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CALCULATION OF THE IMPROPER INTEGRALS  
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Abstract. The traditional Boundary Element Method (BEM) is a collection of numerical techniques for solving some partial differential equations.  
The classical BEM produces a fully populated coefficients matrix. With Galerkin Boundary Element Method (GBEM) is possible to produce a symmetric 
coefficients matrix. The Fourier BEM is a more general numerical approach. To calculate the final matrix coefficients it is necessary to find the improper 
integrals. The article presents the method for calculation of such integrals.  
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WYZNACZANIE CAŁEK NIEWŁAŚCIWYCH  
W METODZIE ELEMENTÓW BRZEGOWYCH FOURIERA 

Streszczenie. Tradycyjna metoda elementów brzegowych(MEB) prowadzi w efekcie do rozwiązania układu równań liniowych z pełną macierzą 
współczynników. Stosując podejście Galerkina ostateczny układ równań liniowych jest reprezentowany macierzą symetryczną. W podejściu Fouriera, 
współczynniki układu równań wyznaczane są w przestrzeni Fouriera co pozwala uniknąć problemów z całkowaniem całek nieosobliwych, ale powoduje 
konieczność obliczania całek niewłaściwych. W artykule zaprezentowano algorytm obliczania takich całek.  

Słowa kluczowe: metoda elementów brzegowych Fouriera, całkowanie numeryczne, całki niewłaściwe 

 

Introduction 

Basic integral equation for the Boundary Element Method 
(BEM) is constructed by the convolution with the fundamental 
solution [2,3,6]. Figure 1 presents domain nR⊂Ω with Dirichlet 
and Neumann boundary. 

 

Fig. 1. The domain Ω 

The basic principles of the traditional BEM are presented  
for the paradigmatic example of the n-dimensional stationary heat 
conduction described by [2]: 
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where: ∆ - Laplace operator, u – the unknown quantity, f - the 
known volume sources in Ω. 

The flux on the boundary is: 
 uuut t ∇⋅−=−∂=Α= νν ,  (2) 
where:  
∇, ν - the gradient and the outer unit normal,  

∇⋅−=Α νt  - the boundary operator, 

kx∂∂ /  - the partial derivatives denotes k∂ , 
 x – n-dimensional vector,  
dx – the short form for dx1dx2 (or dx1dx2dx3). 

To obtain a well posed problem, half of the boundary data 
(either u on Γu or t on Γt ) should be defined by boundary 
conditions, i.e. Ω∂=Γ∪Γ tu . 

1. The distribution theory 

Distributions are objects which generalize functions [2, 8]. 
They extend the concept of derivative to all locally integral  

functions and are used to formulate generalized solutions of partial 
differential equations. They are important in physics  
and engineering where many non-continuous problems naturally 
lead to differential equations whose solutions or initial conditions 
are distributions, such as the Dirac delta distribution.  

The basic idea is to identify functions with abstract linear 
functionals on a space of well-behaved test functions.  

For example, let: u: R → R, be a locally integrable, and  
φ: R → R ,be a smooth (infinitely differentiable) function with 
compact support (i.e., identically zero outside of some bounded 
set). The function φ is the test function and: 
 ∞<== ∫

R

dxuuu φφφ ,)( . (3) 

This is a real number which depends on φ. The function u is 
then a continuous linear functional on the space which consists  
of all the test functions φ. The set of generalized functions u 
include all linear and continuous functionals. They are defined  
by some test functions φ. Properties of the test functions define  
the set of generalized functions.  

The test functions: )()()( 0 Ω=Ω∈ ∞CDxφ , are bounded, posses 
a compact support and are infinitely continuously differentiable. 
They and all their derivatives vanish at the boundary.  

Distribution )(' Ω∈Du is defined by the scalar product with 
the test function φ : 
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The differentiation of generalized functions is defined as:  
 ∞∈∂−=∂ 0,,, Cuu kk φφφ . (5)  

Because of the definition of the test function φ, distributions 
are infinitely differentiable. Jumps and singularities can be 
differentiated [2]. 

By using a larger space of test functions, it is possible to define 
the tempered distributions, useful for the Fourier transformation in 
generality. All tempered distributions have a Fourier 
transformation, but not all distributions have one [2]. 

The invariance of the scalar product concerning the Fourier 
transformation is called Parseval's identity: 

 212,1 ˆ,ˆ
)2(

1 uuuu nπ
= . (6) 

It is possible to define the Fourier transformation of tempered 
distributions. These include all the integrable functions, as well as 
well-behaved functions of polynomial growth and distributions  
of compact support, and have the added advantage that the Fourier 
transformation of any tempered distribution is again a tempered 
distribution. 
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The special distributions 

The n-dimensional Dirac distribution: 
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=
n

k kxx
1

)()( δδ   (7) 
is defined by: 
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The Dirac distribution is the identity object concerning 
convolution: 
 ∫ ∈−=∗=
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nRyxdyyxyuuu ,,)()( δδ , (9) 

and its Fourier transformation is: 
 nF Rxx ∈→← ,1)(δ . (10) 

The Heaviside distribution is obtained by the integration of 
the Dirac distribution:  
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In the literature, there are several definitions for the value at 
x=0. For the linear distribution it is determined by: 
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2
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For the multidimensional Heaviside distribution, the cutoff 
distribution for a domain nR∈Ω is defined: 
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which can be expressed by: 
 ))(()( xHx ψχ = , (14) 
with a function )( nRC∞∈ψ . 

The integration of a distribution u over the domain Ω can be 
described by: 
 ∫
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The main advantage of the theory of distribution is that  
it re-establishes differentiation as the simple procedure  
and all quantities are differentiable even if they exhibit singularities 
and jumps [2]. 

2. Fourier BEM  

To obtain the Fourier transformation of the Boundary Integral 
Equations (BIE), all quantities have to be extended from Ω to Rn.  
It can be done by defining a cutoff distribution χ [2].  
All quantities are multiplied by χ and finally transformed  
into Fourier space. Mathematically this extension  
and transformation is justified only in the frame of the theory  
of distributions [2, 8]. 

The main advantage of the distributional BIE is that  
the integrals extend formally over the entire Rn and therefore the 
Fourier transformation can be applied to these integral equation. 

For the definition of the trial functions it is needed to define 
a cutoff distribution [2] for a rectangular element: 
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The trial functions are obtained by multiplying )(0 xχ and 

)()(0 nRCxp ∞∈ :  
 )()(:)( 000 xpxx χφ = . (18)  

The trial functions )(, xi
tuφ on arbitrary straight elements are 

obtained by translation and/or dilation operators: 
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with the translation vector bi and the dilation matrix ai. 
Finally the unknown and the known quantities on the 

boundaries are approximated by: 
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The n-dimension Fourier transformation:  
 1),(,ˆ)( 1 −=∈= iRLuuuF n  (21) 
is defined as: 
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The basics of Fourier BEM are two known theorems of the 
Fourier transformation. 

The theorem of Parseval states the invariance of energy or 
work with respect to the dimensional Fourier transformation: 
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The convolution theorem links the convolution in the original 
space to a simple multiplication in the transformed space: 
 ∫ →←−
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In the notation: 
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these two theorems may be described as: 
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The Fourier BEM method analysed by [2] is especially  

of interest for cases where the fundamental solution is not known.  
The transformation of the cutoff distribution 0χ  is:  

• for reference element in R2: 
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• for reference element in R3: 
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For straight elements and for arbitrary polynomial trial 
functions p0(x), the transformed expressions are analytically known 
in R2 and R3 [2]. 

The discretized Fourier BIE lead to an algebraic system 
identical to that obtained in the original space (Galerkin BEM [7]), 
where the matrices are computed in the transformed space and: 

)ˆ(ˆ)ˆ(ˆ),ˆ(ˆ
)2(

1 xUxfxF j
tn

j
u −= φ

π
, 

 )ˆ(ˆ)ˆ(ˆ),ˆ(ˆ
)2(

1 xUxxH i
t

j
tn

ji
u φφ

π
−= , 

 )ˆ(ˆˆ)ˆ(ˆ),ˆ(ˆ
)2(

1 xUAxxG i
t

i
u

j
tn

ji
u φφ

π
−= , 

 )ˆ(ˆ),ˆ(ˆ
)2(

1: xpxK i
u

j
tn

ji
u −= φ

π
. 

(31) 

  
 

 
 



ISSN 2083-0157      IAPGOŚ 3/2013      9 
3. Numerical example  

The problem of the numerical integration for Fourier BEM 
formulation is presented for the boundary integral equations 
limited to constant elements and 2D space. As the test example, the 
Dirichlet problem of the Poisson equation is considered [2].  

The Dirichlet problem for Poisson equation:  
 Ω∈−=∆ xxfxu ),()( , (32) 
 Γ∈== Γ xuxu ,0)( , (33) 
is solved in a quadratic two-dimensional domain ]1,0[]1,0[ ×=Ω  at 
the boundaries u=0. The interior is subjected  
to stationary heat source f. The boundary Ω∂  is divided into  
8 elements (Fig. 2). 

 

Fig. 2. Quadratic domain Ω with 8 boundary elements and constant trial function 

The fundamental solution and its transformation for the 
Laplacian ∆ are [2]: 
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Taking into account the fact that u=0 at the boundaries,  
the general system of BIE can be reduced to:  
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For the R2
 elements the cuttoff distribution definition  

is described by eq.13 . 
 2
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and its Fourier transformation is described by: 
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In our example, for constant elements, the trial function and its 
Fourier transformation is:  
 0000 ˆˆ      χφχφ =→←= F . (38) 

Additionally, the Fourier transformation for dilation and 
translation operators is described as (eq. 19): 
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The trial functions should be defined for 16 constant elements. 
For every element, the coefficients for Heaviside and Dirac 
distribution should be modified to receive the value of the product 

)()1()( 211 xxHxH δ−  equal to one inside the element and equal  
to zero outside. From the definition, the Dirac distribution is equal 
to one only for x=0, and Heaviside distribution is equal  
to one for x>0. For 8 elements we have the constant trial functions 
for the flux t [2]: 
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The equation system in Fourier space is:  
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and for example (for f0=1): 
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Computer implementation of Fourier BEM requires the same 
skills as classical BEM [1, 3, 6, 7]. Integration with respect  
to unknowns in the Fourier approach is equivalent to the integral: 
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where:  
i, j – number of elements,  

],[ 21 xx=x , ],[ 21 yy=y  (two dimensional case). 

The integral determination 

After dividing the infinite area into four subareas (Fig. 3)  
we have: 
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To calculate the integrals (46) the Gaussian quadrature with the 
-1 and 1 integration limits was used. To do that every subarea was 
transformed to a local coordinate system using the transformations 
T1, T2 and T3 (Fig. 4). 
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Fig. 3. Dividing the infinite area into four subareas 

 
Fig. 4. Transformations to the local coordinate system 

4. Results 

For 8 elements the matrix H coefficients were calculated 
symbolically [4] and numerically. Table 1 presents the value  
of the final solution (the solutions for 8 elements discretization are 
the same). For the numerical calculation the 80 integration points 
were used [5].  

Table 1. Results 

Exact solution Numerical solution Relative error 

0.256360289033495 0.259308496598225 1.13 % 

The numerical calculation of the integrals (46) is very 
complicated. The calculation based on the proposed algorithm 
allows us to achieve the 1.13% accuracy.  

 

5. Conclusion 

Numerical method for determination of improper integrals 
occurring in FBEM allowed to determine the results with an error 
of 1.13%. The Fourier BEM method is more difficult than the 
standard BEM method but is specially of interest for cases where 
the fundamental solution is not known.  
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