
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2020 95

artykuł recenzowany/revised paper IAPGOS, 3/2020, 95–98

http://doi.org/10.35784/iapgos.2056

OPTIMIZATION IN VERY LARGE DATABASES

BY PARTITIONING TABLES

Piotr Bednarczuk

University of Economics and Innovation in Lublin, Institute of Computer Science, Lublin, Poland

Abstract: Very large databases like data warehouse slow down over time. This is usually due to a large daily increase in the data in the individual tables,

counted in millions of records per day. How do we make sure our queries do not slow down over time? Table partitioning comes in handy, and, when used
correctly, can ensure the smooth operation of very large databases with billions of records, even after several years.

Keywords: partitioning, data warehouse optimization, billions of records, AdventureWorksDW

OPTYMALIZACJA W BARDZO DUŻYCH BAZACH DANYCH

 POPRZEZ PARTYCJONOWANIE TABEL

Streszczenie: Bardzo duże bazy danych typu hurtownie danych z czasem zwalniają. Przyczyną zazwyczaj jest duży dzienny przyrost danych w pojedynczych
tabelach liczony w milionach rekordów. Co sprawić aby z czasem nasze zapytania nie działały wolniej. Z pomocą przychodzi partycjonowanie tabel, które

użyte w prawidłowy sposób może zapewnić sprawne działanie bardzo dużych bazy danych z miliardami rekordów nawet po kilku latach.

Słowa kluczowe: partycjonowanie, hurtownie danych, miliardy rekordów, AdventureWorksDW

Introduction

Optimizing very large databases is never a simple matter. By

the term “large database”, I mean databases with tables that

contain hundreds of millions of records, or even billions of

records. Such large numbers of records in single tables are often

found in data warehouses or BIG DATA databases [1][3]. The

administrators of such databases often face a dilemma as to which

solution to apply; which solution will bring the best results both

when it comes to the look-up time of such large tables, while

maintaining acceptable writing times to these tables. This directly

translates into the speed of reporting operations in a given system,

which is important for the managerial staff using these reports.

The expected reporting times in commercial solutions are a few

seconds, and often a database response time extending to minutes

is unacceptable. In addition, the question arises: how do you make

sure that as the data in the database increases over time, the

reports execute just as quickly as when the system was

implemented?

One of the solutions proposed by database providers is table

partitioning [7]. The following article presents a practical solution

to the use of table partitioning even with a billion records. The

essence of the problem was included in the research, where it was

shown that when using this type of solution, the size of the tables

does not affect the execution times of queries.

1. Table partitioning

Table partitioning, in a nutshell, is the division of tables into

arbitrary parts constituting some separated ranges of data, e.g.:

monthly, quarterly or annually. This division takes place in the

database files, but the operator sees them as one object; one table.

Although it is always possible read the contents of each partition

by using the appropriate tags, a standard select from the

partitioned table will return the result in the form of one set of

records [2][6].

As the database is in use over a long period of time, the

number of records increases up to a number (hundreds of millions,

billions) which directly affects the time of performing queries on

this database. Partitioning is mainly done to minimize the impact

of the database size on the query speed. This is achieved by

executing the query only on the records in selected partitions. In

this way, regardless of the increase in the number of records in the

table, the number of records that the query will be performed on is

almost always significantly smaller than the total size of the table

because it will usually relate only to a limited number of

partitions, e.g. the last 3 days stored in one partition. This is the

main advantage and benefit of data partitioning.

2. Technical implementation of partitioning

To start the implementation of partitioning in our database, it

must first create a partitioning function [4]. For this purpose, it is

worth doing a short analysis of what periods of data we usually

perform data analysis on for reporting purposes. In my experience,

there are three such most common reporting periods: yearly,

quarterly, and monthly, and in 80% of cases, it is monthly. This is

why the monthly partitioning function was selected for the

research, as can be seen in listing 1.

Listing 1. A monthly partitioning function

create partition function PartitionFunctionByMonth (int)
as range right
for values(
 20050101

,20050201
 ,20050301
 ,20050401
 ,...
);

It should be noted that the example uses the integer type and

earlier it was mentioned that the partitioning function will be

based on date, monthly, quarterly or annual ranges, so the

DateTime type should be used. This is one more conscious

optimization procedure used in data warehouses [8]. In queries of

tables with billions of records, it matters what data type the

WHERE condition will be based on. With the integer type, the

condition on the field on which the partition is based will run

faster, hence the change of the data type from DateTime to

integer.

Based on the partitioning function, we create a schema based

on the clustered index. An example of creating a schema based on

a partitioning function is shown in listing 2.

Listing 2. Partitioning scheme based on the monthly partitioning function.

create partition scheme PartitionSchemaByMonth
as partition PartitionFunctionByMonth
all to ([PRIMARY])

Now tables can be created where we will generate millions or

even billions of records. So, for the purposes of this research, a

partitioned table was created (FactSalesPartitioned) along with an

identical table without partitions (FactSales). Exactly the same

data will be inserted into both tables and the execution times will

be measured on the same SELECT query run against both tables.

The reading times given from these tables will be recorded, with

an additional 100 million records added to each table each time.

http://doi.org/10.35784/iapgos.2056

96 IAPGOŚ 3/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

The structure of the partitioned table is shown in listing 3.

Listing 3. Partitioned table structure; the unpartitioned table will have the
same structure.

CREATE TABLE [dbo].[FactSalesPartitioned](
 [SalesKey] [bigint] IDENTITY(1,1) NOT NULL,
 [DateKey] [int] NOT NULL,
 [EmployeeKey] [int] NOT NULL,
 [CustomerKey] [int] NOT NULL,
 [ProductKey] [int] NOT NULL,
 [SalesValue] dec(5,2) NOT NULL
)

The next step is to use the partitioning scheme when creating

the clustered index on the partitioned table (FactSalesPartitioned).

It should be noted that the creation of this index is best done

immediately after creating the table, because creating it on a table

containing data may take a long time. An example of an index

definition on a partitioned table is shown in listing 4.

Listing 4. Index using a partitioning scheme.

create unique clustered index [PartitionedIndexReport] on
[dbo].[FactSalesPartitioned]([SalesKey],[DateKey])
on PartitionSchemaByMonth ([DateKey])

The same clustered index, but without the partitioning scheme,

was created on the second, unpartitioned table (FactSales).

The index definition on the table without partitioning is shown

in listing 5.

Listing 5. Definition of the Index on the table without partitioning

create unique clustered index [IndexReport]
on [dbo].[FactSales]([SalesKey],[DateKey])

The last step is to use the partitions correctly in SELECT

queries. The query normally does not differ from the query on a

table without partitions. This is important because you do not need

to change existing report queries. It is only necessary for the

condition in the WHERE clause to be based on the column on

which the partition index was built, which in the example is the

DateKey field. Everything takes place in the database engine,

specifically in the query optimizer which only reads data from

partitions falling within the date range limited by the WHERE

condition [1][4]. Listing 6 shows the use of partitions in the

SELECT query.

Listing 6. A select query on a partitioned table is no different from a query
on a table with no partitions.

select EmployeeKey, SUM(SalesValue)
from [dbo].[FactSales] –-unpartitioned table
where DateKey between 20070925 and 20070927
group by EmployeeKey

select EmployeeKey, SUM(SalesValue)
from [dbo].[FactSalesPartitioned] -– partitioned table
where DateKey between 20070925 and 20070927
group by EmployeeKey

In these queries, the WHERE condition must be based on a

field in the DateKey partitioning scheme, otherwise the

partitioning function will not work. The partitioning function is

based on the integer type and dates written as numbers, e.g.,

September 27, 2009 will be 20090927.

3. Comparative partitioning research

A training database – the AdventureWorksDW2017 data

warehouse – was used to test partitioning compared to a solution

without using partitioning. This database contains sample data

very similar to the data in real systems of this type.

The amount of data in the training database is, however,

insufficient to carry out measurements because it contains only

tens of thousands of records in individual tables. In real systems,

the normal situation is an amount of data reaching millions

or even billions of records in a single table. To reflect the real

operation of a data warehouse system as much as possible, new

records were generated based on a combination of data from

the original dimensions of sellers, products and customers:

DimEmployee, DimProduct and DimCustomer for existing dates

in the DimDate dimension. The data in the FactSales

and FactSalesPartitioned tables were generating evenly, exactly

1 million records for each day as follows. From the dimension

tables, records were randomly selected in quantities:

 100 products from the DimProduct product catalog, which

contains over 600 items,

 1,000 clients from the DimCustomer client file, which

contains over 18,000 items,

 10 salespeople from the DimEmployee employee file, which

contains nearly 300 items.

and their combinations were inserted into the Fact tables. In this

way, an additional 1 million daily data records were obtained

(100  1000  10 = 1,000,000).

The measurements were performed starting from 1 million

records, to 10 million and later every 100 million up to 1 billion

records. Like this for each significant number of records:

1, 10, 100, 200 ... 1,000 million, measurements were taken

of the amount of time the SELECT command took to reading data

from the last 3 months, i.e. 3 million records.

These queries are presented in listing 6, while

the measurement results themselves are presented in Table 1

in the Optimization results section.

As the study methodology required the records to always

come from one partition, at the 700 million point,

the measurement was performed at exactly 703 million, because

this number fell on a partition boundary and crossing this would

affect the query times, invalidating the testing process.

The total number of generated records was 1 billion.

The insertion time of each of 100 million records was about

15 minutes.

4. Measurement of query execution times

The measurements concerned the execution times

of the SELECT queries from listing 6, always for the last

3 million records added to the tables. The time was measured

simply with a precision in milliseconds. The timing script

is shown in listing 7.

Listing 7. Measuring query execution times

declare @startTime datetime
declare @stopTime datetime
select @startTime = getdate()
...

-- SELECT from partitioned and unpartitioned tables
...

select @stopTime = getdate()

select datediff(ms,@startTime,@stopTime)/1000.00

It is worth noting that in this study, accurate time

measurement is not important, because it is mainly about

checking whether the query execution time on a partitioned

table will remain at the same level while the time of performing

the same query on a table without a partition will increase.

It does not matter if it is one second, two or five seconds.

It is only important that the query execution time on a partitioned

table is independent of the data increment.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2020 97

5. Optimization results

During the measurements, attempts were made to maintain

constant measurement conditions:

 the same table structures – FactSales, FactSalesPartitioned,

 always the same number of records in the select – 3 million,

 the same definition of a clustered index based on the SalesKey

and DateKey columns,

 exactly the same data inserted into both tables.

The results presented in Table 1 clearly indicate that the select

query times from the partitioned table are relatively constant and

fluctuate around 2 s. It is different for the table without

partitioning, where this time always increases with the increase of

data. I remind you that the tested select always operated on the

same, invariable number of 3 million records.

This is very well illustrated in figure 1 where the orange line

marks the time to execute the SELECT query on the table with

partitioning. It is clear that this line is flat; it remains constant

even for a billion records. The blue line represents the execution

time of the same SELECT query on a table without partitions, and

is noticeably different. As the records in the table increase, this

time also increases.

This is better illustrated on a graph with a logarithmic scale

(figure 2), where there is an upward trend for a successive orders

of magnitude of the number of records in the table. Execution time

increases to an unacceptable level and is almost two orders of

magnitude worse results for a billion records.

Table 1. Times of select query performed on tables with and without partitioning

Number

of records

in millions

The execution time of SELECT

from the table without

partitioning

The execution time

of SELECT from the table

with partitioning

s s

1 0.24 0.25

10 1.85 1.88

100 8.53 0.89

200 17.18 1.11

300 23.45 1.93

400 33.89 1.83

500 44.11 1.76

600 55.77 1.95

703 66.62 1.88

800 77.88 1.85

900 93.03 2.01

1000 108.98 1.93

Fig. 1. Execution times of SELECT query on a table with and without partitioning

in the range from 1 million to 1 billion records in the table

Fig. 2. Execution times of SELECT query on a table with and without partitioning, on a logarithmic scale

98 IAPGOŚ 3/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

6. Query execution plan analysis

Let us take a look at our queries from listing 6, in terms

of which of their parts significantly affect the time it takes

to complete the query.

Listing 8. Selected query analyzed for the query execution plan

select EmployeeKey, SUM(SalesValue)
from [dbo].[FactSalesPartitioned] – partitioned table
where DateKey between 20070925 and 20070927

group by EmployeeKey

This is undoubtedly a grouping of data and an aggregation

function of SUM, as well as the select for records meeting

the WHERE condition by the way of which an index scan is done.

The rest of the query has nearly zero cost of execution, as shown

in figure 3.

Fig. 3. Part of the execution plan with zero cost, not relevant for further analysis

We will focus on analyzing only the components of the query

whose query cost is significant – greater than zero. In our query,

this will be the aggregation when grouping and an index scan

under the WHERE condition. In figure 4, the query plans are

compared for 300 and 400 million records.

a. 300 million records in the table without partitioning

b. 300 million records in the table with partitioning

c. 400 million records in the table without partitioning

d. 400 million records in the table with partitioning

Fig. 4. Part of the query execution plan with a significant share of the cost of the

query, for different numbers of records (300 and 400 million) in tables with and

without partitioning

As can be seen in Figure 4, the select query execution plan

from a table without partitioning is almost constant for different

numbers of records in the table and is distributed between the

aggregate (10%) and the index scan (90%).

The situation is different for the partitioned table. In this case,

while maintaining the same query time, its cost is distributed

between the aggregate and the scan, and decreases for the scan

(85% → 60%) in favor of the cost of the aggregate (15% → 40%)

which increases as the number of records increases in the

partitioned table. This means that with an increasing number of

records in the partitioned table, index scanning takes place after

the partition to which the WHERE condition applies, so has a

smaller and smaller share in the cost of the entire query.

7. Conclusions

The measurements clearly indicate the effectiveness of the use

of table partitioning when optimizing databases in terms of SQL

query times. The most important advantage of this solution is the

independence of query performance from the number of records in

the table. This is confirmed by the results of measurements of

query execution times and analysis of query execution plans. This

is crucial in databases with a very large number of records with a

large daily increase in data, such as data warehouses. A common

problem on systems with a very large database is the slowdown of

reports over time. At the beginning, the system works quickly and

efficiently, but it slows down over time and after a few years

without implementing appropriate solutions, such a system may

stop responding within an acceptable time and the reporting

process will take minutes or even hours. Thanks to partitioning,

we can achieve the same system performance at the beginning,

right after starting and after a few years of its operation.

References

[1] Chodkowski A.: Partycjonowanie tabel a wydajność zapytań w SQL Server,

seequality.net, 2017, [https://pl.seequality.net/partycjonowanie-tabel-wydajnosc-

zapytan-sqlserver/].

[2] Kumar A., Jitendra Singh Yadav: A Review on Partitioning Techniques in

Database International Journal of Computer Science and Mobile Computing

3(5), 2014, 342–347.

[3] Matalqa S., Mustafa S.: The effect of horizontal database table partitioning on

query performance. The International Arab Journal of Information Technology

13(1A), 2016, 184–189.

[4] Microsoft documentation, Partycjonowanie danych poziomych, pionowych i

funkcjonalnych, [https://docs.microsoft.com/pl-pl/azure/architecture/best-

practices/data-partitioning].

[5] Qi W., Song J., Bao Y.: Near-uniform range partition approach for increased

partitioning in large database. 2nd IEEE International Conference on

Information Management and Engineering – Chengdu, 2010, 101–106,

[http://doi.org/10.1109/ICIME.2010.5477529].

[6] Song J., Bao Y.: NPA: Increased Partitioning Approach for Massive Data in

Real-Time Data Warehouse. 2nd International Conference on Information

Technology Convergence and Services – Cebu, 2010, 1–6,

[http://doi.org/10.1109/ITCS.2010.5581277].

[7] Watson H.: Recent Developments in Data Warehousing. Communications of the

Association for Information Systems 8, [http://doi.org/10.17705/1CAIS.00801].

[8] Zheng K., Gu D., Fang F., Zhang M., Zheng K., Li Q.: Data storage

optimization strategy in distributed column-oriented database by considering

spatial adjacency. Cluster Computing 20(4), 2017, 2833–2844,

[http://doi.org/10.1007/s10586-017-1081-3].

Ph.D. Eng. Piotr Bednarczuk

e-mail: Piotr.Bednarczuk@wsei.lublin.pl

He is a doctor in the Institute of Computer Science at

the University of Economics and Innovation in Lublin.

Studied and defended his PhD thesis at Lublin

University of Technology. He supports his scientific

knowledge with professional practice gained in a

leading IT company, where he has been working for

over 15 years, currently as the head of the database

solutions department in the mobile systems

department. His research area focuses on the software

engineering web database systems, mobile-device

systems and databases and data warehouses.

https://orcid.org/0000-0003-1933-7183

otrzymano/received: 30.06.2020 przyjęto do druku/accepted: 15.09.2020

https://docs.microsoft.com/pl-pl/azure/architecture/best-practices/data-partitioning
https://docs.microsoft.com/pl-pl/azure/architecture/best-practices/data-partitioning

