
32      IAPGOŚ 3/2020      p-ISSN 2083-0157, e-ISSN 2391-6761 

artykuł recenzowany/revised paper IAPGOS, 3/2020, 32–35 

http://doi.org/10.35784/iapgos.1834 

PERFORMANCE COMPARISON OF MACHINE LEARNING ALGORITHMS 

FOR PREDICTIVE MAINTENANCE 

Jakub Gęca 
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Lublin, Poland 

Abstract. The consequences of failures and unscheduled maintenance are the reasons why engineers have been trying to increase the reliability 

of industrial equipment for years. In modern solutions, predictive maintenance is a frequently used method. It allows to forecast failures and alert about 
their possibility. This paper presents a summary of the machine learning algorithms that can be used in predictive maintenance and comparison of their 

performance. The analysis was made on the basis of data set from Microsoft Azure AI Gallery. The paper presents a comprehensive approach to the issue 

including feature engineering, preprocessing, dimensionality reduction techniques, as well as tuning of model parameters in order to obtain the highest 
possible performance. The conducted research allowed to conclude that in the analysed case , the best algorithm achieved 99.92% accuracy out of over 

122 thousand test data records. In conclusion, predictive maintenance based on machine learning represents the future of machine reliability in industry. 
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PORÓWNANIE SKUTECZNOŚCI ALGORYTMÓW UCZENIA MASZYNOWEGO 

DLA KONSERWACJI PREDYKCYJNEJ 

Streszczenie. Skutki związane z awariami oraz niezaplanowaną konserwacją to powody, dla których od lat inżynierowie próbują zwiększyć niezawodność 

osprzętu przemysłowego. W nowoczesnych rozwiązaniach obok tradycyjnych metod stosowana jest również tzw. konserwacja predykcyjna, która pozwala 

przewidywać awarie i alarmować o możliwości ich powstawania. W niniejszej pracy przedstawiono zestawienie algorytmów uczenia maszynowego, które 
można zastosować w konserwacji predykcyjnej oraz porównanie ich skuteczności. Analizy dokonano na podstawie zbioru danych Azure AI Gallery 

udostępnionych przez firmę Microsoft. Praca przedstawia kompleksowe podejście do analizowanego zagadnienia uwzględniające wydobywanie cech 

charakterystycznych, wstępne przygotowanie danych, zastosowanie technik redukcji wymiarowości, a także dostrajanie parametrów poszczególnych 
modeli w celu uzyskania najwyższej możliwej skuteczności. Przeprowadzone badania pozwoliły wskazać  najlepszy  algorytm, który uzyskał dokładność 

na poziomie 99,92%, spośród ponad 122 tys. rekordów danych testowych. Na podstawie tego można stwierdzić, że konserwacja predykcyjna prowadzona 

w oparciu o uczenie maszynowe stanowi przyszłość w zakresie podniesienia niezawodności maszyn w przemyśle. 

Słowa kluczowe: uczenie maszynowe, losowy las, konserwacja predykcyjna, sieci neuronowe 

Introduction 

Today’s industry is facing new problems associated with con-

stant growth of production as well as higher accuracy and safety 

requirements. In addition, international market is very competitive 

in terms of prices. These prices are highly dependent on produc-

tion speed and reliability. Machines and automatons are very 

important parts of a manufacturing process. It means that if certain 

component fails, it will cause financial losses related to downtime 

of the production process. Moreover, some failures may lead to 

the safety violations, which of course are far more undesirable. 

To avoid unwanted danger and financial losses, many mainte-

nance strategies are used in the industry. According to the Susto et 

al. [23] maintenance approaches can be classified as follows: 

 Corrective maintenance (also Run-to-Failure – R2F) – this 

method consists of replacing or fixing a certain component af-

ter it fails. It is the most straightforward approach, which is al-

so the most ineffective one. It leads to the additional costs as-

sociated with downtime and unscheduled maintenance, often 

including spare parts delivery interval. 

 Preventive maintenance (PvM) – where maintenance interven-

tions are performed regularly to avoid unscheduled stoppages. 

Time duration between conservations is based on knowledge 

about certain system component, but do not grant full usage of 

their life. Thus scheduled maintenance  may cause additional 

costs related to unnecessary repairs. 

 Predictive maintenance (PdM) – the goal of PdM is to forecast 

failures before they occur. It is possible thanks to the monitor-

ing and data acquisition systems, which provides useful in-

formation about history of the machine and its current state. 

Predictions are based on historical data, defined health factors, 

engineering approaches and statistical inference methods. 

Machine learning algorithms are proved to be very effective in 

terms of failure prediction and remaining useful life (RUL) esti-

mation[10,17,24]. They can also be used in wide range of industry 

applications such as engine soot emission prediction[18], gearbox 

failure prediction [11], robotic manipulation failures forecasting 

[20]. Moreover, predictive models are very popular in other fields 

of technology. In [22] authors used decision tree algorithm for 

hard disc drive failure prediction. Korvesis et al. [15] predicted 

failures from post flight reports using random forest and support 

vector machine (SVM). Despite the fact, that machine learning 

methods are often utilized and gives good results, scientists are 

still working on some other interesting techniques [2,13]. Some of 

the forecasting tasks are complicated and struggle because of the 

missing maintenance history or other type of data so authors in [6] 

proposed a hybrid semi-supervised approach. Kanawaday and 

Sane [12] came up with idea to firstly predict production cycle 

parameters with ARIMA (AutoRegressive Integrated Moving 

Average) model and then feed supervised classifier with these 

values.  

This paper presents a comprehensive approach to the predic-

tive maintenance, where performance of eight machine learning 

algorithms with tuned parameters was compared. To the best of 

author’s knowledge and according to [4] there is no such work in 

the literature. 

1. Data structure and preprocessing 

The data comes from Microsoft Azure AI Gallery and is dedi-

cated for predictive maintenance modelling [25]. It consists of five 

datasets that contains useful information about a group of identical 

industrial machines. Every machine has its own identification 

number  which indicates a model and age of the machine. First 

dataset includes real-time telemetry data, that is timestamp, volt-

age, rotation, pressure and vibration values. Error messages are in 

the second dataset. The rest of the datasets contains information 

about machines, maintenance history (timestamp and replaced 

component ID) and failures (timestamp, broken component ID). 

Preprocessing starts with feature engineering, which is im-

portant to extract maximum of the useful information from the 

data. First of all, it should be determined how far back the algo-

rithm should “look” in order to predict failures. It is so-called 

lookback parameter, because it is used to create lag features that 

constitute short term history of the machine. The width of this 

time window have to be discussed with an expert in a particular 

field. It is also very important to remember that if this time is too 

long, the data will be too noisy for algorithm to predict with satis-

factory performance. On the other hand, if the time window is too 

small, it will contain too little information to determine the risk of 
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failure. Further research about lookback parameter is out of scope 

of this work but 24h time window was chosen. 

Creating lag features for telemetry data consists of calculating 

mean and standard deviation for every third record in the dataset. 

Next, to capture a long term effect, mean and standard deviation 

of last 24 hours is also calculated. 

 The error dataset contains timestamp and error message ID 

number for every machine. The amount of errors of every type in 

24h lag window have to be calculated in order to find out what 

impact on failure probability it has. 

 Maintenance history is one of the most important datasets, so 

it is crucial for company to build system that collects such data. It 

is used to calculate the amount of days since last replacement of a 

certain machine asset, which provides very useful information 

about its degradation level. 

 Finally all the datasets (including machine and failure infor-

mation) are merged together and prepared for labelling i.e. mark-

ing as a class that says whether or not the fault has occurred. But 

that is not the only way to do it. The authors in [19] have consid-

ered each of the devices and their components separately, labelling 

them as faulty or not. Thibaux et al. [5] decided to distinguish 

between three classes: „impending failure detected”, „not impend-

ing failure detected” and “uncertain about future failure”. In the 

case of this work, it was decided to consider the issue as a multi-

class classification problem where it will be anticipated which of 

the four components will fail or none. In addition, it was assumed 

that the prediction would take place 24 hours in advance, although 

this time should generally be chosen in terms of maintenance time 

and spare parts availability. It means that each data record located 

24 hours before the fault is marked as “incoming failure of com-

ponent number x” or ‘none” otherwise. Table 1 shows the struc-

ture of labelled data and sample values.   

Table 1. Data structure 

Feature Example 

machine_ID 22 

datetime 2015-09-29 18:00:00 

volt_mean_3h 171.27 

rotate_mean_3h 493.40 

pressure_mean_3h 112.35 

vibration_mean_3h 39.654 

volt_std_3h 9.4917 

rotate_std_3h 10.984 

pressure_std_3h 6.4264 

vibration_std_3h 5.5001 

…
 

number of errors 

error1 0 

error2 0 

error3 0 

error4 0 

error5 0 

days since last 

component 

replacement 

component1 26 

component2 11 

component3 41 

component4 56 

Model 1 

Age 14 

Failure none 

 

Convolutional Neural Network (CNN) and Long Short-Term 

Memory (LSTM) network requires data input shape in the form of 

(batch_size, timesteps, features). In order to obtain such three-

dimensionality it is necessary to run an algorithm that will gener-

ate a 24-hour machine history (as an additional dimension) for 

each labelled data record.  

The next step is to process the categorical data, which consists 

of mapping the ordinal features and encoding nominal features as 

well as class labels. Then the dataset is split into training and test 

subsets. Each data record has a corresponding point in time, so no 

random splitting or random sampling method can be utilized. The 

reason for this is that past events cannot be predicted based on 

future events (which might happen when using some methods).  It 

is also unacceptable to use data that has arisen later than the point 

under consideration. Hence, a time-dependent splitting method has 

been applied by selecting one point in time as a division point and 

ignoring the records for 24 hours ahead. This eliminates the risk of 

information (created during labelling) leakage between these 

subsets. As a splitting point, 2015-07-31 1:00:00 was chosen and 

the 60:40 ratio between training and testing data was obtained. 

 It is proven that data preparation techniques such as normali-

zation and standardization have a positive impact on the perfor-

mance of prediction models [8]. Thus, data was standardized 

before model training.     

2. Prediction models and validation 

One of the breakthroughs in machine learning was the devel-

opment of the perceptron learning rule : 

 iiii xyyw )(    (2) 

by F. Rosenblatt [21]. In the formula above,  is the learning rate 

(0÷1), iy – true class label of the i-th sample, iy   denotes the 

predicted class label and ix  is the corresponding input value.  

Table 2. The best parameters 

Classifier Parameter Best value 

Logistic 

regression 

dimensionality reduction LDA 

C 10 

penalty l2 

solver newton_cg 

imbalance handling ENN 

Decision Tree 

dimensionality reduction GUS 

criterion entropy 

max_depth 10 

max_features None 

min_impurity_decrease 0.0001 

imbalance handling Tomek’s links 

SVM 

dimensionality reduction LDA 

C 10 

kernel linear 

imbalance handling - 

Random forest 

dimensionality reduction GUS 

criterion entropy 

max_depth 10 

min_impurity_decrease 0.0001 

n_estimators 500 

imbalance handling Tomek’s links 

Gradient 

boosting 

dimensionality reduction RFE 

learning_rate 0.01 

loss deviance 

n_estimators 500 

subsample 0.5 

imbalance handling - 

ANN 

dimensionality reduction - 

topology one hidden layer 

units 50 

activation relu 

kernel_initializer lecun_uniform 

optimizer adam 

loss sparse_categorical_crossentropy 

epochs 10 

batch_size 32 

imbalance handling - 

CNN 

dimensionality reduction - 

topology two convolution layers 

units in layer 1 75 

units in layer 2 50 

layer 1 kernel_size 2 

layer 2 kernel_size 2 

activation elu 

kernel_initializer glorot_uniform 

optimizer adam 

loss sparse_categorical_crossentropy 

epochs 10 

batch_size 32 

imbalance handling - 

LSTM 

dimensionality reduction - 

topology one recurrent layer 

units 75 

activation relu 

recurrent_activation sigmoid 

kernel_initializer glorot_uniform 

recurrent_initializer glorot_normal 

imbalance handling - 
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The idea of updating weights has led researchers to develop 

more sophisticated models. In this article, the following 

classification algorithms have been used for failure prediction: 

logistic regression, support vector machines (SVM), decision tree, 

random forest, gradient boosting classifier, artificial neural 

network (ANN), convolutional neural network (CNN), long 

short-term memory (LSTM). 

Initially, the performance of algorithms with default 

parameters was tested for a different splitting and dimensionality 

reduction method. It appeared that the training and test data 

proportions has only a small impact on the accuracy, so for further 

research the 60:40 split was used. The next step was to investigate 

the influence of dimensionality reduction techniques such as 

principal component analysis (PCA) [9], linear discriminant 

analysis (LDA), generic univariate select (GUS), and recursive 

feature elimination (RFE) on prediction accuracy. For each 

algorithm, the method giving the best results was selected for 

further research. As a consequence, each prediction model has 

been prepared for the parameter tuning process.  

Selection of the best parameters values was made by applying 

a grid search algorithm, which consists of finding the best result 

for every parameter combination from the grid. This method 

usually involves using the k-fold cross-validation with random 

sampling, which is unacceptable in this case. Therefore, the 

time-series splitting method for grid search was used to avoid 

overestimating the performance. Furthermore, for neural 

networks, the best topology was chosen by manual testing 

and comparison. The best parameters for each model are listed 

in Table 2. 

In predictive maintenance, there is another important factor 

affecting performance. Failures are very rare occurrences among 

telemetry data, which leads to imbalance in the label distribution. 

Hence, the classifier tends to perform better predicting majority 

class labels than the minority. There are many solutions to this 

problem. Among others, undersampling can be used as authors in 

[3]. Alternatively, class weighting can be applied to increase or 

decrease algorithm’s sensitivity towards specific classes. In this 

work, the methods proposed in [16] were used, especially 

Tomek’s links and edited nearest neighbours (ENN). However, 

oversampling was not utilized because the number of newly added 

samples was unreasonably large compared to the efficiency 

improvement and the model training time became too long. 

3. Results 

Table 3 summarises performance metrics of each model for 

default parameters and once the data preprocessing and parameter 

tuning have been applied. The aforementioned label distribution 

imbalance has also an impact on how the model is evaluated. 

Failure-free records represent the vast majority in the dataset [14] 

so the algorithm can predict only a few faults while still 

maintaining high accuracy. Therefore, other performance metrics 

such as precision, recall and f1-score should be taken into account. 

These metrics are based on a number of positive and negative 

hypotheses, so for multi-class predictions, their macro averages 

are calculated. The results for CNN and LSTM algorithms confirm 

the problem described above. The accuracy values exceed 99% 

in both cases but the other metrics are much lower. 

On the basis of the presented results, it would seem that 

there is no need for sophisticated methods of data preparation and 

parameter selection, since the results are very good and their 

improvement is only a fraction of a percent. However, considering 

a company that would like to use such a system, any incorrect 

forecast can cost a lot of money, so it is reasonable to refine 

the algorithms to the perfection. The performance metrics 

of the gradient boosting (marked in the table) seem to be particu-

larly interesting, as they have slightly deteriorated after the model 

improvement. Nonetheless, the overfitting has decreased, 

so the risk of worse behaviour towards new, previously unseen 

data will be lower. 

Table 3. Performance metrics 

Classifier 

Initial metrics values Final metrics values 

accuracy 
f1-

score 
precision recall accuracy 

f1-

score 
precision recall 

Logistic 

regression 
99.80 94.33 93.96 94.71 99.82 95.04 93.35 96.85 

Decision 

Tree 
99.87 96.32 95.55 97.21 99.88 96.49 96.09 96.97 

SVM 99.83 95.72 95.20 96.33 99.85 96.07 94.24 98.12 

Random 

forest 
99.92 97.74 98.56 96.95 99.93 97.92 98.74 97.14 

Gradient 

boosting 
99.93 97.78 98.01 97.57 99.92 97.76 98.02 97.52 

ANN 99.83 95.56 94.13 97.09 99.88 96.82 96.04 97.66 

CNN 97.72 62.01 57.44 75.59 99.50 88.02 92.63 84.06 

LSTM 98.82 68.86 78.66 63.65 99.61 90.38 94.59 86.69 

 

Among the introduced methods, three that achieved the best 

results in prediction of defects were chosen and their confusion 

matrices were presented (Fig. 1-3). Comparison of these matrices 

and explicit selection of the best algorithm involves determining 

several requirements related to functioning of the system to which 

the application is dedicated. First of all, it is important to specify 

how expensive are the so-called false alarms, i.e. situations in 

which the model predicts a failure, when it does not actually oc-

cur. In addition, it is necessary to determine how harmful it will be 

to forecast failure of one component instead of another. Of course, 

not detecting the upcoming malfunction is the worst case scenario, 

because unscheduled maintenance is the most expensive and 

avoiding it is desirable.   

 

Fig. 1. Gradient boosting confusion matrix 

 

Fig. 2. Random forest confusion matrix 

 

Fig. 3. ANN confusion matrix 
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It can be seen that the gradient boosting algorithm and the 

neural network have a similar number of undetected faults, but the 

latter has falsely alarmed up to 90 times. The least such situations 

occurred when using the random forest, but it was less effective in 

detecting faults. For this work, the gradient boosting algorithm has 

been chosen as the best because it provides the least undetected 

faults while maintaining a reasonable number of false alarms. The 

ROC (receiver operating characteristic) curves (Fig. 4) for this 

model show that failures of components 1 and 4 are detected with 

almost ideal efficiency, in contrast to failures of components 2 and 

3, for which the area under the ROC curve (AUC) is even smaller 

than for none.  

 

Fig. 4. Gradient boosting ROC curves. 

4. Discussion 

The conducted research shows that machine learning algo-

rithms, in particular, gradient boosting, random forest and ANN, 

give the best results in prediction of industrial machines failures. 

In predictive maintenance, selection of the best algorithm is based 

on a financial analysis of the problem. In presented case, the gra-

dient boosting was chosen. It obtained an accuracy of 99.92%, 

falsely alarmed 34 times and did not detect 39 faults out of over 

122 thousand test data records. This leads to the conclusion that 

predictive maintenance based on machine learning is the future of 

many industry sectors. However, it requires an appropriate early 

warning system. An example of such application can be found in 

[1]. In addition, if maintenance of one component is much more 

expensive than the others, it will be possible to use a class 

weighting mechanism. As a result, the algorithm will be more 

sensitive to a failure of certain component.  

The final performance of the production process depends on 

the proper data preparation, algorithm selection and parameter 

tuning. This article presents a comprehensive approach to the 

predictive maintenance issue considering all of these elements, as 

well as the evaluation criteria for such a system.  

At the selection stage of artificial neural network topology, 

it was found out that the best results are obtained with one 

hidden layer. Thus, the classified data are approximately linearly 

separable, which is also confirmed by the fact that the SVM 

algorithm obtained the best results with a linear kernel. 

Nonetheless, in order to achieve the maximum possible predictive 

performance, the hidden data correlations need to be further 

examined. 
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