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Abstract. The article focuses on the design and implementation of mechanics, electronics and control system for a light-weight, modular, robotic 

manipulator for performing activities that require robot-human interaction in selected medicine-related applications. At the beginning, the functional 
requirements and physical architecture of such manipulator are discussed. The structure and control systems of the essential manipulator components/joint 

modules are presented in detail. Next, we introduce the software architecture of the master controller. Finally, examples of the current implementations 

of the modular manipulator are given. 
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OPRACOWANIE MODUŁOWEGO LEKKIEGO MANIPULATORA DO INTERAKCJI 

CZŁOWIEK-MASZYNA W ZASTOSOWANIACH MEDYCZNYCH 

Streszczenie. Artykuł prezentuje zagadnienia związane z projektowaniem mechaniki, elektroniki i układów sterowania dla lekkiego, modułowego 

manipulatora robotycznego dedykowanego do wykonywania czynności wymagających interakcji człowiek-robot w wybranych aplikacjach medycznych. 
W pierwszej części artykułu omówiono wymagania funkcjonalne i architekturę fizyczną manipulatora. Następnie przedstawiono strukturę i układy 

sterowania podstawowych elementów manipulatora – modułów napędowych przegubów. Zaprezentowano architekturę oprogramowania sterowania 

implementowaną w sterowniku nadrzędnym. Na koniec podano przykłady zrealizowanych implementacji opracowanego manipulatora modułowego. 

Słowa kluczowe: manipulator modułowy, architektura fizyczna, architektura oprogramowania 

Introduction 

The rise and popularization of robot technology has already 

led to significant transformation in many fields of science and 

technology. In the 21st century, robots have not just played 

a significant role in industrial fields; their applications have also 

expanded to non-industrial fields. Various service and 

entertainment robots have entered family homes. Some are 

developed for medical or medicine-related applications in: 

surgery, rehabilitation, telediagnostics and to support mobility-

impaired persons. They gradually become an important part 

of peoples’ daily lives. 

Most of the medical or medicine-related robotic systems 

utilize a wide variety of manipulators designed for physical 

human-robot interactions (PHRI). A general diagram of a PHRI 

system is presented in Fig. 1. An example of such a system is a 

teleoperation system where during telesurgery [5] or a remote 

medical examination [7], the user (doctor) generates commands 

for the manipulator via an input device (usually a haptic interface). 

Additionally, the doctor can feel the contact forces during the 

interaction with the environment, since the forces sensed at the 

manipulator end-effector are conveyed to his hand via a haptic 

interface. A display allows the user to observe the manipulation 

environment and to check the robot’s operational status/mode. All 

measurement, control and vision signals are transmitted, usually 

over a long distance, via the Internet. 

Another typical case of a PHRI system is an application 

in which the manipulator is used by persons with severe physical 

disabilities. This solution is dedicated especially for people who 

have no upper-limb or its usage is strongly limited. The 

manipulator is usually integrated with a powered wheelchair [1, 8] 

and helps them in performing activities of daily living such as 

picking up and moving objects, eating and drinking, opening 

doors and switching lights and their TV on/off. In such a case, the 

user generates tasks for the manipulator with the use of a 

wheelchair joystick system, sometimes supported by additional 

specialized interfaces (e.g. sip-and-puff, body-machine interface 

[6]). Since the manipulator is placed close to the user, he/she can 

observe the arm movement directly and there is no need to 

transmit vision and control signals via the Internet. The user 

display, which is connected directly (by cable or Wi-Fi) to the 

manipulator controller, shows the actual arm state/mode. For users 

who are functionally locked-in due to any of a variety of 

neurological or physical conditions, instead of a classical input 

device, a brain computer interface [10] can be used. 

From a design point of view, in order to be more 

commercially successful, the weight of the manipulator must be 

reduced while supporting a similar or increased payload, and the 

price should be decreased in comparison to available solutions. 

Reducing the weight of the manipulator will reduce the power 

consumption (e.g. allowing longer usage of the wheelchair 

batteries) and will increase the user safety. A lighter arm will also 

be less restrictive on the allowable user weight as specified by the 

wheelchair manufacturer. In order to achieve this, lightweight 

robots are normally designed using two approaches [3]. One 

approach is to design cable-driven robots by the allocation of 

motors in the base and transmission of their motions to the joints 

by tendon-like mechanisms, e.g. the design of the Barrett WAM 

arm or the Igus arm presented in [10]. This type of design leads to 

highly dexterous, naturally backdrivable and compliant actuations. 
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Fig. 1. General diagram of systems for physical human-robot interaction 



34      IAPGOŚ 4/2020      p-ISSN 2083-0157, e-ISSN 2391-6761 
 

The disadvantage of such solution is their large footprint with 

lower interchangeability. The other approach is to design with 

highly integrated components and to make the major structural 

components out of more technologically advanced materials such 

as composite materials [1, 8, 11]. The disadvantage of this 

solution is the higher cost of these materials. An advantage is the 

possibility to build modular (with better interchangeability), 

highly reliable and much more compact manipulators. 

The goal of this project was to design a reliable, safe modular 

manipulator which is more cost-effective and compact, and has 

a greater or equal payload-to-weight ratio than the manipulators 

available on the market. The benefits of modularization [4], 

such as: 

 versatility – using a few identical or different modules, various 

robots with different functionalities can be built quickly, 

 reconfigurability – the kinematic structure of a robot may be 

modified by changing the mechanical configuration of the 

modules in the arm, 

 scalability – the number of degrees of freedom of the robot 

can be changed by adding or removing the joint modules to 

the system, 

allow a quasi-universal system to be developed, which can be used 

not only for one specific application, but can be easily adapted 

(configured) to different medicine-related applications. 

The designed modular system is quite complex and hence 

required a solid development methodology. In this project, the 

methodology used was a result of merging the user-centred design 

approach (ISO-13407) and the “Design methodology of 

mechatronic systems” (VDI 2206). As a consequence, at the initial 

stage of the project development, the physical architecture of the 

manipulator was designed. This architecture, together with the 

chosen system requirements, is presented in section 1. 

1. Functional requirements and physical 

architecture 

According to the aforementioned system development 

methodology, the first step, which precedes the design process, is 

specification of the functional requirements. The most important 

requirements are the following: 

 The structure of the manipulator shall be modular and 
configurable with the use of a maximum of 7 rotational joints 
and a maximum of 3 types of drive modules, 

 The arm shall be capable of lifting a minimum of a 1 kg 
payload with an approx. 1 m reach, 

 The maximum weight of the arm shall not exceed 5 kg, 

 The width of the joint/link (length and diameter of the 
module) shall not exceed 9 cm – compactness – important 
especially for a wheelchair arm, 

 The drive modules shall be multiturn, independent and 
complete mechatronic systems with switchable control modes 
(e.g. position/velocity/torque) and configurable parameters 
(e.g. motion limits, sensors calibration coefficients, etc.) 
by a higher level controller, 

 It shall be possible to integrate the arm with a power 
wheelchair: mechanics, controller (via an IOM module) and 
24 VDC battery power supply, 

 The arm shall allow for eating and drinking from a bottle 
or cup, opening and closing doors and cupboards, switching 
on/off standard household equipment, 

 The behavior (movement) of the arm shall be commanded by: 
a simple on/off joystick interface (implementation of standard 
control modes which allows: plane and up/down movement 
to be performed or to open/close and change the orientation 
of the gripper), 6DoF joystick (e.g. SpaceMouse) and external 
PC-based controller equipped with ROS (Robot Operating 
System) [13], 

 The arm should operate only outside of a configurable No Go 
Zone and with limited speed in its definable vicinity (Safety 
Zone with configurable width), 

 Additional safety features [2] shall be implemented to prevent 
non-controlled motion of the arm (e.g. self-check, failure 
detection and handling). 
Based on the requirements analysis, the physical architecture 

presented in Fig 2 was designed. It has the form of a high-level 
diagram, where the whole system is split into two main physical 
components: Arm (manipulator) and Master Controller with their 
input/output interfaces. Both components can be supplied with 
voltage between 19 and 30 VDC, which is fully compatible with 
wheelchair batteries. 

The Arm consists of: an aluminum base (with power and 

Ethernet sockets), up to seven joint modules connected by carbon 

fiber links (with power and Ethernet cables inside) and an end-

effector (e.g. gripper). They are controlled by slave controllers 

run at a frequency of 1 kHz. The structure of the joint modules 

is described in section 2. 

Arm

Joint Module

 no 1

 Slave Controller
Torque Sensor

Incremental Encoder

Absolute Encoder

Motor with 

Hall Sensors

Temperature Sensor

Acelerometer

End-effector

(Gripper) 

Slave Controller

Absolute Encoder

Motor 

Temperature Sensor

Wheelchair Joystick

User Display 

with Buzzer

Push Button 1

Push Button 5

Ethernet

adapter

Master 

Control

Algorithm

UDP 

Server

Et
h

er
n

et

 Interface to 

Wheelchair 

IOM

Master Controller

SpaceMouse
SpaceMouse 

Driver

Ethernet 

Adapter

USB

UDP 
Interface

Joint Module

 no 7

 Slave Controller
Torque Sensor

Incremental Encoder

Absolute Encoder

Motor with 

Hall Sensors

Temperature Sensor

Acelerometer

USB

USBDisplay 

Driver

24 VDC Power Supply 

(Battery)

Ethernet 

Adapter

USB

Configuration 
Interface

 

Fig. 2. Manipulator physical architecture 
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The Master Controller is based on a small, single-board 
Raspberry Pi 3 computer running real-time Linux. The real-time 
system allows for the execution of the master control algorithm 
at a frequency of 1 kHz. The software architecture of this 
algorithm is presented in section 3. The master control algorithm 
is supported by software drivers for the USB-connected external 
devices (user display, SpaceMouse) and by a UDP server which 
allows control-measurement data to be exchanged with 
an optional, higher-level control system based on a PC with 
a UDP client and, e.g., ROS. Push buttons and wheelchair 
controller signals are connected through a simple electronic 
logical interface to GPIOs on the Raspberry Pi. 

Such an architecture and all of the above functional 

requirements imposed the implementation of a hierarchical 

two-level control system with a Master Controller at the higher-

level and distributed slave controllers at the lower-level. 

The communication between the lower- and higher-level elements 

is performed at a frequency of 1 kHz via a real-time, Ethernet-

based network. 

A custom-designed PC application directly configures 

(through an Ethernet adapter connected to a USB port) the Master 

Controller and particular slave controllers. 

2. Joint modules 

Based on the manipulator requirements and the architecture 

presented in section 1, joint drive modules with two sizes and 

a three fingered gripper were designed. Each of them has 

integrated mechanics, electronics and control circuitry in one 

independent mechatronic system. A schematic diagram of a joint 

drive module is shown in Fig. 3. 
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Fig. 3. Schematic diagram of the joint drive module 

The structure of the drive module is based on two cylindrical 

load-bearing housings made of aluminum. They are mechanically 

connected to the drive system which consists of a brushless DC 

motor and a harmonic gearbox. Since the arm must be capable 

of lifting a 1 kg weight, two module sizes L – large and S – small 

(see Fig. 4) have been designed. They differ in the nominal output 

torque and the type of the components used. Their main 

parameters are collected in Table 1. The L-sized modules are 

normally mounted at the beginning of a serial manipulator 

kinematic chain and the S-sized at the end. 

Table 1. Main parameters of joint modules 

Module size D [mm] L [mm] Nominal output torque [Nm] 

L 75 71 12 

S 62 55 5 

Each module also contains: an incremental encoder mounted 

between the rotor and the stator of the motor, an absolute encoder 

mounted between the input and the output housing, a temperature 

sensor fixed at the stator windings and a strain gauge-based torque 

sensor glued onto the housing. In order to fulfill the multiturn 

requirement, custom-designed slip rings are used. They transmit 

the power and Ethernet signals between the input and output sides 

of the module. 

Size L

Size S

 

Fig. 4. Overview of L and S sizes of joint drive modules 

The module electronics, shown in the block diagram in Fig. 5, 

was split across three PCBs. The first one, connected directly 

to the motor stator, is called the Motor Driver PCB and contains 

the hall sensors and the motor power stage with a driver. 

The second one, fixed at the left side of the output housing, 

is called the Output PCB and contains the power and Ethernet 

sockets. The last one, called the Main PCB, is mounted at right 

side of the input housing and supports the slave control algorithm 

implemented in a microcontroller. 

 
Fig. 5. Electronics block diagram of the joint module 
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The microcontroller peripherals are used to acquire 

the measurement data from the sensors (i.e. the accelerometer, 

the temperature sensor, the absolute and incremental encoders, 

the hall sensors and the torque sensor) and to generate commands 

and PWM signals for the motor power stage driver. They also 

communicate with the slave controller by handling the physical 

layer of the communication (i.e. processing of the frames 

exchanged with the manipulator master controller).  

In the software layer, the communication is handled by the 

Slave Ethernet Stack. Through it, commands (demands) 

and configuration parameters are received and actual slave 

controller statuses are sent from/to the master controller. 

The Slave Ethernet Stack is part of the slave control algorithm, 

the architecture of which is presented in Fig. 6. 

All input signals acquired from the sensors (hardware inputs) 

as well as demands from the master controller are validated and/or 

filtered and scaled in the Data Acquisition & Signal Conditioning 

block. For safety reasons (module self-check) these signals are 

analyzed and compared with thresholds, with each other or with 

modelled signals in the Module Monitoring block. If an anomaly 

is detected or if a fault is reported by the hardware, the block 

generates information about the critical or non-critical module 

failure, or only a warning. Based on the self-check result 

(monitoring status) and control commands received from the 

master controller, the Decision Maker manages the slave 

controller activities. The Decision Maker, which was designed 

in the form of a multilayered state machine [7], generates 

information about its current state (i.e. controller status), manages 

the Cascade Controller (enables/disables, switches working 

modes, etc.), switches the Control Modes of the slave controller 

(e.g. between: position, velocity, torque and failure handling 

control modes) and selects a proper filter structure for the 

demanded joint position signal.  
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Fig. 6. The software architecture of the joint slave controller 

The Cascade Controller has a standard position-velocity-

torque cascade control structure presented with details in [7]. 

The Demands Limiting and Filtering block consists of: a filter 

(used to smooth the demanded joint position) and a speed limiter 

which limits the demanded joint velocity to a maximum permitted 

velocity when the joint is away from its physical limit and to 

a small value (zero) when close to it. 

3. Master controller software architecture 

A simplified software architecture of the master controller is 

presented in Fig. 7. It is an evolution of our previous work [7].  

In general, it is used to generate the position qsd, velocity sdq  

and torque τsd demanded values for the slave controllers. These 

demanded values can be generated (by switchable applications 

of the Joint Space Control Modes block) and conditioned (by the 

Joint Demands Filter with Speed Limiter, Integrator and Collision 

Handling block) directly in joint space, based on the position 

qUDPd, velocity 
UDPdq  or torque τUDPd demanded values received 

from the external interface. However in most cases, generation 

of qsd or sdq  signals for slave controllers is more complex. First, 

the demanded task space velocity vector ],[ ddd ωxX    

or demanded pose ξd is genarated (by switchable applications 

of the Task Space Control Modes block) in task space, based on: 

wheelchair joystick signals Wjd or SpaceMouse joystick signals Sjd 

or a demanded pose ξUDPd  received from the external interface. 

These demanded signals are partially conditioned (by the Task 

Space Demands Filter and Admittance Control block). Next, 

values of demanded joints velocities sdq  are calculated by the IK 

(Inverse Kinematics) algorithm from demanded task velocity 

vector 
sdX . Finally, demanded joints velocities are limited and 

integrated (by Speed Limiter and Integrator) to obtain values of 

qsd signals.The IK algorithm utilizes the velocity-based inverse 

kinematics algorithm [7]: 

 
sdssd XJq   # , (1) 

where: #

sJ  is a Moore–Penrose pseudoinverse of the arm’s 

Jacobian Js. It is a solution designed to minimize the quadratic 

cost function of the joint velocities (according to the least square 

method [9]). In order to avoid the least square inverse method’s 

problems with singularities, the weighted dumped least square 

(WDLS) method was introduced for the manipulator IK algorithm 

as a modification of the DLS method [9]. Then minimizing the 

cost function: 
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where: Wx and Wq are symmetric positive-definite weighting 

matrices associated with the errors in the task space and joint 

space, respectively, giving the following solution: 
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Fig. 7. Master controller software architecture 

There is one additional, very important block, which was 

designed in the form of a finite state machine and manages the 

whole system – the Master Decision Maker (MDM). The MDM, 

based on slave controller statuses cs and control commands 

received from the external devices (i.e. from: external interface – 

cUPDd, wheelchair buttons – Wpb and SpaceMouse buttons – Spb), 

generates the demanded control modes for the slave controllers csd 

and commands: cts and cjs which switch the task space, and joint 

space control modes of the master controller. The MDM reports its 

current state by signal MCstat. 

The configuration parameters of particular master controller’s 

blocks can be updated on demand (triggered by the high state 

of the CPmd signal), with values coded in  the CPmd signal. Both 
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signals used in the configuration process are received from 

externally connected (through Ethernet) PC application. 

A CPsd signal, received from the same source, is used for 

the configuration of the slave controllers. 

4. Conclusion 

The joint modules and the master controller presented in this 

article have already been implemented in two real medicine-

related applications. The first solution is a modular, easy-to-

reconfigure, light-weight manipulator mounted on wheelchair. 

This manipulator, shown in Fig. 8, helps to cope with physical 

disability in everyday life. 

 

Fig.8. Modular manipulator on a wheelchair 

The second type of the manipulator was developed in order to 

replace a very heavy and user-unfriendly arm of the RAMCIP 

(Robotic Assistant for MCI Patients at home) robot [12]. 

The RAMCIP robot with our manipulator is shown in Fig. 9. 

In both cases, custom-designed grippers were used, with 

electronics and control systems similar to the one dedicated to the 

joint modules presented in section 2. Preliminary evaluation 

results with real users have confirmed the operational correctness 

of both the manipulators and their control systems. Our future 

development related to the modular manipulator will concentrate 

on its implementation as an arm for remote ultrasound 

examination. 

 

Fig. 9. Modular manipulator on a RAMCIP robot 
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