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Abstract. The article is devoted to research on the possibilities to use redundant number systems for bit error notification in a successive-approximation 

ADC during the main conversion mode. The transfer function of a successive-approximation ADC with a non-binary radix is analyzed. If the radix is less 
than 2, not all possible code combinations appear on the converter output. The process of formation of unused combinations is investigated. 

The relationship between the bit’s deviations and the list of unused combinations is established. The possibilities of estimating the bit error value without 

interrupting the process of analog-to-digital conversion is considered. 
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POWIADOMIENIE O BŁĘDZIE BITOWYM I OCENA W STOPNIOWEJ REDUNDANTNEJ 

APROKSYMACJI ACP 

Streszczenie. Artykuł jest poświęcony badaniu możliwości wykorzystania redundantnych systemów liczbowych do powiadamiania o błędach bitowych 

w stopniowej aproksymacji ACP podczas konwersji głównej. Analizowana jest funkcja transferu stopniowej aproksymacji ACP z niebinarną podstawą. 
Jeśli podstawa jest mniejsza niż 2, nie wszystkie możliwe kombinacje kodów pojawią się na wyjściu konwertera. Badany jest proces tworzenia 

nieużywanych kombinacji, i ustalane są relacje między odchyleniami bitu a listą nieużywanych kombinacji. Autorzy również przeanalizowali możliwości 

oceny wartości błędu bitowego bez przerywania procesu konwersji analogowo-cyfrowej. 

Słowa kluczowe: stopniowa aproksymacja ACP, redundantne systemy liczbowe, funkcja transferu ACP 

Introduction 

Successive-approximation ADCs are very popular now due to 

their high resolution at the level of 14–18 binary digits, and 

relatively high sampling rate in the range from 50 kHz to 50 MHz. 

However, if the number of bits exceeds 12–14, we have the 

influence of external factors, such as temperature change, which 

leads to bit errors. The maximum absolute errors will be in the 

most significant bits (MSB) [1]. The result of this is the increasing 

of differential and integral nonlinearities. There are two main 

ways to resolve this problem: technological and algorithmic. The 

technological methods are time- and cost-consuming, and provide 

the ability to improve the linearity by several bits. The universal 

method to overcome this problem is to use a calibration procedure 

for the MSBs [2, 3, 6]. The traditional calibration procedure is 

performed after the device is turned on and is periodically 

repeated during operation. The ADC can operate in either the 

main conversion mode or calibration. New calibration 

technologies allow the general and calibration modes to be 

combined [4, 5]. Using a non-binary radix provides the 

opportunity for notification of MSB deviations [7]. 

1. Transfer function analysis for successive-

approximation ADC with non-binary radix 

The ADC transfer function (TF) determines the relationship 

between the input analog signals with the output code 

combination. When we are using a binary numeral system, each 

value of the input analog signal corresponds to one relevant code 

combination. At the same time, when using a redundant positional 

numeral system (radix less than 2), there are zones of TF, where 

one value of the input signal corresponds to several output code 

combinations, as shown in Fig. 1a. However due to the 

successive-approximation algorithm in the output code, we will 

have only one of the possible output combinations (Fig. 1b), 

which we will call “used” (UC). Accordingly, those combinations 

that do not occur in the output code will be called “unused” 

(UnC). For example, in Fig. 1, the TF for radix does not 

include combinations 0011, 0110, 0111 and 1011. These 

combinations will be UnC. The quantity and location of the UnC 

are determined by the radix, ADC resolution and bit errors. 

The combination location on the TF is defined by the 

equation: 
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where K – code combination, s – number of code combinations 

(decimal notation of binary combinations), n – ADC resolution, 

(1 )i

i iQ     – bit value with number i, where   – radix, i  – 

i-bit deviation. }1,0{ia  – bit values of K. 

 

Fig. 1. ADC transfer function 4-bit ADC: a) for radix 2 and 1.618, b) for radix 1.618 

without UnC 

The combination will be “unused” if there is a “used” 

combination of output code with a larger code combination 

number, s, and a smaller value of the input analog signal: 
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where the value of the input analog signal corresponding to the 

UnC with the number s2 and the UC with the number s1, 

respectively, and s1 > s2. For example, UnC number 6 (0110) and 

UC number 8 (1000) in Fig. 1 form a pair of code combinations 

for which condition (2) is satisfied. Similar pairs form 

combinations with numbers 3 (0011) and 4 (0100), 7 (0111) and 8 

(1000), 11 (1011) and 12 (1100). 
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UnCs form the groups with one and more successive code 

combinations. For example, for the TF on Fig. 1, there are three 

zones of unused combinations. The central zone, which we will 

call the (n-1)-level zone, has two successive combinations: 0110 

and 0111. The (n-2)-level zone has two subzones, which contain 

the 0011 and 1011 combinations. The difference between 

combinations is in the first, most significant bit (MSB). This bit 

identifies the subzone number: 0 – for 0011 and 1 – for 1011. 

The value of 
1s

UCK  for any zone or subzone is explicitly 

defined, it follows the largest UnC and we will call it the border 

following combination (BFC). It is very important that the values 

of BFC do not depend on the radix, no ADC resolution and they 

can be defined by the next rule: 

 for the (n-1)-level zone, ...1000

1 nBFC  – the MSB = 1, 

then all following “0”s; 

 for the (n-2)-level zone, ...01000

2 nBFC , 

...11001

2 nBFC  – the first MSB indicates the number of 

the subzone, the next bit “1”, then all following “0”s; 

 For the (n-k)-level zone – k-1, the first MSB indicates the 

number of the subzone, the next bit “1”, then all following 

“0”s. 

From equation (2) follows the condition for the existence of 

zone unused combinations: 
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In other words, the value of the input analog signal, which 

converts into the BFC, must be less than or equal to the input 

analog signal, which converts into the code combination that 

immediately precedes the BFC. From (3), we derive the existence 

of the the inequality for zone (n-k)-level: 
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Because the smallest level zone has only one UnC and the 

other zones have more than one, it is reasonable to find only the 

smallest level zone. For example, we have an ideal n-bit (without 

bit errors) redundant ADC with a radix of 1.7, then in equation (4) 

will become true beginning from (n-k) = 3. In fact, the number of 

the smallest level zone of the ideal redundant ADC is defined only 

by the radix. The relationship between the smallest level zone 

number (SLZN) and the radix is shown in Table 1. 

Table 1. Radix and smallest level zone number relations 

The radix 1.618 1.84 1.93 1.96 

Smallest level zone number  2 3 4 5 

 

Therefore, the quantity of zones of unused combinations may 

be calculated as n – SLZN. 

Because the radix and ADC resolution are constant, transition 

from unused combination to used ones and vice-versa is forced 

only by a change in i .  

2. Influence of single bit deviation on the 

transition of UC to UnC and vice-versa 

The deviation of the MSB value is not equal to zero, while the 

other bits are ideal. From equation (1), we derive: 
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As a result, the first part of the TF will not change because 

01 na , while the second part of the TF will be shifted left 

if 0i , or right if 0i . Fig. 2 shows the reaction 

of the TF of the successive-approximation ADC with a radix 

of 1.8 on the deviation of the MSB value: in Fig. 2a, the value 

of the deviation of the MSB is equal to zero, in Fig. 2b, it is equal 

to +5%, and in Fig. 2c, it is equal -5%.

 

Fig. 2. ADC transfer function 5-bit ADC for radix 1.8: a) without MSB value deviation, b) with positive MSB value deviation, c) with negative MSB value deviation 
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Hence, the consequence of positive MSB values shifting is the 

01110-combination transition from “unused” to “used”. On the 

other hand, the consequence of negative MSB values shifting is 

the 01101-combination transition from “used” to “unused”. The 

border MSB deviation value for the 01110-combination transition 

may be calculated from: 
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and after transformation: 
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For a radix of 1.8 and n = 5, the border MSB shifting value 

according to (7) will be 0.036, or 3.6%. In the same way, the 

border MSB deviation value for the 01101-combination will be: 
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For a radix of 1.8 and n = 5, the border MSB shifting value 

will be calculated according to (8), it will be -0.04, or -4%. 

In other words, for a 5-bit successive-approximation ADC with 

a radix of 1.8, the presence of 2 “unused” combinations in the 

central (n-1)-level zone (Fig. 2a) guarantees that the MSB value 

shifting borders are from -4% to 3.6%. It is important that the 

MSB value shifting does not influence the other zones of “unused” 

combinations, for example the (n-2)-level zone in Fig. 2.  

The value deviation is not equal to zero for the (n-2) bit, 

but all other bits including the MSB are ideal. From equation (1), 

we derive: 
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The border (n-2) deviation value for the 01110-combination 

transition may be calculated from: 
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and after transformation: 
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For a radix of 1.8 and n=5 (n-2)-bit let us shift values 

accordingly (11), they will be -0.06, or -6%. In a similar way, the 

border (n-2)-bit deviation value for the 01101-combination will 

be: 
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For a radix of 1.8 and n = 5, the border (n-2)-bit shifting value, 

calculated according to (12), will be 0.07, or 7%. 

The (n-2)-bit deviation will influence not only the (n-1)-level 

zone, but also the (n-2)-level zone. For ideal bit values, it is only 

one “unused” combination in every subzone of the (n-2)-level 

zone (Fig. 2): X0111, where X equals 0 for the first subzone and 1 

for the second. The result of the (n-2)-bit deviation will be the 

transmission X0111 combination to the “used” category or the 

transmission X0110 combination to UnC. To calculate the 

condition for the first transmission, we will use the next equation: 
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Or after transformation: 
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In fact, equation (14) is the same as (7), which means that the 

(n-2) bit shifting value for a radix of 1.8 and n = 5 will be 0.036, 

or 3.6%. In a similar way, the border (n-2)-bit deviation value for 

the X0110-combination will be: 
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For a radix of 1.8 and n=5, the border (n-2)-bit shifting value 

according to (15) will be -0.14, or -14%. 

The (n-i)-bit value shifting will influence the UnC quantity in 

the (n-i)-level zone and other zones with numbers less than (n-i). 

3. Influence of multiple-bit deviation on the 

transition of UC to UnC and vice-versa 

Let the MSB and (n-2) bit values deviations be not equal to 

zero, while the other bits are ideal. From equation (1), we derive: 
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The border MSB and (n-2) bit deviation values for the 01110 

and 01101 combinations can be calculated from (17) and (18) 

accordingly: 
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The graphical interpretation of equations (14), (15), (17) 

and (18) for a radix of 1.8 and n=5 are shown in Fig. 3. 

 

Fig. 3. Graphical interpretation of equations (14), (15), (17) and (18) 

Fig. 3 demonstrates the opportunities to control two MSB 

deviations. If the bit value deviations 1n  and 2n are inside 

the parallelogram created by equations (14), (15), (17) and (18), 

the quantity of “unused” combinations in the (n-1) and (n-2)-level 

zones will not change, and vice-versa – if the quantity of “unused” 

combinations has changed, it means that the bit value deviations 

exceeded certain thresholds. To control the “unused” 

combinations, it is not necessary to interrupt the main conversion 

if the input analog signal captures the main zones of “unused” 

combinations.  

4. Bit deviation estimation based on UnC analysis  

Control of the quantity of “Unused” combinations not only 

identifies the fact of bit deviation, but estimates this deviation. 

The relationship between the quantity of UnCs in a certain zone 

of “unused” combinations and bit deviations is shown above. 

The reverse task is to estimate the bit deviation if the quantity 

of UnCs in a certain zone is known. For a start description 

of the simplest situation, when only one bit has deviatied and 

its number is known. 

For example, the ADC transfer function looks like Fig. 2c. 

It is known that the bit deviation is only the MSB and the quantity 

of UnCs is equal to three (Fig. 2c). 

To calculate the upper bound of the MSB deviation, it is 

necessary to equate the analog signal for combination 10000 (BFC 
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for (n-1)-level zone of UnCs) with the analog signal for the 01101 

combination – the smallest UnC: 
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The lower bound of 1n  can be calculated from: 
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which corresponds to the 01100 combination – the last UC 

between the series UnC. The average value of 1n  can be 

calculated as: 
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For the sample in Fig. 2c, the values of 
3max

1n , 
3min

1n  and 

3

1
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n  will be: -0.04, -0.14, and -0.09. 
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The second situation is where only two bits have deviations 

and their numbers are known. Fig. 4 shows the graphical diagram 

that can be used to estimate the deviations of two MSBs for a 5-bit 

ADC with a radix of 1.8. 

 

Fig. 4. Graphical diagram for estimation of two-MSB deviations  

1nZ  and 
2nZ  are the quantities of “unused” combinations 

in the (n-1) and (n-2)-level zones, respectively. For example, 

parallelogram A corresponds to two UnCs in the (n-1)-level zones 

and one UnC in the (n-2)-level zone as in Fig. 2a. The point is that 

1n =0, 2n =0 is inside parallelogram A. Parallelogram B 

corresponds to one UnC in the (n-1)-level zone and one UnC in 

the (n-2)-level zone as in Fig. 2b. Parallelogram C corresponds to 

three UnCs in the (n-1)-level zone and one UnC in the (n-2)-level 

zone as in Fig. 2c. Parallelogram D corresponds to four UnCs 

in the (n-1)-level zone and two UnCs in the (n-2)-level zone. 

It is important that, to estimate the deviations of two bits, it is 

necessary to have the information about the “unused” 

combinations in two correspondent UnC zones.  

To calculate the deviation values, it is necessary to define the 

parallelogram center in coordinates 1n , and 2n . For example, 

in Fig. 3, the first step is to calculate 
avr

n 2  by means of averaging 

2n , received from (14) and (15): 
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The next step is to substitute 
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n 2  into (17) and (18), and 

calculate )( 2
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nn   . The last step is to 

average the received values: 
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Based on (22–23), the values of 
avr

n 2  and 
avr

n 1  for regions 

A, B, C and D in Fig. 4 shown in Table 2. 

Table 2. Estimated values of deviations of two MSB for for radix 1.8 and n = 5 

Region A B C D 

avr

n 2
 

-0.05 -0.05 -0.05 -0.20 

avr

n 1
 

-0.03 0.05 -0.12 -0.27 

5. Conclusion 

The article shows the opportunity to analytically identifiy 

the “unused” combinations in the transfer function of a redundant 

ADC. The simple way to calculate the list of “unused 

combinations” allows the bit error notification and bit deviation 

to be estimated for successive-approximation ADCs during the 

main conversion without using external units and procedures. 

The relationships between the different zones of “unused” 

combinations allow the time and computing resources 

to implement this method to be significantly reduced. 
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