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Abstract. A variety of clustering validation indices (CVIs) are aimed at validating the results of clustering analysis and determining which clustering 

algorithm performs best. Different validation indices may be appropriate for different clustering algorithms or partition dissimilarity measures; however, 
the best suitable index to use in practice remains unknown. A single CVI is generally unable to handle the wide variability and scalability of the data and 

cope successfully with all the contexts. Therefore, one of the popular approaches is to use a combination of multiple CVIs and fuse their votes into the final 

decision. This work aims to analyze the majority-based decision fusion method. Thus, the experimental work consisted of designing and implementing the 
NbClust majority-based decision fusion method and then evaluating the CVIs performance with different clustering algorithms and dissimilarity measures 

to discover the best validation configuration. Moreover, the authors proposed to enhance the standard majority-based decision fusion method with 

straightforward rules for the maximum efficiency of the validation procedure. The result showed that the designed enhanced method with an invasive 
validation configuration could cope with almost all data sets (99%) with different experimental factors (density, dimensionality, number of clusters, etc.). 
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KROK W KIERUNKU METODY FUZJI DECYZJI OPARTEJ NA WIĘKSZOŚCI 

DLA WALIDACJI WYNIKÓW KLASTERYZACJI 

Streszczenie. Różnorodne indeksy walidacji klasteryzacji (CVI) mają na celu walidację wyników analizy skupień i określenie, który algorytm klasteryzacji 
działa najlepiej. Różne indeksy walidacji mogą być odpowiednie dla różnych algorytmów klasteryzacji lub miar niepodobieństwa podziału; jednak 

najlepszy walidacyjny indeks do zastosowania w praktyce pozostaje nieznany. Pojedynczy CVI na ogół nie jest w stanie poradzić sobie z dużą zmiennością 

i skalowalnością danych oraz z powodzeniem poradzić sobie we wszystkich kontekstach. Dlatego jednym z popularnych podejść jest użycie kombinacji 
wielu CVIs i połączenie ich głosów w ostateczną decyzję. Celem tej pracy jest analiza metody fuzji decyzji opartej na większości. W związku z tym prace 

eksperymentalne polegały na zaprojektowaniu i wdrożeniu metody NbClust fuzji decyzji opartej na większości, a następnie ocenianie wydajności CVIs za 

pomocą różnych algorytmów klasteryzacji i miar niepodobieństwa w celu odkrycia najlepszej konfiguracji walidacji. Ponadto autor zaproponował 
rozszerzenie standardowej metody fuzji decyzji oparta na większości o proste reguły dla maksymalnej efektywności procedury walidacji. Wynik pokazał, że 

zaprojektowana ulepszona metoda z inwazyjną konfiguracją walidacji może poradzić sobie z prawie wszystkimi zbiorami danych (99%) z różnymi 
eksperymentalnymi parametrami (gęstość, wymiarowość, liczba klastrów itp.). 

Słowa kluczowe: klasteryzacja, indeks walidacji klasteryzacji, metoda fuzji decyzji 

Introduction 

Clustering is a process of grouping a set of data objects into 

multiple groups or clusters so that objects within a cluster have a 

high natural association among themselves while remaining 

relatively distinct from each other [3]. In general, the essence of 

cluster analysis assumes that little or nothing is known about the 

grouping structure which underlies the data set. The operational 

objective, in this case, is to discover the grouping data structure 

which is frequently described as a problem of finding “natural 

groups”. 

Many methods for cluster analysis have been developed in 

recent years and many of these methods have shortcomings and 

limitations in their practical use. It is difficult to provide a clear 

categorization of clustering methods because these categories may 

overlap so that a method may have features from several 

categories. Nevertheless, the major fundamental clustering 

methods can be classified into the following categories [9]: 

hierarchical methods formed [27, 47, 60], partitioning methods 

[15, 56, 62], density-based methods [10, 34], graph-based methods 

[1, 67], and grid-based methods [14, 17].  

Different clustering algorithms usually lead to different 

partitions of data; even for the same algorithm, the selection of 

different input parameters may greatly affect the clustering results. 

Thus, effective evaluation standards and criteria are critically 

important to give the researcher confidence regarding the 

clustering results. The procedure of evaluating the correctness of 

clustering results is called cluster validation [32] and for a long 

time, it has been recognized as one of the vital problems essential 

to the success of data clustering. 

It is usual to classify the cluster validation techniques under 

two groups — internal and external [35, 53]. External validation 

indices use external information not presented in the data to 

estimate the extent to which the clustering structure discovered by 

a clustering algorithm matches a certain external structure. On the 

other hand, internal indices evaluate the correctness of the 

clustering structure without reference to external information. 

Both external and internal validation indices are crucial for many 

application scenarios. However, there are still scenarios where 

clustering validation indices have limitations in estimating the 

correctness of clustering results. Examples include the case when 

external criteria are not available and internal indices are not 

robust enough. Moreover, despite the vast amount of expert 

endeavors spent on this issue, there is no consistent and conclusive 

solution to cluster validation. The multitude of different validation 

approaches creates an added difficulty, since results obtained 

using different methods cannot be compared in the same 

validation framework. Also, the relationship between different 

validation indices is not clear and has not been fully established. 

A variety of indices aimed at validating the results of 

clustering analysis and determining which clustering algorithm 

performs best. However, the choice of the best or the most 

appropriate clustering validation index is strikingly similar to the 

dilemma of comparing and selecting the best classifiers in pattern 

recognition, where the no free lunch theorem rules that there is no 

universally best classifier [44]. Moreover, given the fact that 

different validation indices may be appropriate for different 

clustering algorithms or partition dissimilarity measures, the best 

suitable index to use in practice remains unknown. In the recent 

work by Gurrutxaga et al. [33], the authors accepted that there is 

no single way of establishing the quality of a partition by selecting 

the optimal validation index which would be more robust than the 

rest in all contexts and under different conditions. Therefore, Yera 

et al. [69] suggest using decision fusion validation strategies to 

obtain a more stable behavior which would make it possible for 

the user to avoid having to choose a different validation index for 

each particular environment.  

In this work, the authors drew inspiration from the works of 

Arbelaitz et al. [2], Gurrutxaga et al. [33], Yera et al. [69], and the 

decision fusion method developed by Charrad et al. [16]. Since 

Charrad et al. [16] did not substantiate the use of a particular data, 

clustering algorithm, and a dissimilarity measure for the majority-

based decision fusion voting procedure, the authors provide a 

comparative study of these factors. In the first part of the article, 
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the authors propose to analyze Charrad’s majority-based decision 

fusion method (MBDFM) using a non-invasive configuration. A 

non-invasive configuration relies on selecting the best MBDFM 

clustering algorithm and dissimilarity measure that works 

correctly in every experimental environment. Thereby, the authors 

try to achieve the best possible results for Charrad’s MBDFM 

without changing the internal validation algorithm, but only its 

input validation parameters. 

In the second part of this work, the authors propose to use an 

invasive configuration of Charrad’s MBDFM. The authors 

hypothesize that the non-invasive configuration of MBDFM can 

be better than the default configuration of MBDFM (k-means 

algorithm and Euclidean distance), however, the authors suspect 

that this may not be enough to achieve the task, that is the 

revealing of the largest number of “true” clusters in the 

experimental setup. What if the non-invasive configuration of 

MBDFM even with the best clustering algorithm and dissimilarity 

measure does not provide the expected satisfactory results? The 

underlying idea of an invasive configuration is to change the 

MBDFM by interfering and modifying the internal Charrad’s 

validation algorithm. Finally, the authors will show the difference 

between the MBDFM voting approaches with default, non-

invasive and invasive configurations. 

According to Arbelaitz et al. [2], there is no standard 

terminology and formalization for clustering validity indices; 

therefore, in this article, the abbreviation of CVI will be used for 

Cluster Validity Index. The next section discusses other works 

related to CVI comparison, in particular the examples of decision 

fusion methods found in the literature. 

Since testing for revealing the data structure is the main 

objective of this article, the problem of choosing between the 

attribute space and the problem of discovering the optimal number 

of clusters will not be considered. 

1. Related works 

Most of the works that compare CVIs use the same approach: 

a set of CVIs is used to estimate the number of clusters in a set 

partitioned by several algorithms. Despite this widely used 

approach, most of the works are not comparable since they differ 

with respect to the compared CVIs, used data sets, or analysis 

results.  

The paper published by Milligan and Cooper [52] compared 

30 CVIs. The experiments were conducted using hierarchical 

clustering algorithms. They used 108 synthetic data sets with a 

varying number of non-overlapped clusters (2, 3, 4, or 5), 

dimensionality (4, 6, or 8), and cluster sizes. The same tabular 

format was used by Dubes [23]. Bezdek et al. [7] published a 

paper comparing 23 CVIs based on 3 runs of the EM algorithm 

and 12 synthetic data sets. Another study that compared 15 CVIs 

was performed by Dimitriadou et al. [22], based on 100 runs of the 

k-means algorithm for 162 data sets with binary attributes. 

Recently, Brun et al. [12] have compared 8 CVIs using several 

clustering algorithms: k-means, fuzzy c-means, SOM, single-

linkage, complete-linkage, and EM, using 600 synthetic data sets 

with varying dimensionality (2 or 10), cluster shape, and number 

of clusters (2 or 4). Shim et al. [64] followed the Milligan and 

Cooper experiment but added certain CVIs or extended the study. 

Other CVI comparisons can be found where new CVIs are 

proposed; however, the experiments are usually limited to similar 

data sets comparing 5 or 10 CVIs [18, 37, 71]. The exception is a 

work by Arbelaitz et al. [2] based on the same Milligan and 

Cooper CVI framework, but with an extensive set of 

configurations (dissimilarity measure, data density, noise, 

overlapping clusters, etc.). 

Since there is no universal CVI to always make a correct 

decision, many authors [44, 69] agreed to use multi-criteria 

solutions to reach the best and adequate results. Multi-criteria 

solutions assume the adoption of several CVIs to achieve greater 

certainty and correctness of clustering results. Bezdek and Pal [8] 

suggested a combined decision-based fusion strategy for all CVIs 

used in a validation process. This research includes the following 

decision-making methods and their rules: the mean, median, and 

mode rules. According to those rules, the final validation decision 

is made by the mean, median, or mode of CVIs that participated in 

the voting procedure. Later, the authors [44] showed a comparison 

of different fusion techniques of multiple CVIs. Moreover, 

Kryszczuk and Hurley [44] pointed that the best-performing 

scheme was the mean-rule decision fusion scheme. The recent 

work by Yera et al. [69] also discusses the use of decision fusion 

strategies for cluster validation purposes. The authors suggested 

two types of voting strategies: Global Voting and Selective 

Voting. Global Voting is a simple vote that fuses the decisions of 

all CVIs presented in the study. Selective Voting uses a limited 

group of CVIs for decision fusion. Moreover, three approaches 

were developed, each limiting the group of voting CVIs based on 

the following criteria: the global performance of the CVIs, their 

factor dependence success rate, and the impact the CVIs have on 

the results. The Yera et al. [69] decision fusion techniques 

presented above have certain critical disadvantages. The Global 

Voting approach was not even used in the comparative study due 

to the weakness of the archived results. This type of decision 

fusion technique is similar to the decision-making methods 

developed by Kryszczuk and Hurley. The Selective Voting 

technique with the global performance of CVIs did not meet the 

authors’ expectations either, since the best vote could not beat the 

success rate of the best individual CVI. The Selective Voting 

technique with the factor dependence success rate of the CVIs beat 

the overall success rate of the best individual CVI. However, the 

improvement was slightly more robust than the best CVI involved 

in the voting procedure. Furthermore, the work uses a limited 

number of experimental factors (three clusters, at least 100 

numbers of objects in each cluster, three dimensions, etc.) which 

can significantly affect the presented decision fusion approaches. 

Finally, these decision fusion strategies require weighting CVIs 

votes, which reduces the precision of estimated CVIs decisions. 

Charrad et al. [16] suggested that other decision-making 

fusion methods should be used which a group of CVIs may use to 

seek a satisfying solution; namely, the authority rule and the 

majority rule. The authority rule refers to groups that have a 

leader, i.e. the main CVI which has the authority to make the 

ultimate decision for the entire group. Although the method can 

generate a final decision quickly, it does not encourage the 

maximization of the strengths of individual CVIs in the group 

[46]. The majority rule depends on an individual decision of each 

CVI, where the final decision is made by the majority of the total 

CVIs votes. This method delivers fast solutions and follows a 

clear rule of using independent CVIs in the validation process.  

In light of the decision fusion techniques presented above, 

taking all of the above multi-criteria methods into consideration, 

the MBDFM has been chosen as a major scheme for further 

analysis and improvement. 

This section may be divided by subheadings. It should provide 

a concise and precise description of the experimental results, their 

interpretation, as well as the experimental conclusions that can be 

drawn.  

2. Tools for multi-criteria decision fusion 

clustering validation 

A significant amount of software is available for data 

clustering validation purposes. Interestingly, most of the 

sophisticated software on clustering validation is open-source 

software, which is freely available at different Web sites. On the 

other hand, most of the commercial software comprises 

implementations of simpler and more classical validation 

solutions. This is because open-source software is often in the 

form of research prototypes, created by researchers, which reflect 

more recent advances in the clustering validation field. The 

clustering validation procedure has been implemented as packages 

in many software applications, such as SAS, RapidMiner, 

MATLAB, and R. However, only the R programming environment 

offers a large number of unique CVIs and different validation 
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approaches. Moreover, in addition to the object-oriented nature of 

the language, implementing the CVIs within the R statistical 

programming framework provides the additional advantage in that 

it can interface with numerous clustering algorithms in existing R 

packages, and accommodate new algorithms as they are created 

and coded into R libraries.  
There are several R packages that perform clustering 

validation and are available from https://www.r-project.org/. 

Indeed, Milligan and Cooper [52] examined thirty CVIs, with 

simulated artificial data, where the number of clusters was known 

beforehand. Eleven CVIs among them are available in the R cclust 

package [21], eight CVIs in the clusterSim package [68], two 

CVIs in clv [54]. The clValid package [11] includes 3 internal 

CVIs, 4 stability CVIs (special versions of internal indices), and 2 

biological CVIs. The cl_validity() function in the clue package 

[42] performs validation for both partitioning and hierarchical 

methods using 3 CVIs, and the fcclusterIndex() function in 

package e1071 [50] has built-in 7 fuzzy CVIs. The cluster.stats() 

function in the fpc package [41] uses 8 CVIs for clustering 

validation purposes. The package NbClust [16] gathered the 26 

CVIs, several clustering algorithms with corresponding 

dissimilarity measures together to provide an exhaustive list of 

CVIs. Currently, NbClust is only one package that offers such a 

variety of CVIs, however, some indices examined in the Milligan 

and Cooper study were not implemented due to a lack of detailed 

CVI’s explanation. Moreover, unlike the rest packages, the 

NbClust is quite flexible and offers the possibility of a fairly broad 

change of input parameters for further clustering validation 

purposes. Therefore, Charad’s NbClust is chosen as the basic 

MBDFM for further modifications. For clarification purposes, 

instead of Charad’s NbClust MBDFM the abbreviation MBDFM 

will be used in the remainder of this article. 

3. Majority-based decision fusion method notation 

This note studies a method of the CVI’s decision formation 

and aims to explain the stylized fact that the support for one out of 

k clusters at stake often shows a high degree of CVI’s 

heterogeneity and persistent cross-sectional variance that is only 

partly explained in clustering conditions. An intuitive explanation 

of this stylized fact is that each CVI may show a tendency to 

conform to the vote of what it perceives to be the best opinion. As 

postulated before that the behavior of each CVI in formulating the 

overall decision could be described by the majority rule. Although 

the authors do not model the voting process of CVI’s in detail, but 

only show that the reduced forms are consistent with an explicit 

clustering validation foundation. The clustering validation theory 

does not explain how each CVI votes to conform to the majority. 

Moreover, the theory does not describe the growing or reducing 

CVI’s tendency towards consensus in the decision scheme. 

Therefore, the first objective is to formulate the simple model of 

the majority-based decision fusion rule. 

The CVIs decision formation process is defined as follows. 

Suppose the clustering algorithm run over the data set 𝕏 with a set 

of m different values for the 𝑘 parameter 𝐾 = {𝑘1 , 𝑘2 … , 𝑘𝑚}, 

and let 𝒫 = {𝑃1, 𝑃2, … , 𝑃𝑚} be the k partitions. Suppose 

the clustering algorithm reveals the 𝑘𝑒𝑠𝑡 to be the best 

number of clusters with the corresponding 𝑃𝑒𝑠𝑡 partition. 

The true number of clusters 𝑘𝑡𝑟𝑢𝑒 is known beforehand. Let 

CVI= {𝐶𝑉𝐼1, 𝐶𝑉𝐼2, … , 𝐶𝑉𝐼𝑛}  be a set of 𝑛 clustering validation 

indices 𝐶𝑉𝐼𝑖, where 𝑖 = 1 … 𝑛 which are to be analyzed. Each 

𝐶𝑉𝐼𝑖 return the value of 𝐶𝑉𝐼𝑖(𝑃) for the proposed partition over all 

the partition 𝒫. Moreover, the returned 𝐶𝑉𝐼𝑖(𝑃) value indicates 

the specific 𝑘𝑗 used as an input parameter for the clustering 

algorithm. Each 𝐶𝑉𝐼𝑖(𝑃) value is counted as a vote for a particular 

𝑘𝑗. Thereafter, the method counts the CVIs votes for each 𝑘𝑗 and 

forms the CVI’s decision groups DEC = {𝐷𝑒𝑐1, 𝐷𝑒𝑐2, … , 𝐷𝑒𝑐𝑘}, 

where 𝐷𝑒𝑐𝑗 is a sum of CVI’s votes for particular 𝑘𝑗. From among 

the CVI’s decision groups is formed the biggest group or the 

majority 𝑀𝑎𝑗
𝑒𝑠𝑡

= 𝑚𝑎𝑥𝐷𝑒𝑐∈ℕ{𝐷𝑒𝑐1, 𝐷𝑒𝑐2, … , 𝐷𝑒𝑐𝑘} that should 

identify the “true” estimated number of clusters 𝑘𝑗 =  𝑘𝑒𝑠𝑡. 

However, only if the 𝑀𝑎𝑗
𝑒𝑠𝑡

 identifies the 𝑘𝑒𝑠𝑡 = 𝑘𝑡𝑟𝑢𝑒 clusters, 

the majority justifies that the estimated number of clusters is the 

“true” one, and hence 𝑀𝑎𝑗
𝑒𝑠𝑡

= 𝑀𝑎𝑗
𝑡𝑟𝑢𝑒

. 

4. Experimental setup 

Before analyzing and modifying the majority-based decision 

fusion method the experimental setup should be outlined. In this 

section, the authors describs the experiment setup including 24 

CVIs: Calinski-Harabasz index [13], J-index [24], pseudo 

T-squared [25], C-index [43], F-ratio [6], CCC criterion [61], 

Ptbiserial index [51], DB index [19], Frey index [30], Harigan 

index [40], Ratkowsky and Lance index [57], Scott and Symons 

index [63], Marriot index [48], Ball and Hall index [4], TrCovW 

and TraceW indices [52], Friedman and Rubin indices [31], 

McClain and Rao index [49], KL index [45], Silhouette index [59], 

Dunn index [26], Halkidi indices [38, 39]. Since the CVIs are 

compared in a wide variety of configurations, an experiment with 

several factors has been designed.  

The authors’ proposal follows, to a certain extent, 

the traditional problem of estimating the number of clusters 

in a data set, which was described well in Arbelaitz et al. [2]: 

to run a clustering algorithm over a data set with a set of different 

values for the k input parameter, to obtain a set of different 

partitions, and to evaluate each particular CVI for all obtained 

partitions. The detected number of clusters in the target partition 

yielding satisfactory results is considered a decision of the CVI for 

that particular data set. However, the decision is considered 

successful only if it justifies that the estimated number of clusters 

is “true”.  

Eight agglomerative hierarchical clustering algorithms were 

used to compute partitions from the data sets: Ward, single-

linkage, complete-linkage, average-linkage, mcquitty, median, 

and centroid. The k-means, one of the most commonly adopted 

partitioning algorithms, has also been used. These clustering 

algorithms are well known; moreover, it is easy to obtain different 

partitions by modifying the input parameter that controls 

the number of clusters of an output partition. Each clustering 

algorithm will be used to compute a set of partitions with 

the number of clusters ranging from 2 to 10. From the perspective 

of dissimilarity measures, the comparison analysis will also 

be conducted. Five dissimilarity measures for each particular 

clustering algorithm will also be used: Euclidean, maximum, 

Manhattan, Canberra, and Minkowski distances. 

To evaluate the performance of the 24 CVIs, 90 artificially 

generated data sets will be created. Most of the synthetic 

numerical data sets will be generated using the mixture models 

of the Gaussian distribution but with different parameters. 

Furthermore, 10 benchmark data sets (the true number of clusters 

is known a priori from the literature) drawn from the literature 

sources as well as from available UCI and Kaggle repositories will 

also be analyzed (see Table 2). The synthetic data sets were 

created to cover a large number of factor combinations such as: 

the number of clusters (𝐾), the minimum (𝑛
𝑚𝑖𝑛

) and maximum 

(𝑛
𝑚𝑎𝑥

) number of objects in a data set, cluster density (𝑑𝑒𝑛), 

and dimensionality (𝑑𝑖𝑚). The values of the parameters used to 

create the synthetic data sets are shown in Table 1. 

Table 1. Values of the parameters used for generating the synthetic data sets 

Parameter Value 

𝑛𝑚𝑖𝑛 100 

𝑛𝑚𝑎𝑥 6000 

𝐾 2…10 

𝑑𝑖𝑚 2…4 

𝑑𝑒𝑛 1…4 
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Since 90 synthetic data sets will be created, 4050 

configurations have been obtained by multiplying this value by 5 

partition dissimilarity measures and 9 clustering algorithms. In the 

case of benchmark data sets, the experiment is based on 450 

configurations — 10 data sets, 9 clustering algorithms, and 5 

partition dissimilarity measures. Considering the synthetic and 

benchmark data sets and taking into account the different number 

of partitions computed for each data set, each of the 24 CVIs 

should be computed for 40500 partitions. 

 

Data sets 

In synthetic numerical data sets, the clusters are non-

overlapping represented as multivariate finite mixtures. The 

synthetic data sets were created without introducing overlapping, 

noise, or missing data objects. Imprecise and noisy data with 

overlapping clusters could be distorted as compared to human 

intuition [55]; therefore, noise and overlap level factors are 

excluded from this experimental setup. 

Table 2. Characteristics of the benchmark data sets 

Data set Number of clusters 

Steinley [65] 5 

G2-set [29] 2 

Unbalance 1 [58] 3 

Unbalance 2 [58] 5 

Square1 [36] 4 

Triangle1 [36] 4 

AD_5_2 [5] 5 

AD_10_2 [5] 10 

Haberman-survival (Kaggle) 4 

Iris (UCI) 3 

 

The “true” number of clusters in synthetic data sets ranges 

from 2 to 10 depending on the set, with cluster sizes from 50 to 

3000 data objects per cluster. Furthermore, 90 synthetic data sets 

were generated with an uneven number of clusters per data set, 

namely: 4 data sets with 2 clusters, 8 data sets with 3 clusters, 22 

data sets with 4 clusters, 20 data sets with 5 clusters, 10 data sets 

with 6 and 7 clusters, 6 data sets with 8 and 9 clusters, 4 data sets 

with 10 clusters. Afterward, about half of them (47%), which is 42 

data sets, were generated with 4 or 5 clusters. 

5. Common majority-based decision fusion 

method dubious scenarios 

Passing through the testing phase repeatedly, there is not 

always a clear distinguishing line between all the majority 

situations. Taking into consideration the experimental results, the 

most common 4 cases of MBDFM controversial situations are 

presented. All scenarios were obtained by the default clustering 

validation configuration, i.e. k-means clustering and Euclidean 

distance. 

Scenario 1: The decision is made by the relative CVI’s 

majority, and the nearest alternative is 50% votes less than half of 

the majority one. The relative majority points to the “true” number 

of clusters. The example of Scenario 1 and the accompanying data 

set presented to enhance reader understanding of CVIs voting is 

shown in Figure 1a. 

Scenario 2a: Situation when the decision is taken by the CVI’s 

relative majority, and the nearest alternative is 50% votes more 

than half of the majority one. The relative majority points to the 

“true” number of clusters. The example of Scenario 2a is shown in 

Figure 1b. This scenario requires additional MBDFM verification 

for the final statement. In a validation configuration presented in 

Figure 1b, an almost equal number of CVIs voted for the 3 and 6 

clusters. This scenario shows the controversial situation with no 

clear-cut majority. However, following the hard logic, the relative 

CVI’s majority points to the 6 clusters to be the “true” ones. 

Scenario 2b: The scenario where the relative CVI’s majority 

points to the incorrect number of clusters. The nearest alternative 

group of CVIs in turn shows the „true” number of clusters. The 

example of the Scenario 2b case is shown in Figure 1c. The most 

critical of all the previous scenarios requires complete and precise 

MBDFM verification. Due to the limited facility of the classifier 

(Euclidean distance) and the crisp nature of the k-means 

algorithm, the results are completely misleading. This scenario 

shows the majority of CVIs voted for 3 clusters, and the nearest 

alternative voted for 4 numbers of clusters to be the “true” ones. 

The MBDFM is data-dependent since different CVIs behave 

differently on different data sets in various environments. The 

majority evaluation works on the fundamental assumption that the 

clustering algorithm works correctly. If this assumption does not 

hold, there could be a “fake” majority that identifies a false “true” 

number of clusters. Moreover, the lack of knowledge of the “true” 

number of clusters has a detrimental effect on clustering quality. 

Clustering in real-life applications is executed in a black-box 

fashion. The analyst is usually unable to correctly determine the 

“true” number of clusters beforehand. Therefore, Scenario 2 has 

been divided into two sub-cases. 

Scenario 3: The data sets for which no majority prevails. In 

situations when no majority exists and two equal groups of CVIs 

voted for a different number of clusters to be the “true” ones, 

however, only one group of CVIs is correct and the other is 

misleading. The example of Scenario 3 is shown in Figure 1d. The 

presented scenario is a natural CVIs bias in favor of the status quo. 

However, according to the MBDFM, the “true” number of clusters 

among two equal groups of CVIs, is the one that is the first in the 

list. In this case, the function decided that the majority of CVIs 

voted for 2 as the best number of clusters despite the same number 

of CVIs cast the vote for 4 clusters. 

 

Fig. 1. Two-dimensional plot of synthetic data sets used in the experiment broken 

down by the default MBDFM configuration: (a) corresponds to the Scenario 1 

situation with nine globular-form “true” clusters. (b) corresponds to the Scenario 2a 

situation with six globular-form “true” clusters. (c) corresponds to the Scenario 2b 

situation with four globular-form “true” clusters, however, according to the default 

MBDFM configuration, the revealed number of clusters is equal to three. (d) 

corresponds to the Scenario 3 situation with four globular and elongate form “true” 

clusters, however, according to the default MBDFM configuration the revealed 

number of clusters is equal to two 
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Summarizing all the above scenarios and CVI’s results, doubts 

are expressed whether the MBDFM with default configuration is 

feasible in all clustering situations. Moreover, even a clear-cut 

data grouping structure (compact and far from other clusters) can 

easily deceive the 24 CVIs. Interestingly, there are less than 15% 

(15 data sets) of all the cases in the experimental setup, where the 

absolute majority indicates the “true” number of clusters. Thus, 

the cause must be sought in the NbClust majority rule, in the 

expediency, the classifier, and clustering algorithm, but do not 

question the quality and the correctness of each of the 24 CVIs. 

The MBDFM with the default validation configuration should 

maintain the basis for further clustering improvement. Thus, a 

non-invasive configuration of MBDFM is proposed to replace the 

default configuration, for all controversial scenarios. 

6. Non-invasive validation configuration 

6.1. Clustering method 

Recent research focuses on clustering analysis to understand 

the strengths and weaknesses of various clustering algorithms in 

terms of data factors. As has been mentioned before, certain data 

characteristics may strongly affect clustering analysis, including 

high dimensionality, noise, types of attributes, and scales [66]. 

That being said, the authors have studied the clustering validation 

procedure by answering the question: How to choose the best 

clustering algorithm appropriate for the MBDFM? Considering 

that there are numerous clustering algorithms proposed in the 

literature, especially after an algorithm boom in the data mining 

area, it is arguable which clustering algorithm is the most suitable 

for the MBDFM. 

Fig. 2 shows the percentage of correct guesses achieved by all 

24 CVIs, which are sorted by the success score. Notice that this 

percentage refers to 194400 configurations: 100 synthetic and 

benchmark data sets, 9 clustering algorithms, 9 partitions, and 24 

CVIs. All presented clustering algorithms are examined with the 

Euclidean dissimilarity measure as a distance metric. Correct 

guesses are considered as CVI votes that identify the “true” 

number of clusters. In brief, the Boolean value for each CVI is 

obtained; a correct CVI guess corresponds to 1 and an invalid one 

to 0. The sum of correct guesses forms the majority. Furthermore, 

only scenarios 1 and 2a are in favor of proper situations, and 

scenarios 2b and 3 are considered to be invalid. Indeed, Scenario 

2a is initially classified along with Scenario 1 as a part of the 

group that forms the overall success score. Moreover, after the 

comparative analysis, all Scenario 1 data sets identify the true 

number of clusters correctly, and therefore, the MBDFM does not 

require any additional adjustment.  

 

Fig. 2. Overall success score for data sets broken down by a clustering algorithm 

Although we can find a clear pattern, it seems that the overall 

comparative results are severely affected by the used clustering 

algorithm. Assuming that all the potential candidates from 

Scenario 2a become a fully-fledged majority that point to the 

“true” number of clusters, most CVIs obtain their worst results for 

the k-means algorithm, i.e. 40% (Scenario 1 – 20% + Scenario 2a 

–20%), while Ward shows the highest success score of 80% 

(Scenario 1 – 51% + Scenario 2a – 29%). If we focus on k-means 

and Ward only, this factor shows drastically different results and 

an accuracy difference of 40%. On the other hand, the result for 

the centroid algorithm of 65% (Scenario 1 – 36% + Scenario 2a –

29%), the complete-linkage algorithm of 62% (Scenario 1 – 40% 

+ Scenario 2a – 22%), and the mcquitty algorithm of 60% 

(Scenario 1 – 36% + Scenario 2a – 24%) reduce the differences 

between the CVIs decisions and balance the overall success score. 

Table 3. Overall success-failure score (%) of the majority-based decision fusion 

method for all data sets with the Euclidean dissimilarity measure broken down by 

clustering algorithms 

 Scenario 1 Scenario 2a Scenario 2b Scenario 3 

Ward 51% 29% 9% 11% 

Single 29% 24% 47% 0% 

Complete 40% 22% 31% 7% 

Average 40% 33% 22% 5% 

Mcquitty 36% 24% 36% 4% 

Median 31% 20% 40% 9% 

Centroid 36% 29% 26% 9% 

k-means 20% 20% 49% 11% 

 

The situation becomes more interesting and clearer after the 

analysis of all scenarios (see Table 3). According to the previous 

definition of success, failure is defined as an incorrect decision of 

the CVI. Thus, the failure score is a total sum of CVI scores that 

form Scenario 3 situations, or wrong and “fake” majority 

(Scenario 2b) that differs from the “true” number of clusters. With 

respect to the failure score, Scenario 3 with the Ward clustering 

algorithm has reached (11%); the next are the median and centroid 

clustering algorithms with (9%) each and the last is the single-

linkage clustering algorithm (0%). The results of Scenario 2b are 

the most valuable and controversial at the same time. As can be 

seen, k-means shows the highest failure score (49%) and Ward – 

the lowest (9%) one. Summing up, according to the presented 

results, the Ward clustering algorithm is the only obvious rational 

choice for further validation research. 

6.2. Dissimilarity measure 

Using an explicit dissimilarity measure to guide the validation 

process is a very popular approach, adopted by many widely-used 

clustering algorithms. Unfortunately, there are no definitive rules 

on which measure to choose for a particular problem. 

Dissimilarity measures should be considered in the context of the 

study where they are to be used, including the nature of data and 

the type of analysis. However, certain general guidelines do exist, 

i.e. the nature of data should strongly influence the choice of the 

dissimilarity measure; the choice of dissimilarity measure should 

depend on the scale of the attributes; the clustering algorithm 

should influence the choice of the dissimilarity measure. It could 

be considered a fatal defect in the validation procedure if too 

many dissimilarity measures have to be taken into consideration; 

however, it might be felt that a wide variety of possible measure 

choices is an advantage making the validation procedure usefully 

flexible. 

It is hard to choose the most appropriate dissimilarity measure 

for a given clustering task without a preliminary experiment. 

Various dissimilarity measures presented in this article can be 

considered for use with all the presented clustering algorithms that 

are flexible enough not to be tied to a particular measure. It makes 

it possible to choose carefully based on the available domain 

knowledge and to verify the effects of several candidate measures 

experimentally.  

Instead, a comparative study of 5 dissimilarity measures has to 

be conducted in the clustering verification process. The analysis 

will be focused on an appropriate choice of a dissimilarity 

measure in Ward’s algorithm since the rest of the clustering 

algorithms have previously been rejected. 
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As in the case of selecting the clustering algorithm, scenarios 

1 and 2a are the proper situations and scenarios 2b and 3 are 

considered to be incorrect. Figure 3 shows that the selected 

partition dissimilarity measure moderately affects the behavior of 

the CVIs, not as extremely as in the case of the clustering 

algorithm. Two of the presented dissimilarity measures, i.e. 

Minkowski and Euclidean, follow the overall pattern with 80% of 

correct guesses. The maximum dissimilarity measure shows 

slightly better results with an 81% success score. Furthermore, the 

Canberra dissimilarity measure yields extremely good results – 

85% of correct guesses. 

 

Fig. 3. The overall score for data sets broken down by a dissimilarity measure 

In terms of the failure score, the results show that the 

difficulty imposed by the bias situations (Scenario 3) could be 

seen to a relatively small extent (9% – 11%) in all dissimilarity 

measures (see Table 4). The Canberra dissimilarity measure 

notifies the 5% of the detected Scenario 3 cases. Considering the 

contribution of Scenario 2b situations to the overall results, the 

Euclidean, maximum, and Minkowski dissimilarity measures 

should be mentioned as ones with the lowest (9%) failure scores. 

Mostly, false decisions were made using the Manhattan 

dissimilarity measure (13%). The Canberra dissimilarity measure 

shows slightly better results (10%) than Manhattan one. 

Table 4. Overall success-failure score (%) of the majority-based decision fusion 

method for all data sets with the Ward clustering algorithm broken down by a 

dissimilarity measure 

 Scenario 1 Scenario 2a Scenario 2b Scenario 3 

Canberra 49% 36% 10% 5% 

Maximum 51% 30% 9% 10% 

Minkowski 49% 31% 9% 11% 

Euclidean 51% 29% 9% 11% 

Manhattan 47% 31% 13% 9% 

 

In conclusion, the experiments show sufficiently moderate 

evidence for choosing a dissimilarity measure that is significantly 

better than the rest. However, the Ward clustering algorithm with 

the Canberra dissimilarity measure is recommended as the best for 

non-invasive MBDFM configuration settings. 

7. Invasive validation configuration 

Despite all attempts to improve MBDFM using the non-

invasive configuration by way of altering the dissimilarity 

measure and the clustering algorithm, the best overall success 

score remains at the 85% with the Ward clustering algorithm in 

conjunction with the Canberra dissimilarity measure. Moreover, 

attempts to improve the result, the validation of the CVIs number 

were also carried out. Unfortunately, adding 2 more CVIs to 26 or 

subtracting 2 CVIs to obtain 22 did not change the overall success 

score. Of course, if the number is significantly changed from 24 to 

10 CVIs, the result will also change. However, then another 

problem appears, namely the expediency and application 

correctness of each CVI individually. The smaller the number of 

CVIs the greater responsibility and user trust lies with each of 

them. In this context, the first step is to justify and select the best 

group of CVIs, and only then hold the voting procedure. The 

disadvantage of this approach is the very fact of CVIs division 

into best and worst. Furthermore, changing the input data can 

dramatically turn the situation and the best ones may become 

worst and vice versa. Taking all of the above into consideration, 

the main way to improve the results is to modify the MBDFM 

using the invasive configuration. 

The non-invasive MBDFM relies on selecting the best 

clustering algorithm and dissimilarity measure to ensure optimal 

validation results. These two input MBDFM parameters could be 

tuned by the researcher. Moreover, the researcher could tune the 

third parameter – cluster range. The “true” number of clusters 

𝑘𝑡𝑟𝑢𝑒 are located across the range 𝐾 = {2, … ,10}. However, the 

cluster range should be changed with great caution, as ill-

considered change can lead to critical consequences. Such a 

change could eliminate the “true” number of clusters from the 

validation procedure and further the researcher, without knowing 

it, will look for the “true” number of clusters in a range of 

knowingly fake ones. All the following partitions will reveal the 

fake number of clusters, moreover, all of the CVIs will be forced 

to vote for the fake number of “true” clusters which will lead to 

erroneous MBDFM decisions. In real-world validation issues, the 

“true” number of clusters is unknown a priori and the researcher 

without knowing this fact forcibly restricts the CVI’s possible 

decisions in the frames of cluster range. Whether the CVI is good 

or its decision is far from optimal, it should cast the vote only for 

the particular number of clusters in the prescribed cluster range. 

The role of the initial cluster range is extremely high as a broad 

cluster range gives more freedom to each of CVIs in their voting, 

however, the validation procedure is becoming fuzzy. On the other 

hand, the excessive compression of cluster range gives less 

freedom of CVI’s votes cast for a particular cluster, but the 

validation procedure is becoming crisp. 

The authors found a clear pattern in cluster range modification 

which allows to safely reduce it. The cluster range remains the 

same at the beginning of the MBDFM procedure. Figure 1d 

describes the operation of MBDFM with decision groups of CVIs 

that cast votes for the particular cluster. The authors noticed, that 

none of the CVIs cast a vote for 9 and 10 clusters. None of the 24 

CVIs presented in the experimental setup even with possessed 

decision capabilities doesn’t vote for these clusters. Thereby, the 

upper bound of the cluster range could be safely reduced – 

𝐾 = {2, … ,8}. Moreover, if none of the CVIs cast votes for 

clusters in the lower bound, it allows reducing the cluster range on 

the other side. This procedure will efficiently distribute the CVI’s 

decisions across the optimized cluster range. The authors 

hypothesized, if none of the CVIs cast votes for clusters in the 

upper or lower bound of the cluster range, it is reliably confirmed 

that these clusters cannot become the candidates to be the “true” 

ones. However, it is not always possible to optimize the cluster 

range. If one of the CVIs cast one single vote for the particular 

cluster in the lower or upper bound of the cluster range, it cannot 

be taken lightly (see Figure 1b, 1c). That is, at this stage, all CVI’s 

votes are taken into account and the cluster range is reduced by 

cutting its lower and upper bounds i.e. the clusters for which none 

of the CVIs cast a vote. 

It should also be noted that only the lower and upper bound of 

the cluster range should be reduced without dividing the cluster 

range into two or more subranges. Figure 1c shows that none of 

the CVIs cast votes for the 4, 5, and 6 clusters. However, these 

clusters are located within the initial cluster range, and subtracting 

them leads to the cluster range division into 𝐾1 = {2 … 3} and 

𝐾2 = {7, … ,10} subranges. Analyzing the cluster subranges 

separately gives the researcher two or more “true” clusters where 

only one is “true” and the others – fake “true”. Moreover, Figure 

1c will show the erroneous CVI results, since the researcher will 

subtract the chance of CVIs to vote for the four clusters to be the 

“true” one. Therefore, in this stage, the initial cluster range should 

remain integral, even if none of the CVIs cast a single vote to the 

cluster located within the cluster range. The cluster range 

optimization procedure applies to the clusters without any votes 
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cast by CVIs only in the lower and upper bound of the initial 

cluster range. 

The cluster range optimization procedure is not always 

possible to conduct. Figure 1a shows that CVI’s votes are cast for 

clusters that completely cover the initial cluster range 𝐾 =
{2, … ,10}. This, in turn, does not allow to carry out optimization 

procedure in the way described above, however, gives the chance 

to consider another cluster range optimization strategy. This 

strategy is based on the CVI’s votes cast for the relative majority 

𝑀𝑎𝑗𝑒𝑠𝑡
^  and its nearest alternative 𝑀𝑎𝑗𝑒𝑠𝑡

∗ . The relative majority 

𝑀𝑎𝑗𝑒𝑠𝑡
^  estimated by the MBDFM with the non-invasive 

configuration, could point to the “true” number of clusters 

(Scenario 1, 2a) but also may indicate the fake number (Scenario 

2b). The nearest alternative 𝑀𝑎𝑗𝑒𝑠𝑡
∗  is the second-largest decision 

CVI’s group which is closest to the “true” number of clusters. If 

the first strategy optimizes the cluster range by means of cutting 

its lower and upper bound and subtracting the cluster with no 

CVI’s vote, the second one is entirely based on the CVI’s majority 

and its nearest alternative. The authors’ hypothesizes, that 𝑀𝑎𝑗𝑒𝑠𝑡
^  

and 𝑀𝑎𝑗𝑒𝑠𝑡
∗  with its corresponding 𝑘𝑒𝑠𝑡𝑗

^ and 𝑘𝑒𝑠𝑡𝑗
∗ should become 

the upper/lower bound of 𝐾. In Figure 1b in the second 

optimization step, the cluster range will become 𝐾 = {3, … ,6}, 

where the relative majority 𝑀𝑎𝑗𝑒𝑠𝑡
^  will become its upper bound 

with corresponding 𝑘𝑒𝑠𝑡5
^ = 6 and the nearest alternative 𝑀𝑎𝑗𝑒𝑠𝑡

∗  

will become its lower bound with corresponding 𝑘𝑒𝑠𝑡2
∗ = 3 

clusters. That is, at this stage, all CVI’s votes that were excluded 

from the validation procedure by means of cluster range reduction 

will forcibly cast the votes only for clusters within the new 

optimized cluster range. The authors assume that all CVI’s votes 

excluded from the initial cluster range will strengthen the final 

decision – the majority that points to the “true” number of clusters 

in the optimized cluster range. Furthermore, even if MBDFM with 

a non-invasive configuration will return the final decision of fake 

“true” number of clusters (Scenario 2b), the optimization 

procedure will help the CVI’s votes to steer their decisions in the 

direction of the “true” number of clusters. This optimization 

strategy assumes that the “true” number of clusters should be 

located within the new cluster range (with 𝑀𝑎𝑗𝑒𝑠𝑡
∗  and 𝑀𝑎𝑗𝑒𝑠𝑡

^  the 

upper/lower bound of 𝐾), and all CVI’s votes that were excluded 

from the optimized cluster range will be forcibly asked to cast 

their votes only for clusters within the new range 𝐾. 

Each CVI formulates a vote that favors one of the 9 clusters at 

stake. The dynamic process that characterizes each CVI vote 

formation is based on the idea that the CVI’s majority reveals the 

particular clusters probabilistically. The formation process of the 

CVI’s votes strongly depends on the cluster range. It is assumed 

that the optimization procedures described above could change the 

CVI’s votes in favor of the “true” number of clusters, even if 

before the optimization procedures some of CVIs could cast their 

votes for the fake number of “true” clusters.  

These optimization procedures are carefully collected and 

written in the form of the majority MBDFM rule (i), which aims at 

revealing the biggest number of “true” clusters in the experimental 

setup. Using Scenario 1 2a and 2b cases from non-invasive 

MBDFM configuration as our input data, the enhanced majority 

rule can be written as follows. 

Rule (i): 

1. Run the MBDFM with a non-invasive configuration. Let 

DEC= {𝐷𝑒𝑐1, 𝐷𝑒𝑐2, … , 𝐷𝑒𝑐𝑘} and Scenario 1, 2a, or 2b is 

considered.  

2. Reveal the number of clusters 𝑘𝑒𝑠𝑡𝑗
^ and 𝑘𝑒𝑠𝑡𝑗

∗ that corresponds 

to the relative majority 𝑀𝑎𝑗𝑒𝑠𝑡
^  and its nearest alternative 

𝑀𝑎𝑗𝑒𝑠𝑡
∗  respectively. 

3. Optimize the cluster range by means of reducing the upper and 

lower bound of 𝐾 when some of the decision groups 𝐷𝑒𝑐𝑖 do 

not reveal any number of clusters. If no majority prevails, use 

rule (ii). 

4. Repeat step (2). If MBDFM reveals the absolute majority 

𝑀𝑎𝑗𝑒𝑠𝑡
^ , assume it corresponds to the “true” number of 

clusters, then 𝑘𝑒𝑠𝑡𝑗
^ = 𝑘𝑡𝑟𝑢𝑒, otherwise, if the absolute 

majority was not achieved move to the next step. 

5. Change the cluster range, where 𝑀𝑎𝑗𝑒𝑠𝑡
^  and 𝑀𝑎𝑗𝑒𝑠𝑡

∗  and its 

corresponding 𝑘𝑒𝑠𝑡𝑗
^ and 𝑘𝑒𝑠𝑡𝑗

∗ becomes the upper/lower bound 

of 𝐾. 

6. Rep`eat step (2). If the MBDFM reveals 𝑘𝑒𝑠𝑡𝑗
^ = 𝑘𝑡𝑟𝑢𝑒, the 

estimated number of clusters is the “true” one; otherwise, if 

the 𝑘𝑒𝑠𝑡𝑗
^ ≠ 𝑘𝑡𝑟𝑢𝑒, the majority 𝑀𝑎𝑗𝑒𝑠𝑡

^  identifies the fake 

“true” number of clusters. Moreover, if no majority prevails, 

rule (i) did not give the expected results and should not be 

used in the MBDFM invasive configuration. 

 

The overall success score is fully justified and confirmed, 

since rule (i) of MBDFM with an invasive configuration applied 

to the Scenario 1, 2a, and 2b cases (49% for scenario 1, 36% for 

scenario 2a, 10% for scenario 2b) approves the 95% of correct 

guesses. All Scenario 2b controversial situations (10%) have been 

solved in favor of the “true” number of clusters. The rule (i) shows 

sufficiently strong evidence to adopt it into the MBDFM’s default 

clustering validation decision scheme to enhance the NbClust 

majority voting procedure.  

Nevertheless, there is a group (Scenario 3) of about 5% of all 

data sets that seems to show the questionable bias situations even 

under the MBDFM invasive validation configuration applied with 

the rule (i). It should be emphasized that Scenario 3 mirrors the 

situation where no majority prevails when the two biggest 

decision groups 𝐷𝑒𝑐𝑒𝑠𝑡
1 = 𝐷𝑒𝑐𝑒𝑠𝑡

2  have equal votes cast by CVIs. 

In this case, only one decision group among them specifies the 

“true” number of clusters. Scenario 3 situations require not only 

the confirmation of the relative majority correctness (as in 

Scenario 2a data sets) but thorough analysis and modification of 

the decision-making scheme in general. Due to the work 

limitations which cannot embrace every data case, the contentious 

situations, therefore, could appear for other data sets not examined 

in the experimental setup.   

The MBDFM with an invasive configuration and rule (i) 

should be applied to Scenarios 1,2a and 2b, where the majority of 

CVI’s votes prevails. However, rule (i) could not be used in the 

case of Scenario 3. The strategy of optimization the cluster range, 

by means of excluding the CVIs that cast no votes in the upper or 

lower bound of the initial cluster range, remains the same. 

However, the strategy of optimizing the cluster range by means of 

revealing the majority and its nearest alternative will be modified. 

Rule (ii) is created to cope with scenario 3 situations. The authors 

hypothesize, that 𝐷𝑒𝑐𝑒𝑠𝑡
1  and 𝐷𝑒𝑐𝑒𝑠𝑡

2  with their corresponding 

𝑘𝑒𝑠𝑡𝑗
^1 and 𝑘𝑒𝑠𝑡𝑗

^2 should become the upper/lower bound of 𝐾. In 

Figure 1d this optimization procedure will produce the new cluster 

range 𝐾 = {2, … ,4}, where the 𝐷𝑒𝑐𝑒𝑠𝑡
1  will become its lower 

bound with corresponding 𝑘𝑒𝑠𝑡1
^1 = 2 and the 𝐷𝑒𝑐𝑒𝑠𝑡

2  will become 

its upper bound with corresponding 𝑘𝑒𝑠𝑡3
^2 = 4  clusters. All CVI’s 

votes excluded from the initial cluster range will be forcibly asked 

to cast their votes for clusters in the optimized range. The 

optimization procedure in Scenario 3 cases mainly aimed at 

revealing the majority between two equal groups of CVIs. 

Therefore, rule (ii) aims to effectively imbalance the votes divided 

between the two biggest groups of CVIs and tips the scales in 

favor of the decision group that points to the “true” number of 

clusters. Finally, the optimized cluster range applied in a rule (ii) 

should strengthen the final CVI's decision – the majority with the 

corresponding “true” number of clusters.  

Rule (ii) along with rule (i) make up an integral part of the 

validation procedure and, therefore, both of them become 

appropriate tools for the invasive MBDFM configuration scheme. 

Furthermore, for the best revealing of the “true” number of 

clusters, the MBDFM with invasive configuration should be 

performed based on the validation results produced by the non-

invasive configuration. That is, the MBDFM with non-invasive 

configuration should always precede the MBDFM with invasive 

configuration. Finally, the invasive configuration aims to 
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strengthen the non-invasive to efficiently cope with all data sets 

presented in the experimental majority-based validation 

procedure. 

Using Scenario 3 cases from the non-invasive MBDFM 

configuration as our input data, the enhanced majority rule can be 

written as follows. 

Rule (ii): 

1. Run the MBDFM with a non-invasive configuration. Let 

DEC= {𝐷𝑒𝑐1, 𝐷𝑒𝑐2, … , 𝐷𝑒𝑐𝑘} and Scenario 3 is considered.  

2. Reveal the number of clusters 𝑘𝑒𝑠𝑡𝑗
^1 and 𝑘𝑒𝑠𝑡𝑗

^2 that 

corresponds to the two equal groups of CVIs, 𝐷𝑒𝑐𝑒𝑠𝑡
1  and 

𝐷𝑒𝑐𝑒𝑠𝑡
2  respectively. 

3. Optimize the cluster range by means of reducing the upper and 

lower bound of 𝐾 when some of the decision groups 𝐷𝑒𝑐𝑖 do 

not reveal any number of clusters.  

4. Repeat step (2). If MBDFM reveals an absolute majority, 

assume it corresponds to the “true” number of clusters, then 

𝑘𝑒𝑠𝑡𝑗
^ = 𝑘𝑡𝑟𝑢𝑒, otherwise, if no majority prevails, move to the 

next step. If the MBDFM reveals the relative majority 𝑀𝑎𝑗𝑒𝑠𝑡
^  

use step (5) of rule (i). 

5. Change the cluster range, where 𝐷𝑒𝑐𝑒𝑠𝑡
1  and 𝐷𝑒𝑐𝑒𝑠𝑡

2  and its 

corresponding 𝑘𝑒𝑠𝑡𝑗
^1 and 𝑘𝑒𝑠𝑡𝑗

^2 becomes the upper/lower 

bound of 𝐾. 

6. Repeat step (2). If the MBDFM reveals 𝑘𝑒𝑠𝑡𝑗
^ = 𝑘𝑡𝑟𝑢𝑒, the 

estimated number of clusters is the “true” one; otherwise, if 

the 𝑘𝑒𝑠𝑡𝑗
^ ≠ 𝑘𝑡𝑟𝑢𝑒, the majority 𝑀𝑎𝑗𝑒𝑠𝑡

^  identifies the fake 

“true” number of clusters. Moreover, if no majority prevails, 

rule (ii) did not give the expected results and should not be 

used in this MBDFM invasive configuration. 

 

With regard to Scenario 3 situations, rule (ii) had a strong 

impact on the CVI majority voting procedure. The number of 

successes is considerably increased when rule (ii) is adopted to the 

MBDFM with an invasive configuration. In particular, the overall 

success score of 95% without rule (ii) is exceedingly improved to 

99%. 

Another remarkable and surprising fact is that 1% of 

experimental data sets (1 data set) show wrong results even with 

the application of MBDFM with the invasive configuration. This 

is due to a more complex data group structure presented in the 

data set. 

Figure 4 shows the informally called the “crater” data set that 

misled rule (i) and the MBDFM with the invasive configuration in 

general. This synthetic “toy” data set consists of 2 clusters, one of 

them being a globular form dense cluster and the other being a 

ring cluster that surrounds the first one. This case corresponds to 

the Scenario 2c situations. This scenario was not included in the 

main list of the most frequent dubious scenarios. This case cannot 

be included in Scenario 2a, since the relative majority 𝐷𝑒𝑐3 =
𝑀𝑎𝑗𝑒𝑠𝑡

^ ≠ 𝑀𝑎𝑗𝑡𝑟𝑢𝑒 and the number of corresponding clusters 

𝑘𝑡𝑟𝑢𝑒 ≠ 𝑘𝑒𝑠𝑡3
^ = 6 did not point to the “true” number of clusters. 

Moreover, this case cannot be included in Scenario 2b, since the 

nearest alternative group of CVIs and the number of 

corresponding clusters 𝑘𝑒𝑠𝑡2
∗ = 3  did not show the „true” one 

𝐷𝑒𝑐2 = 𝑀𝑎𝑗𝑒𝑠𝑡
∗ ≠ 𝑀𝑎𝑗𝑡𝑟𝑢𝑒. This case shows that neither the 

relative majority 𝑀𝑎𝑗𝑒𝑠𝑡
^  nor the neighboring alternative 𝑀𝑎𝑗𝑒𝑠𝑡

∗  

indicated the correct “true” number of clusters 𝑘𝑡𝑟𝑢𝑒 = 2. In this 

particular data set, the MBDFM with an invasive configuration did 

not provide the expected results, moreover, the method reveals the 

misleading fake number of “true” clusters. 

The behavior of MBDFM becomes unpredictable for a 

number of reasons which are not directly related to the correctness 

of the proposed approach. For such cases, it is necessary to 

separately select a clustering algorithm and a dissimilarity 

measure that would be well adapted to such data. For such data 

sets [20] suggested using the special clustering algorithms. These 

types of clustering algorithms are robust to noise and the 

“touching problems” [72] including the “neck problem” [70] and 

the ‘‘adjacent problem’’ [28]. Moreover, some of CVIs may not 

be able to cope with such data a priori. 

 

X

Y

 
****************************************************************  

* Among all indices:                        

* 5 proposed 2 as the best number of clusters 

* 6 proposed 3 as the best number of clusters 

* 8 proposed 6 as the best number of clusters 

* 2 proposed 7 as the best number of clusters 

* 2 proposed 9 as the best number of clusters 

* 1 proposed 10 as the best number of clusters 

             ***** Conclusion *****        

* According to the majority rule, the best number of clusters is 6  

 

***************************************************************** 

Fig. 4. Two-dimensional plot of synthetic “toy” data set used in the experiment 

broken down by the non-invasive MBDFM. The data set shows two “true” clusters 

of different densities, however, according to the non-invasive MBDFM configuration 

the revealed number of clusters is equal to six 

8. The performance of validation approaches 

In this section, the authors will show the difference between 

the MBDFM voting approaches with default, non-invasive and 

invasive configurations. Moreover, the authors will compare the 

MBDFMs to the individual CVI (Silhouette) with k-means and 

Ward clustering with Euclidean and Canberra dissimilarity 

measures. The authors [21] claim that the Silhouette is the best 

individual CVI that achieves the best overall validation results for 

synthetic and real data sets broken down by the number of 

clusters, dimensionality, cluster overlap, and density experimental 

factors. Therefore, with full confidence in accordance with results 

presented by Arbelaitz et al. [21], the Silhouette has been chosen 

as the best individual CVI for clustering validation comparison 

reasons. Table 5 lists the overall success-failure score (%) of the 

MBDFMs compared to the individual CVI. 

Table 5. Overall success-failure score (%) of the MBDFM with non-invasive, 

invasive, and default configurations compared with the result revealed by the 

individual Silhouette CVI 

 Success score (%) Failure score (%) 

Scenario: 1 2a 2b 2c 3 

1. Silhouette with k-means 

clustering and Euclidean distance 
26% 16% 

41

% 

10

% 

7

% 

2. Silhouette with k-means 

clustering and Canberra distance 
21% 20% 

39

% 

9

% 

11

% 

3. Silhouette with Ward clustering 

and Euclidean distance 
28% 22% 

36

% 

7

% 

7

% 

4. Silhouette with Ward clustering 

and Canberra distance 
23% 27% 

43

% 

3

% 

4

% 

5. MBDFM with default 

configuration 
20% 20% 

49

% 

0

% 

11

% 

6. MBDFM with non-invasive 

configuration 
49% 36% 

10

% 

0

% 

5

% 

7. MBDFM with invasive 

configuration 
99% 0% 

0

% 

1

% 

0

% 
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As it can be observed, the MBDFM with default configuration 

cannot beat the Silhouette index for all data sets in a different 

configuration. The best success score has been achieved using the 

Silhouette CVI with the Ward clustering algorithm and Canberra 

or Euclidean distance 50%. The Silhouette CVI with the k-means 

clustering and Canberra distance has achieved the smallest success 

score – 41% (Scenario 1 – 21% + Scenario 2a – 20%). Moreover, 

the MBDFM with default configuration achieved an equal success 

score in comparison with the Silhouette CVI with k-means 

clustering and Euclidean distance – 40%. In conclusion, 

the Silhouette CVI with different configurations achieved a higher 

or equal individual success score than MBDFM with the default 

configuration.  

Considering the MBDFM with non-invasive and invasive 

configurations, both of these decision fusion methods beat 

the overall success score of the Silhouette CVI for all data sets 

presented in an experimental setup. In particular, the improvement 

over this CVI and the best configuration was 35% 

for the MBDFM with the non-invasive configuration and 49% 

for the MBDFM with the invasive configuration and adapted 

rules. The analysis showed that the design of decision fusion 

strategies requires careful choice of the validation configurations. 

Finally, the MBDFM with default configuration showed 

no improvement in performance, whereas both voting methods 

MBDFM with non-invasive and invasive configurations showed 

to perform better than single Silhouette CVI. 

9. Conclusions 

The experimental results demonstrated the appealing 

performance of MBDFMs in searching and justifying the “true” 

number of clusters and thus confirmed the potential approach 

of integrating MBDFMs into the clustering framework. 

The MBDFMs and overall clustering validation schema could be 

iterative and researchers seek a “true” number of clusters each 

time. Depending on the task’s requirements or/and the level 

of acceptance with the validation results, the MBDFM with 

default configuration can be quite satisfactory. However, 

for detailed and sophisticated data analysis, the authors propose a 

more refined MBDFM with invasive configuration, where 

the information of all previously uncovered “true” clusters 

by means of MBDFM with non-invasive configuration will be 

used as background knowledge to derive a precise final decision. 

Moreover, if researchers wish to determine the pros and cons 

of other existing or novel CVIs, clustering algorithms, or data sets 

in the future, this benchmarking framework can be applied to 

make a thorough comparison. 

In light of the results achieved, the authors consider 

that MBDFMs are a successful path to obtain the best partition 

for each context, which is the key issue in the data clustering field. 

Thus, the authors believe that new contributions on MBDFMs 

clustering validation can help to reduce the uncertainty about the 

suitability of the partitions generated by the algorithms. This work 

also raises some questions and, therefore, suggests some future 

work. The authors consider that, even though they performed 

an extensive comparison, there is still room for extending 

it to include more CVIs, data sets, clustering algorithms, 

dissimilarity measures, cluster range, high dimensionality, etc. 

In this context noise and overlap would appear to be the most 

interesting factors to analyze in greater depth. Moreover, the work 

is limited to binary crisp CVI’s decisions, so a fuzzy CVI’s 

comparison would be a natural continuation.  
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