
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2020 33

artykuł recenzowany/revised paper IAPGOS, 4/2020, 33–37

http://doi.org/10.35784/iapgos.2066

DEVELOPMENT OF A MODULAR LIGHT-WEIGHT MANIPULATOR

FOR HUMAN-ROBOT INTERACTION IN MEDICAL APPLICATIONS

Adam Kurnicki
1
, Bartłomiej Stańczyk

2

1Lublin University of Technology, Automation and Metrology Department, Lublin, Poland, 2Accrea Engineering, Lublin, Poland

Abstract. The article focuses on the design and implementation of mechanics, electronics and control system for a light-weight, modular, robotic

manipulator for performing activities that require robot-human interaction in selected medicine-related applications. At the beginning, the functional
requirements and physical architecture of such manipulator are discussed. The structure and control systems of the essential manipulator components/joint

modules are presented in detail. Next, we introduce the software architecture of the master controller. Finally, examples of the current implementations

of the modular manipulator are given.

Keywords: modular manipulator, physical architecture, control architecture

OPRACOWANIE MODUŁOWEGO LEKKIEGO MANIPULATORA DO INTERAKCJI

CZŁOWIEK-MASZYNA W ZASTOSOWANIACH MEDYCZNYCH

Streszczenie. Artykuł prezentuje zagadnienia związane z projektowaniem mechaniki, elektroniki i układów sterowania dla lekkiego, modułowego

manipulatora robotycznego dedykowanego do wykonywania czynności wymagających interakcji człowiek-robot w wybranych aplikacjach medycznych.
W pierwszej części artykułu omówiono wymagania funkcjonalne i architekturę fizyczną manipulatora. Następnie przedstawiono strukturę i układy

sterowania podstawowych elementów manipulatora – modułów napędowych przegubów. Zaprezentowano architekturę oprogramowania sterowania

implementowaną w sterowniku nadrzędnym. Na koniec podano przykłady zrealizowanych implementacji opracowanego manipulatora modułowego.

Słowa kluczowe: manipulator modułowy, architektura fizyczna, architektura oprogramowania

Introduction

The rise and popularization of robot technology has already

led to significant transformation in many fields of science and

technology. In the 21st century, robots have not just played

a significant role in industrial fields; their applications have also

expanded to non-industrial fields. Various service and

entertainment robots have entered family homes. Some are

developed for medical or medicine-related applications in:

surgery, rehabilitation, telediagnostics and to support mobility-

impaired persons. They gradually become an important part

of peoples’ daily lives.

Most of the medical or medicine-related robotic systems

utilize a wide variety of manipulators designed for physical

human-robot interactions (PHRI). A general diagram of a PHRI

system is presented in Fig. 1. An example of such a system is a

teleoperation system where during telesurgery [5] or a remote

medical examination [7], the user (doctor) generates commands

for the manipulator via an input device (usually a haptic interface).

Additionally, the doctor can feel the contact forces during the

interaction with the environment, since the forces sensed at the

manipulator end-effector are conveyed to his hand via a haptic

interface. A display allows the user to observe the manipulation

environment and to check the robot’s operational status/mode. All

measurement, control and vision signals are transmitted, usually

over a long distance, via the Internet.

Another typical case of a PHRI system is an application

in which the manipulator is used by persons with severe physical

disabilities. This solution is dedicated especially for people who

have no upper-limb or its usage is strongly limited. The

manipulator is usually integrated with a powered wheelchair [1, 8]

and helps them in performing activities of daily living such as

picking up and moving objects, eating and drinking, opening

doors and switching lights and their TV on/off. In such a case, the

user generates tasks for the manipulator with the use of a

wheelchair joystick system, sometimes supported by additional

specialized interfaces (e.g. sip-and-puff, body-machine interface

[6]). Since the manipulator is placed close to the user, he/she can

observe the arm movement directly and there is no need to

transmit vision and control signals via the Internet. The user

display, which is connected directly (by cable or Wi-Fi) to the

manipulator controller, shows the actual arm state/mode. For users

who are functionally locked-in due to any of a variety of

neurological or physical conditions, instead of a classical input

device, a brain computer interface [10] can be used.

From a design point of view, in order to be more

commercially successful, the weight of the manipulator must be

reduced while supporting a similar or increased payload, and the

price should be decreased in comparison to available solutions.

Reducing the weight of the manipulator will reduce the power

consumption (e.g. allowing longer usage of the wheelchair

batteries) and will increase the user safety. A lighter arm will also

be less restrictive on the allowable user weight as specified by the

wheelchair manufacturer. In order to achieve this, lightweight

robots are normally designed using two approaches [3]. One

approach is to design cable-driven robots by the allocation of

motors in the base and transmission of their motions to the joints

by tendon-like mechanisms, e.g. the design of the Barrett WAM

arm or the Igus arm presented in [10]. This type of design leads to

highly dexterous, naturally backdrivable and compliant actuations.

User Display

Perception and Activity

Manipulator
Controller

Manipulator

Input Device

Sensors/
Cameras

Physical Environment

Co
m

m
un

ic
at

io
n

In

te
rf

ac
e

User
(Human)

Direct Vision

Fig. 1. General diagram of systems for physical human-robot interaction

34 IAPGOŚ 4/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

The disadvantage of such solution is their large footprint with

lower interchangeability. The other approach is to design with

highly integrated components and to make the major structural

components out of more technologically advanced materials such

as composite materials [1, 8, 11]. The disadvantage of this

solution is the higher cost of these materials. An advantage is the

possibility to build modular (with better interchangeability),

highly reliable and much more compact manipulators.

The goal of this project was to design a reliable, safe modular

manipulator which is more cost-effective and compact, and has

a greater or equal payload-to-weight ratio than the manipulators

available on the market. The benefits of modularization [4],

such as:

 versatility – using a few identical or different modules, various

robots with different functionalities can be built quickly,

 reconfigurability – the kinematic structure of a robot may be

modified by changing the mechanical configuration of the

modules in the arm,

 scalability – the number of degrees of freedom of the robot

can be changed by adding or removing the joint modules to

the system,

allow a quasi-universal system to be developed, which can be used

not only for one specific application, but can be easily adapted

(configured) to different medicine-related applications.

The designed modular system is quite complex and hence

required a solid development methodology. In this project, the

methodology used was a result of merging the user-centred design

approach (ISO-13407) and the “Design methodology of

mechatronic systems” (VDI 2206). As a consequence, at the initial

stage of the project development, the physical architecture of the

manipulator was designed. This architecture, together with the

chosen system requirements, is presented in section 1.

1. Functional requirements and physical

architecture

According to the aforementioned system development

methodology, the first step, which precedes the design process, is

specification of the functional requirements. The most important

requirements are the following:

 The structure of the manipulator shall be modular and
configurable with the use of a maximum of 7 rotational joints
and a maximum of 3 types of drive modules,

 The arm shall be capable of lifting a minimum of a 1 kg
payload with an approx. 1 m reach,

 The maximum weight of the arm shall not exceed 5 kg,

 The width of the joint/link (length and diameter of the
module) shall not exceed 9 cm – compactness – important
especially for a wheelchair arm,

 The drive modules shall be multiturn, independent and
complete mechatronic systems with switchable control modes
(e.g. position/velocity/torque) and configurable parameters
(e.g. motion limits, sensors calibration coefficients, etc.)
by a higher level controller,

 It shall be possible to integrate the arm with a power
wheelchair: mechanics, controller (via an IOM module) and
24 VDC battery power supply,

 The arm shall allow for eating and drinking from a bottle
or cup, opening and closing doors and cupboards, switching
on/off standard household equipment,

 The behavior (movement) of the arm shall be commanded by:
a simple on/off joystick interface (implementation of standard
control modes which allows: plane and up/down movement
to be performed or to open/close and change the orientation
of the gripper), 6DoF joystick (e.g. SpaceMouse) and external
PC-based controller equipped with ROS (Robot Operating
System) [13],

 The arm should operate only outside of a configurable No Go
Zone and with limited speed in its definable vicinity (Safety
Zone with configurable width),

 Additional safety features [2] shall be implemented to prevent
non-controlled motion of the arm (e.g. self-check, failure
detection and handling).
Based on the requirements analysis, the physical architecture

presented in Fig 2 was designed. It has the form of a high-level
diagram, where the whole system is split into two main physical
components: Arm (manipulator) and Master Controller with their
input/output interfaces. Both components can be supplied with
voltage between 19 and 30 VDC, which is fully compatible with
wheelchair batteries.

The Arm consists of: an aluminum base (with power and

Ethernet sockets), up to seven joint modules connected by carbon

fiber links (with power and Ethernet cables inside) and an end-

effector (e.g. gripper). They are controlled by slave controllers

run at a frequency of 1 kHz. The structure of the joint modules

is described in section 2.

Arm

Joint Module

 no 1

 Slave Controller
Torque Sensor

Incremental Encoder

Absolute Encoder

Motor with

Hall Sensors

Temperature Sensor

Acelerometer

End-effector

(Gripper)

Slave Controller

Absolute Encoder

Motor

Temperature Sensor

Wheelchair Joystick

User Display

with Buzzer

Push Button 1

Push Button 5

Ethernet

adapter

Master

Control

Algorithm

UDP

Server

Et
h

er
n

et

 Interface to

Wheelchair

IOM

Master Controller

SpaceMouse
SpaceMouse

Driver

Ethernet

Adapter

USB

UDP
Interface

Joint Module

 no 7

 Slave Controller
Torque Sensor

Incremental Encoder

Absolute Encoder

Motor with

Hall Sensors

Temperature Sensor

Acelerometer

USB

USBDisplay

Driver

24 VDC Power Supply

(Battery)

Ethernet

Adapter

USB

Configuration
Interface

Fig. 2. Manipulator physical architecture

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2020 35

The Master Controller is based on a small, single-board
Raspberry Pi 3 computer running real-time Linux. The real-time
system allows for the execution of the master control algorithm
at a frequency of 1 kHz. The software architecture of this
algorithm is presented in section 3. The master control algorithm
is supported by software drivers for the USB-connected external
devices (user display, SpaceMouse) and by a UDP server which
allows control-measurement data to be exchanged with
an optional, higher-level control system based on a PC with
a UDP client and, e.g., ROS. Push buttons and wheelchair
controller signals are connected through a simple electronic
logical interface to GPIOs on the Raspberry Pi.

Such an architecture and all of the above functional

requirements imposed the implementation of a hierarchical

two-level control system with a Master Controller at the higher-

level and distributed slave controllers at the lower-level.

The communication between the lower- and higher-level elements

is performed at a frequency of 1 kHz via a real-time, Ethernet-

based network.

A custom-designed PC application directly configures

(through an Ethernet adapter connected to a USB port) the Master

Controller and particular slave controllers.

2. Joint modules

Based on the manipulator requirements and the architecture

presented in section 1, joint drive modules with two sizes and

a three fingered gripper were designed. Each of them has

integrated mechanics, electronics and control circuitry in one

independent mechatronic system. A schematic diagram of a joint

drive module is shown in Fig. 3.

Harmonic
Gearbox

Output
PCB

Main
PCB

Motor Driver
PCB

Torque
Sensor

Incremental
Encoder

Absolute
Encoder

Slip rings

L - length

D
 -

 d
ia

m
e

te
r

Temperature
Sensor

Motor

Output housing Input housing

Fig. 3. Schematic diagram of the joint drive module

The structure of the drive module is based on two cylindrical

load-bearing housings made of aluminum. They are mechanically

connected to the drive system which consists of a brushless DC

motor and a harmonic gearbox. Since the arm must be capable

of lifting a 1 kg weight, two module sizes L – large and S – small

(see Fig. 4) have been designed. They differ in the nominal output

torque and the type of the components used. Their main

parameters are collected in Table 1. The L-sized modules are

normally mounted at the beginning of a serial manipulator

kinematic chain and the S-sized at the end.

Table 1. Main parameters of joint modules

Module size D [mm] L [mm] Nominal output torque [Nm]

L 75 71 12

S 62 55 5

Each module also contains: an incremental encoder mounted

between the rotor and the stator of the motor, an absolute encoder

mounted between the input and the output housing, a temperature

sensor fixed at the stator windings and a strain gauge-based torque

sensor glued onto the housing. In order to fulfill the multiturn

requirement, custom-designed slip rings are used. They transmit

the power and Ethernet signals between the input and output sides

of the module.

Size L

Size S

Fig. 4. Overview of L and S sizes of joint drive modules

The module electronics, shown in the block diagram in Fig. 5,

was split across three PCBs. The first one, connected directly

to the motor stator, is called the Motor Driver PCB and contains

the hall sensors and the motor power stage with a driver.

The second one, fixed at the left side of the output housing,

is called the Output PCB and contains the power and Ethernet

sockets. The last one, called the Main PCB, is mounted at right

side of the input housing and supports the slave control algorithm

implemented in a microcontroller.

Fig. 5. Electronics block diagram of the joint module

36 IAPGOŚ 4/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

The microcontroller peripherals are used to acquire

the measurement data from the sensors (i.e. the accelerometer,

the temperature sensor, the absolute and incremental encoders,

the hall sensors and the torque sensor) and to generate commands

and PWM signals for the motor power stage driver. They also

communicate with the slave controller by handling the physical

layer of the communication (i.e. processing of the frames

exchanged with the manipulator master controller).

In the software layer, the communication is handled by the

Slave Ethernet Stack. Through it, commands (demands)

and configuration parameters are received and actual slave

controller statuses are sent from/to the master controller.

The Slave Ethernet Stack is part of the slave control algorithm,

the architecture of which is presented in Fig. 6.

All input signals acquired from the sensors (hardware inputs)

as well as demands from the master controller are validated and/or

filtered and scaled in the Data Acquisition & Signal Conditioning

block. For safety reasons (module self-check) these signals are

analyzed and compared with thresholds, with each other or with

modelled signals in the Module Monitoring block. If an anomaly

is detected or if a fault is reported by the hardware, the block

generates information about the critical or non-critical module

failure, or only a warning. Based on the self-check result

(monitoring status) and control commands received from the

master controller, the Decision Maker manages the slave

controller activities. The Decision Maker, which was designed

in the form of a multilayered state machine [7], generates

information about its current state (i.e. controller status), manages

the Cascade Controller (enables/disables, switches working

modes, etc.), switches the Control Modes of the slave controller

(e.g. between: position, velocity, torque and failure handling

control modes) and selects a proper filter structure for the

demanded joint position signal.

Data
Acquisition

&
Signal

Conditioning

Cascade
Controller
Position-
Velocity-
Torque

Demands
Limiting and

Filtering

Decision
Maker

(Control
Manager)

Module
Monitoring

Control Modes
(Demands

generation)

Hardware
Inputs Hardware Inputs Conditioned

Demands
Conditioned Demanded

Position

Demanded
Velocity

Demanded Torque

Demanded
Velocity Flt.

Monitoring
Status

Control Mode
Demanded

Filtration Mode

Cascade
Controller

Mode

PWM Controls

Demanded
Position Flt.

Failure Status

Warning Status

Controller Status

Communication
Status

Data to/from
Ethernet Master

Controller
Configuration

UpdateSlave
Ethernet

Stack

Demands from
Master Controller

Configuration
Parameters

Config.
Params

Fig. 6. The software architecture of the joint slave controller

The Cascade Controller has a standard position-velocity-

torque cascade control structure presented with details in [7].

The Demands Limiting and Filtering block consists of: a filter

(used to smooth the demanded joint position) and a speed limiter

which limits the demanded joint velocity to a maximum permitted

velocity when the joint is away from its physical limit and to

a small value (zero) when close to it.

3. Master controller software architecture

A simplified software architecture of the master controller is

presented in Fig. 7. It is an evolution of our previous work [7].

In general, it is used to generate the position qsd, velocity sdq

and torque τsd demanded values for the slave controllers. These

demanded values can be generated (by switchable applications

of the Joint Space Control Modes block) and conditioned (by the

Joint Demands Filter with Speed Limiter, Integrator and Collision

Handling block) directly in joint space, based on the position

qUDPd, velocity
UDPdq or torque τUDPd demanded values received

from the external interface. However in most cases, generation

of qsd or sdq signals for slave controllers is more complex. First,

the demanded task space velocity vector],[ddd ωxX  

or demanded pose ξd is genarated (by switchable applications

of the Task Space Control Modes block) in task space, based on:

wheelchair joystick signals Wjd or SpaceMouse joystick signals Sjd

or a demanded pose ξUDPd received from the external interface.

These demanded signals are partially conditioned (by the Task

Space Demands Filter and Admittance Control block). Next,

values of demanded joints velocities sdq are calculated by the IK

(Inverse Kinematics) algorithm from demanded task velocity

vector
sdX . Finally, demanded joints velocities are limited and

integrated (by Speed Limiter and Integrator) to obtain values of

qsd signals.The IK algorithm utilizes the velocity-based inverse

kinematics algorithm [7]:

sdssd XJq   # , (1)

where: #

sJ is a Moore–Penrose pseudoinverse of the arm’s

Jacobian Js. It is a solution designed to minimize the quadratic

cost function of the joint velocities (according to the least square

method [9]). In order to avoid the least square inverse method’s

problems with singularities, the weighted dumped least square

(WDLS) method was introduced for the manipulator IK algorithm

as a modification of the DLS method [9]. Then minimizing the

cost function:

sdq

T

sd

T

sdssdx

T

sdssdsdsdg qWqqJXWqJXXq 
2

1
)()(

2

1
),( ,(2)

where: Wx and Wq are symmetric positive-definite weighting

matrices associated with the errors in the task space and joint

space, respectively, giving the following solution:

sdx

T

sqsx

T

ssd XWJWJWJq  #)( . (3)

FK

ξsd

FK

cts

Task

Space

Demands

Filter and

Admitance

Control
IK

Xsd qsd

Joint

Space

Control

Modes

Joint
Demands

Filter
with Speed

Limiter,
Integrator

and
Collision
Handling

qsd
*qsdTask

Space

Control

Modes

ξd

Xd

ξs

Js

qs

Master

Decision Maker

Master

Ethernet

Stack

csdcs

qsd

tsd

ξUDPd

Wjd

Sjd

qUDPd

cUDPd

Wpb

Spb
MCstat

Js

cjs cjf

qsd
*

qUDPd

tUDPd

CPsd

Configuration
Write/Read

Config.
Params

CPmdCPmd

tsm

Fig. 7. Master controller software architecture

There is one additional, very important block, which was

designed in the form of a finite state machine and manages the

whole system – the Master Decision Maker (MDM). The MDM,

based on slave controller statuses cs and control commands

received from the external devices (i.e. from: external interface –

cUPDd, wheelchair buttons – Wpb and SpaceMouse buttons – Spb),

generates the demanded control modes for the slave controllers csd

and commands: cts and cjs which switch the task space, and joint

space control modes of the master controller. The MDM reports its

current state by signal MCstat.

The configuration parameters of particular master controller’s

blocks can be updated on demand (triggered by the high state

of the CPmd signal), with values coded in the CPmd signal. Both

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2020 37

signals used in the configuration process are received from

externally connected (through Ethernet) PC application.

A CPsd signal, received from the same source, is used for

the configuration of the slave controllers.

4. Conclusion

The joint modules and the master controller presented in this

article have already been implemented in two real medicine-

related applications. The first solution is a modular, easy-to-

reconfigure, light-weight manipulator mounted on wheelchair.

This manipulator, shown in Fig. 8, helps to cope with physical

disability in everyday life.

Fig.8. Modular manipulator on a wheelchair

The second type of the manipulator was developed in order to

replace a very heavy and user-unfriendly arm of the RAMCIP

(Robotic Assistant for MCI Patients at home) robot [12].

The RAMCIP robot with our manipulator is shown in Fig. 9.

In both cases, custom-designed grippers were used, with

electronics and control systems similar to the one dedicated to the

joint modules presented in section 2. Preliminary evaluation

results with real users have confirmed the operational correctness

of both the manipulators and their control systems. Our future

development related to the modular manipulator will concentrate

on its implementation as an arm for remote ultrasound

examination.

Fig. 9. Modular manipulator on a RAMCIP robot

Acknowledgements

The work presented in this paper was supported in part

by the Lublin Enterprise Support Agency as part of the “Research

and innovation” project, activity 1.2, RPO WL 2014-2020.

References

[1] Campeau-Lecours A., et al.: Kinova Modular Robot Arms for Service Robotics

Applications. International Journal of Robotics Applications and Technologies

5(2), 2017, 49–71 [http://doi.org/10.4018/IJRAT.2017070104].

[2] Dibekci A., Bebek O.: Improving the Safety of Medical Robotic Systems.

7th IEEE International Conference on Biomedical Robotics and

Biomechatronics, 2018, 73–78,

[http://doi.org/10.1109/BIOROB.2018.8487914].

[3] Fang H., Guo L., Bai S.: A Light Weight Arm Designed with Modular

Joints. Bai S., Ceccarelli M. (eds): Recent Advances in Mechanism Design

for Robotics. Mechanisms and Machine Science 33, 2015, 47–54

[http://doi.org/10.1007/978-3-319-18126-4_5].

[4] Guan Y., Jiang L., Zhangy X., Zhang H., Zhou X.: Development

of novel robots with modular methodology. IEEE/RSJ International

Conference on Intelligent Robots and Systems 2009, 2385–2390,

[http://doi.org/10.1109/IROS.2009.5354051].

[5] Hassan T., Hameed A., Nisar S., Kamal N., Hasan O., Al-Zahrawi:

A Telesurgical Robotic System for Minimal Invasive Surgery. IEEE Systems

Journal 10(3), 2016, 1035–1045 [http://doi.org/10.1109/JSYST.2014.2331146].

[6] Jain S., Farshchiansadegh A., Broad A., Abdollahi F., Mussa-Ivaldi F., Argall

B.: Assistive robotic manipulation through shared autonomy and a Body-

Machine Interface. IEEE International Conference on Rehabilitation Robotics,

2015, 526–531, [http://doi.org/10.1109/ICORR.2015.7281253].

[7] Kurnicki A., Stańczyk B.: Manipulator Control System for Remote USG

Examination. Journal of Automation, Mobile Robotics and Intelligent Systems

13(2), 2019, 48–59 [http://doi.org/10.5604/20830157.1121333].

[8] Schrock P., Farelo F., Alqasemi R., Dubey R.: Design, simulation and testing

of a new modular wheelchair mounted robotic arm to perform activities of daily

living. IEEE International Conference on Rehabilitation Robotics, 2009,

518–523, [http://doi.org/10.1109/ICORR.2009.5209469].

[9] Siciliano B., Sciavicco L., Villani L., Oriolo G.: Robotics. Modelling, Planning

and Control. Advanced Textbooks in Control and Signal Processing, Springer-

Verlag, London 2009 [http://doi.org/10.1007/978-1-84628-642-1].

[10] Tremblay T., Padir T.: Modular Robot Arm Design for Physical Human-Robot

Interaction. IEEE International Conference on Systems, Man, and Cybernetics,

2013, 4482–4487, [http://doi.org/10.1109/SMC.2013.762].

[11] Vogel J., Haddadin S., Simeral J. D., Stavisky S.D., Bacher D., Hochberg L. R.,

Donoghue J. P.: Continuous Control of the DLR Light-Weight Robot III

by a Human with Tetraplegia Using the BrainGate2 Neural Interface System.

Khatib O., Kumar V., Sukhatme G. (eds): Experimental Robotics. Springer

Tracts in Advanced Robotics 79. Springer, Berlin, Heidelberg 2014

[http://doi.org/10.1007/978-3-642-28572-1_9].

[12] Ramcip project homepage, https://ramcip-project.eu/ (accessed: 27.06.2020).

[13] ROS Homepage, https://www.ros.org/ (accessed: 27.06.2020).

Ph.D. Eng. Adam Kurnicki

e-mail: a.kurnicki@pollub.pl

Received his Ph.D. (2004) in technical science and his

M.Sc. (1999) from the Faculty of Electrical

Engineering and Computer Science, TU Lublin,

Poland. He is a lecturer in the Automation

and Metrology Department, TU Lublin, where

he is involved in research on control systems

dedicated mainly for robotic systems used in medical

related applications.

https://orcid.org/0000-0002-4988-7322

Ph.D. Eng. Bartłomiej Stańczyk

e-mail: b.stanczyk@accrea.com

Received his Ph.D. (2006) in technical science from

TU Muenchen, Germany and his M.Sc. in electrical

and control engineering (1998) from TU Lublin,

Poland. Between 1998 and 2006, worked as a research

assistant at TU Lublin (Poland), Berlin and Munich

(Germany), involved in various research projects on

robust and digital control. During his Ph.D. period, he

focused on teleoperation, redundant kinematics and

impedance control of robotic manipulators. Since

2014, he is full time technical director of ACCREA.

https://orcid.org/0000-0002-2319-7358

otrzymano/received: 3.07.2020 przyjęto do druku/accepted: 10.12.2020

https://orcid.org/0000-0002-4988-7322
https://orcid.org/0000-0002-2319-7358

