It is the 
symbolic expressions that will be dealt with much differently. 
Mathematica includes an extensive assortment of tools, which 
allow operations on symbolic expressions, but it is not guaranteed 
that an optimal operation will be performed with respect to 
memory and computation time efficiency. Several drawbacks of a 
versatile implementation are worth mentioning: 
• because one does not specify the intermediate or final form, 

the expressions often become larger than necessary, hence 
much more memory is used, 

• because of the expressions being larger, operations between 
the symbolic expressions have a longer completion time, 

• separate functions used for simplifying large expressions and 
putting them into the desired form need to be implemented 
because one can never guarantee that the result will be 
obtained in the desired form. 
However the author has made an effort so that the 

Mathematica scripts used in the comparative analysis will be 
improved in order for them to be more efficient in the sense of the 
chosen criteria of efficiency. For the comparative analysis, two 
exemplary operations made on symbolic expressions in steady 
state are brought forth. The results of these operations are the time 
functions as follows: 
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Two variants of a Mathematica function have been proposed 
to deal with the multiplication of symbolic expressions in steady 
state. They both differ only by the function Reduc that changes 
the form of the symbolic expression. The script is as follows: 

 
multharmsWD[v1_,v2_,harms_]:=Module[{s1,s2,retv,i1,i2}, 
   s1=Dimensions[v1,1][[1]]; 
   s2=Dimensions[v2,1][[1]]; 
   retv=ConstantArray[0,harms+1]; 
   For[i1=1,i1≤s1,i1++, 
    For[i2=1,i2≤s2,i2++, 
      If[ i1+i2-2≤harms, 
       retv[[ i1+i2-1 ]]+=v1[[i1]]*v2[[i2]]/2;]; 
      If[ Abs[i1-i2]≤harms, 
       If[i1-i2≥0, 
         retv[[i1-i2+1]]+= 

v1[[i1]]* Reduc[Conjugate[ v2[[i2]] ]]]/2; 
         , 
         retv[[i2-i1+1]]+= 

v2[[i2]]* Reduc[Conjugate[ v1[[i1]] ]]]/2; 
         ]; 
       ]; 
      ]; 
    ]; 
   retv]; 
 

In the first case the Reduc function is: 
Reduc[x_]:=TrigToExp[ComplexExpand[x]]; 

and in the second variant: 
Reduc[x_]:=TrigToExp[Simplify[ComplexExpand[x]]]; 

 
An additional function can be written for an exponentiation of the 
symbolic expression: 
 
harmsdonWD[v1_,n_]:=Module[{i1,s1,retvec,s2}, 
   retvec=v1; 
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   For[i1=1,i1≤n-1,i1++, 
    s1=Dimensions[retvec,1][[1]]; 
    s2=Dimensions[v1,1][[1]]; 
    retvec=multharmsWD2[retvec,v1,s1+s2+1]; 
    ]; 
   retvec 
   ]; 
The script checking the time and memory used by the operations 
(12) and (13) is: 
 
t0=SessionTime[]; 
r1=harmsdonWD[{0,(25+410I)*A1*Exp[I*fi1],0,(45+86I)*A3* 

Exp[I*fi3]},9]; 
t1=SessionTime[]-t0; 
Print[t1] 
Print[Floor[ByteCount[r1]/1024]] 
 
t0=SessionTime[]; 
r2=multharsWD[harmsdonWD[{0,(25+410I)*A0*Exp[I*fi0],0,(45 

+86I)*A1*Exp[I*fi1]},4], 
harmsdonWD[{0,(41+41I)*A2*Exp[I*fi2], 

0,(34+26I)*A3*Exp[I*fi3]},7],50]; 
t1=SessionTime[]-t0; 
Print[t1] 
Print[Floor[ByteCount[r2]/1024]] 
 
Naturally, both scripts allowed to obtain different (though 
equivalent) expressions at a different computing duration. It is 
possible that when using other functions, different results could be 
obtained. 

Results of both quantities determining the efficiency (in the 
understanding of the chosen criteria) are presented in Tables 1 and 
2. These are respectively – the time needed to perform the given 
operation in order to obtain the symbolic expressions (i.e. r1(t) and 
r2(t)) and the memory used for the storage of the symbolic 
expression resulting from the mathematical operation. 

Table 1. Time needed to perform the operations of the chosen symbolic expressions 

 Time used for operation (s) 

Obtained 
expression 

Program using 
the symb class 

Mathematica 
script 

(variant 1) 

Mathematica 
script 

(variant 2) 
r1(t) 0.046 43.166 58.400 
r2(t) 1.109 198.641 255.254 

 

Table 2. Memory required to store the given symbolic expression 

 Memory used (KB) 

Obtained 
expression 

Program using 
the symb class 

Mathematica 
script 

(variant 1) 

Mathematica 
script 

(variant 2) 
r1(t) 144 73293 41097 
r2(t) 2664 114316 27611 

 
A clear relation can be noticed that both the author’s program 

and Mathematica take more time to complete the calculation of 
obtaining r2(t). It is however interesting that the second variant of 
the Mathematica code needs more memory to store r1(t) rather 
than the more complicated expression r2(t). It is clear that more 
studies need to be performed on the choice of the Mathematica 
functions that change the form of symbolic expressions. It is 
possible that a more efficient script can be written than the ones 
proposed in this paper. 

The proposed algorithm has proven to be useful because of its 
efficiency in terms of the chosen criteria. Very complicated and 
large symbolic expressions were computed in a very short time. 
Additionally the symbolic expressions resulting from the 
operations given in (12) and (13) require an insignificant amount 
of memory in comparison to the Mathematica scripts. 

The calculations have been performed on Windows 7 
Professional 64Bit SP1 on Intel™ Core™2 Quad CPU Q3900 @ 

2.5GHz and total available 3.25GB RAM. Both Mathematica and 
the author’s program have used a single core for the calculations. 
Mathematica for Students 8 has been used. 

4. Conclusions 

The author’s proposition of an implementation of specialized 
symbolic computation for steady state problems has been 
presented. The mathematical basis has been given that determined 
the rules for the algorithm to follow. 

In accordance with a derived mathematical basis an analysis 
has been performed that allowed to choose the proper algorithm 
which could be effective in terms of the chosen criteria. 

The chosen implementation has been explained with the aid of 
a general figure along with an exemplary set of object chains in 
order to clarify the symbolic expression presentation. 

To verify whether the implementation is useful, it was 
ascertained if the algorithm allows to store a symbolic expression 
with the use of a small amount of memory. Furthermore, another 
verification has been made (which is also affected by the previous 
criterion) i.e. the time needed to perform certain operations on 
symbolic expressions has been observed. 

The implementation has been made for chosen problems but 
certain propositions are also mentioned to extend its use for 
similar mathematical tasks. 

In order to perform a comparative analysis, Mathematica has 
been chosen as it allows to perform a wide variety of operations 
on symbolic expressions. Additionally, it contains functions that 
allow for various presentations of symbolic expressions (their 
reductions, expansions etc.). 

The author has written two scripts in Mathematica that allow 
to perform the comparative analysis in terms of the mentioned 
criteria of efficiency. It has been noticed that, in accordance with 
the intent, the proposed implementation is efficient i.e. a lot less 
memory is used to store symbolic expressions and the calculations 
are performed a lot quicker. This supports the idea of applying 
such specialized schemes of symbolic computation for certain 
problems instead of general algorithms during which all types of 
different symbolic expression forms are supported. 
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