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Abstract. The paper presents an original approach to device location detection in a building. The new method is based on a map of individual interiors, 

drawn up based on the measurements of the strength of wireless network signals for each building venue. The device is initially assigned to all venues 
whose descriptions sufficiently correspond with the current measurements taken by the device. A fuzzy assignment level for each of the potentially 

considered venues depends on the difference between the averaged network strengths for the venue and the signal strengths currently measured with the 

device for localization purposes. Ultimately, the device is assigned to the venue with the highest level of assignment. 
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ROZMYTE PODEJŚCIE DO LOKALIZACJI URZĄDZEŃ NA PODSTAWIE SIŁY SYGNAŁU SIECI 

BEZPRZEWODOWYCH 

Streszczenie. W pracy przedstawiono oryginalną metodę lokalizowania urządzeń w budynku. Nowa metoda bazuje na mapie poszczególnych pomieszczeń, 

stworzonej w oparciu o pomiary sygnałów sieci bezprzewodowych zmierzonych w tych pomieszczeniach. Wstępnie urządzenie przypisywane jest do tych 
pomieszczeń, których opis w odpowiednim stopniu pokrywa się z pomiarami dokonanymi przez urządzenie. Stopień rozmytej przynależności do każdego z 

wstępnie wytypowanych pomieszczeń zależy z kolei od różnicy pomiędzy uśrednionymi wartościami sygnałów sieci bezprzewodowych i aktualnie 

zmierzonymi do celów lokalizacji. Ostatecznie urządzeniu przypisywane jest to pomieszczenie, dla którego stopień przynależności jest największy. 

Słowa kluczowe: sieci bezprzewodowe, zbiory rozmyte, lokalizowanie urządzeń 

1. Introduction 

The use of location tracking is becoming increasingly popular 

in many services used on a daily basis. Traffic navigation 

or location context services that can be used outdoors are mainly 

based on GPS [5]. There are many possible uses of indoor location 

tracking. A good example can be guidance apps at museums 

[8, 9]. A museum app can contextually present descriptions 

of nearby exhibits. It can also be an indoor map supported with 

information about the user’s current position. Location tracking 

can be also useful for disabled people and health care buildings 

[2, 14]: monitoring people entering or leaving restricted areas and 

venues, equipment location, searching for people, guiding 

services. Unfortunately, GPS localization does not work properly 

indoors. There is a strong need to provide indoor location tracking 

in a different manner. There have been many solutions for indoor 

localization developed so far. Just to mention systems based on 

infrared sensors [15, 18], ultrasound [16], or magnetic fields 

[4, 6]. In recent years we have seen the growing popularity 

of Bluetooth-based location systems named iBeacons [17]. 

However, these systems require the installation of additional 

devices.  

On the other hand, WiFi-based location tracking is also 

becoming popular: as there are many access points in offices using 

WiFi, such location tracking should be costless. Since RADAR 

[1], many WiFi-based indoor localization solutions were proposed 

and developed [2, 7, 9, 11–14]. In general, WiFi location tracking 

uses a map as a reference. There are many types of maps, which 

can be divided into discrete and continuous maps [10]. Continuous 

maps allow determining the position as a point on the map. Such 

precision in WiFi location tracking is possible to obtain under 

certain conditions: homogeneous devices, defined obstacles, 

no interference from people. It is useful when we have to know 

the precise position, e.g. to control a robot [11]. A discrete map 

usually defines certain zones which are treated as positions 

on the map. Such location tracking is less precise (because we 

cannot determine the position, only the zone) but higher location 

precision cannot be reliably achieved using the most popular WiFi 

devices (different radio parameters, different measurement 

techniques). 

The continuous approach usually does not require the venue 

map preparation stage. The system should have information about 

the location of access points, the structure of obstacles, 

the strength of the signal in the current position, and based

on this information it determines the location in the venue [11]. 

However, the calculation is vulnerable to errors due to many 

factors, such as weather conditions, interference from human 

bodies, different equipment [7].  

Discrete positioning usually requires building a pre-learned 

set of fingerprints to infer the position of a device. There are 

many solutions to this issue: hidden Markov models [12], 

Bayesian filtering [21], clustering techniques [19], and genetic 

algorithms [3]. 

WiFi-based localization is currently easy to implement 

in many buildings using existing infrastructure. Discrete 

positioning seems to be a good choice considering the variety 

of WiFi devices, the precision of signal strength measurement, 

and the most common needs. The main contribution of this paper 

is to present a new discrete, WiFi signal-based positioning 

algorithm with the support of an SQL database and specified 

queries. The new method is based on a pre-learned set of 

fingerprints of defined locations. It uses fuzzy logic to determine 

the location and the SQL database and queries directly 

on the collected data. Additionally, it is possible to regularly 

update the data – location fingerprints – and the operation does not 

require restarting the system. In opposition to the mentioned 

solutions, the location tracking is based on the rooms specified by 

the system operator, not on the zones calculated by the algorithm. 

As a result, it is possible to correct a location tracking procedure 

or a venue map definition manually. From the functional side, we 

receive specific information about whether the user is in a given 

room, if the user is missing, or their location cannot be 

determined.  

The paper presents only the logical aspects of the SQL-based 

fuzzy location procedure: the process of building the map and the 

algorithm of fuzzy location. The other aspects of the device 

location such as software and hardware requirements, database 

structure, and SQL queries are not provided.  

The paper is organized as follows: it starts with a short 

description of existing approaches to device location tracking 

issues with the discussion of the necessity of a new solution; 

afterward, the definition of the building map is presented, which is 

based on the wireless network’s signal strength measured in the 

venues in question; the next part presents the fuzzy location 

tracking procedure in details and with a simple example 

incorporating artificial data; finally, the description of experiments 

and their results are presented. The paper ends with conclusions 

and possibilities of future works. 

http://doi.org/10.35784/iapgos.2597
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2. Related works 

As was already mentioned in the previous section, there are 

many known implementations of WiFi-based indoor location 

tracking procedures. One of the first and most frequently 

mentioned is a system called RADAR [1]. In the context of WiFi 

location tracking, a k-NN classifier was used to decide if a person 

is in a discrete location (close to the previously measured point). 

The authors are also considering the direction of the localized 

person in relation to the transmitter. Eventually, the direction 

is considered unnecessary.  

Another work on WiFi localization is related to SLAM 

(Simultaneous Localization and Mapping) systems [11]. 

The authors aimed to build a solution that does not need 

to use fingerprint maps (building a fingerprint map may be an 

expensive task). Their solution has to precisely obtain the position 

which is used to navigate the robot. The position is evaluated 

based on the measured signal strength of several WiFi sensors. 

Such algorithms also need to evaluate the signal loss due 

to propagation and obstacles.  

The fingerprint solution is a hierarchical topology based 

on WiFi Indoor Localization [10]. The test environment is built 

and then split into smaller sub-zones with a reduced number of 

WiFi Access Points (AP) and reference positions to be identified. 

The hierarchical partition of the map is created using a KMeans 

clustering algorithm and the Calinski–Harabasz Index. The 

authors try to use different classifiers: K-NN, SVM, FURIA. 

According to the authors, the results are superior to those of the 

RADAR system. The hierarchical approach makes the solution 

scalable from small to rather huge environments (several floors, 

many venues). 

The authors of the Fuzzy Logic Based System [7] focus 

on measurement issues. The signal level can be influenced 

by weather conditions, nearby devices, obstacles, people in rooms, 

different radio signal frequencies. These all lead to drops and 

peeks in the signal strength of access points. The authors propose 

several pre-processing and post-processing techniques to improve 

the quality of measurements. They also propose the fuzzy 

calculations approach to position detection. 

3. Building map 

The natural solution to the issue of determining the current 

position is to measure distances from the reference points 

of known coordinates. Based on these data and after some 

necessary calculations the location can be specified. Generalizing 

the problem, it can be stated that the reference points impose 

(constitute) a local coordinate system in relation to which furthe 

analyses will be carried out. In the defined area, it is possible to 

measure the distance to reference points and in this way determine 

the coordinates of a point in the local coordinate system. 

A generalized localization case consists of two stages. The 

first stage is to define the local coordinate system and determine 

the reference points appropriate to the local system. The second 

stage is to compute the relation between the measuring point 

and the reference points. Finally, after making the calculations, 

the measuring point receives the coordinates in the local system 

coordination system. 

The first stage involves installing the infrastructure, 

e.g. setting reference points. This was called defining a map 

of a building covered by the location system. 

The process of making the map involves selecting rooms 

in the building. Not all rooms in the building were considered to 

be attached to the building map. The selection of rooms was 

conducted according to the following criteria: 

 proximity of the rooms on the same floor, horizontal distance; 

 proximity to the rooms on different floors, vertical distance; 

 different types of walls separating the rooms; 

 distant rooms with multiple separating walls; 

 rooms between which there is visibility through the windows; 

 large rooms. 

 

A large room was divided into 4 subzones. This selection 

of rooms aimed at using the results collected during the 

experiment for later analysis. 

The data collection procedure was as follows: 

1) A person enters the room and stops near its centre, e.g. at the 

reference point. (The room divided into 4 subzones is an 

exception: the procedure was performed separately for each 

subzone). 

2) All WiFi signals detected by the phone are measured (this step 

required a dedicated application for Android OS). 

3) Measurements (WIFIs, strengths, room, device id, etc.) 

are stored in the database. 

 

Additionally, the order of measurements in the location and 

the order of locations are saved. 

The sample data are presented in Table 1, where: 

 id – database technical row identifier, 

 device_id – identifier of the device used to provide 

measurements, 

 BSSID – network identifier, 

 point_id – reference point identifier which represents a room, 

 strength –signal strength in dB measured at the reference 

point,  

 m_in_point – order number, grouping rows in one measure 

probe and numbering according to the reference point, 

 m_in_total – order number, the same as m_in_point but 

numbering according to all gathered samples. 

 

For better generalization of measurements, five different 

devices operating under Android OS were used. Data acquisition 

was performed at different times and at various intervals to avoid 

measurement result contamination with particular environmental 

features in which the measurements were made. Additionally, 

the measurements were taken manually so the position 

of the measuring device relative to the designated reference point 

in the room changed slightly with each measurement. Over 30 

measurements were made at each point. It was the consequence 

of the strength variability of the measured WiFi signal resulting 

from many factors independent of the measurement process 

and of the WiFi technology itself. 

After 30 individual measurements in all reference points have 

been taken, each of them was described by the following dataset:  

 BSSID, 

 average signal strength, 

 standard signal strength deviation. 

 

This dataset defines the coordinates of the reference point 

in the map space. It should be emphasized that due to the 

attenuation of the WiFi signal, the sets describing reference points 

contain a different number of BSSIDs. Of course, the average 

signal strength and standard deviation are also different. Table 2 

presents sample descriptions of two reference points. 

Finally, after collecting all the measurements for each 

reference point, the coordinates identifying the point in the 

building space were determined using the WiFi signal strength. 

For each reference point, the average and standard deviation of the 

WiFi signal strength of each WiFi network available at that point 

were determined. The networks were identified by BSSID. 

As a result, each reference point is identified by the coordinates 

resulting from all the WiFi networks available at the point. 

Additionally, for each average signal strength, the standard 

deviation is calculated that will be used in the localization 

procedure. 
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Table 1. Sample data describing WiFi signal strength in different locations measured with different devices 

id device_id BSSID point_id strength m_in_point m_in_total 

1800 1 06:d6:aa:35:1b:5f 12 -42 6 70 

1801 1 00:17:c5:e3:75:5e 12 -66 6 70 

1802 1 00:17:c5:e3:75:5d 12 -66 6 70 

1803 1 00:17:c5:e3:76:e9 12 -75 6 70 

1804 1 00:17:c5:e3:76:ea 12 -75 6 70 

1805 1 00:17:c5:e4:42:9b 12 -82 6 70 

1806 1 00:17:c5:e4:42:9c 12 -83 6 70 

3249 1 06:d6:aa:35:1b:5f 12 -26 7 105 

3251 1 00:17:c5:e3:75:5e 12 -65 7 105 

3255 1 00:17:c5:e3:75:5d 12 -66 7 105 

3258 1 00:17:c5:e3:76:e9 12 -66 7 105 

3261 1 00:17:c5:e3:76:ea 12 -66 7 105 

3287 1 06:d6:aa:35:1b:5f 12 -30 8 106 

3289 1 00:17:c5:e3:75:5e 12 -67 8 106 

3291 1 00:17:c5:e3:75:5d 12 -67 8 106 

3293 1 00:17:c5:e3:76:e9 12 -76 8 106 

3295 1 00:17:c5:e3:76:ea 12 -76 8 106 

3298 1 68:a0:f6:17:32:fa 12 -82 8 106 

3303 1 00:17:c5:e4:42:9b 12 -83 8 106 

3307 1 00:17:c5:e4:42:9c 12 -86 8 106 

 

Table 2. Sample descriptions of two reference points 

point_id BSSID strength_avg strength_stddev 

13 06:d6:aa:35:1b:5f -46.48 9.25 

13 0c:37:dc:b7:96:f6 -80.54 4.33 

13 e8:de:27:b7:6a:fe -83.79 2.42 

13 4c:5e:0c:7e:ca:ed -61.09 7.83 

13 56:67:11:e4:40:f4 -89.80 4.21 

13 92:5c:14:56:13:31 -90.00 3.46 

13 92:5c:14:ac:20:26 -90.20 1.30 

13 90:5c:44:ac:20:26 -90.89 1.05 

13 54:67:51:e4:40:f4 -88.00 4.56 

13 9c:b2:b2:5f:b1:67 -84.00 7.44 

13 68:a0:f6:17:32:fa -70.50 6.15 

14 00:1d:7e:bc:45:af -87.33 6.35 

14 00:17:c5:e3:71:2f -80.83 4.46 

14 00:17:c5:e3:71:fe -68.41 7.27 

14 00:17:c5:e3:76:ea -92.17 2.71 

14 00:17:c5:e3:77:b0 -93.00 0.00 

14 00:17:c5:e3:81:01 -82.96 3.78 

14 00:17:c5:e3:f3:c1 -88.40 3.51 

14 00:17:c5:e3:f7:2a -77.91 4.07 

14 00:17:c5:e3:71:2e -80.87 4.20 

 

4. Fuzzy location procedure with an example 

In the research, the fuzzy representation of venue assignment 

was assumed. The notion of fuzziness – proposed over 50 years 

ago in [20] – is one of the most common approaches of 

uncertainty representation. Such ability of uncertainty processing 

is a significant advantage when variable signals – like the WiFi 

network strength – are being analyzed. 

The positioning of the device is similar to the map 

development procedure described earlier. Unlike map creation, 

positioning is an unattended process and is performed once for 

each location determination attempt. At the time of the 

measurement, the position of the device (the person holding the 

telephone) is unknown and the measurement is performed once or 

several times at short intervals. Repeating the signal strength 

measurement in several second intervals is intended to reduce the 

impact of WiFi signal variability. As a result, the networks whose 

signals are very week (or cannot be detected by the devices) 

are eliminated. Data concerning networks and signal strength 

collected by the device that wants to know its location are 

compared with data describing reference points. The similarity 

of an unknown-location point to the reference points (for which 

the location is known) is determined. As a result of the algorithm, 

we get a list of similarities. After sorting, at the top of the list is 

the reference point nearest to which the measuring device 

(smartphone) is located. This reference point is considered the 

device position. The presented fuzzy location procedure will now 

be described in more detail. 

All visible WiFi networks are read at the unknown location 

point. The networks are identified thanks to BSSID. For each 

network, the signal power that reaches the measuring device from 

the access point is read. An example dataset is provided below 

in Table 3. 
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Table 3. Detected WiFi networks and their signal strength 

BSSID signal strength 

4e:8e:ff:8c:5a:8f -31 

4c:9e:ff:8c:5a:8e -33 

4c:9e:ff:8c:5a:8f -43 

4e:8f:ff:8c:5a:80 -43 

4c:9e:ff:8e:1c:9a -54 

4e:1f:ff:8e:1f:10 -59 

4e:20:ff:8e:1f:21 -63 

4c:9e:ff:8e:1f:20 -64 

4e:9a:ff:8e:1c:9b -67 

4c:9e:ff:8e:1c:9b -67 

4e:9b:ff:8e:1c:9c -67 

 

 

Fig. 1. A sample building floor plan 

Table 4. Detected WiFi networks and their signal strength 

Description of point R1  

Net ID 
Average signal 

strength (s) 

Standard 

deviation (std) 

AP1 -42 3 

AP2 -68 7 

AP3 -55 6 

AP5 -91 4 
 

Description of point R2  

Net ID 
Average signal 

strength (s) 

Standard 

deviation (std) 

AP1 -62 5 

AP2 -59 6 

AP3 -69 5 

AP4 -72 7 

AP5 -82 9 

AP6 -94 6 

  

Description of point R3 

Net ID 
Average signal 

strength (s) 

Standard 

deviation (std) 

AP1 -70 8 

AP2 -38 6 

AP4 -65 7 

AP5 -74 9 

AP6 -71 7 
 

Description of point R4 

Net ID 
Average signal 

strength (s) 

Standard 

deviation (std) 

AP1 -57 9 

AP2 -98 7 

AP3 -41 6 

AP4 -79 8 

AP6 -95 5 

AP7 -87 9 
 

Description of point R5 

Net ID 
Average signal 

strength (s) 

Standard 

deviation (std) 

AP1 -61 7 

AP2 -89 8 

AP3 -54 5 

AP4 -68 8 

AP6 -89 7 

AP7 -78 5 
 

Description of point R6 

Net ID 
Average signal 

strength (s) 

Standard 

deviation (std) 

AP1 -85 9 

AP2 -78 7 

AP3 -79 6 

AP4 -39 8 

AP5 -87 5 

AP6 -74 9 

AP7 -77 7 
 

 

The process of measuring and determining the position of the 

device can be presented in several steps described below. Prior 

development of the map is necessary for determining the position, 

as described above. In order to illustrate the position determination 

process, we assume that there is a map prepared for the building 

fragment as shown in Fig. 1. 

Points R1 to R6 are the map reference points, example 

descriptions of these points are presented in Table 4. Point X 

is the measuring point for which the location will be determined, 

an example measurement made here is shown in Table 5. Points 

AP1 to AP7 represent the location of the wireless network access 

points. AP5 to AP7 are located outside the analyzed area, 

but the signal of these access points is visible in the area covered 

by the map. In the example tables, instead of the full identifier 

of the BSSID network, short identifiers were included to increase 

the transparency of the example. Similarly, most numbers 

are represented as integers. 

The fuzzy location procedure consists of the following steps: 

Step 1: A person who wants to determine their position in the 

building, goes to any place covered by the map. Using the mobile 

device, the person measures WiFi networks visible there. Together 

with the BSSID network, the strengths of individual signals are 

read. An example measurement taken in room 4 at point X can 

provide the following results as presented in Table 5. 

Step 2: The collected results are compared with the building 

map. The quantity condition of the network is checked first. For 

each reference point, we compare a set of network identifiers 

assigned to that point with a set of network identifiers visible at 

point X. Next we determine a common part of these two sets. 

Table 5. Results of measurement made at location X 

Net ID signal strength (s) 

AP1 -68 

AP3 -38 

AP4 -78 

AP7 -75 

 

Using the sample data, it can be seen that the measurement 

point X and the reference point R3 have three common network 

identifiers: AP1, AP4. In the case of X and R4, common 

identifiers are: AP1, AP3, AP4, AP6. 

Step 3: For each reference point, a network factor is 

determined that reflects the ratio of found networks (in reference 

to the number of networks assigned to the reference point). If the 

factor takes on a value of more than 0.5, the reference point is 

taken into account in the next steps. Otherwise, the reference point 

is rejected and is not included in further calculations. This 

approach reduces the computational complexity of position 

determination but with the possible cost of decreased location 

accuracy (or the time of location increase). 

The networks factor for the pair measurement point and the 

reference point is determined by the formula: 

 𝑓𝑋,𝑅𝑗 =
𝑛𝑋,𝑅𝑗

𝑛𝑅𝑗
 (1) 

where 𝑓𝑋,𝑅𝑗  is the network factor, 𝑛𝑋,𝑅𝑗  is the number of common 

network identifiers for sets describing the X measurement point 

and reference point, 𝑅𝑗, and 𝑛𝑅𝑗 means the number of network 

identifiers describing the reference point 𝑅𝑗. 
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For sample data, the factor summary is presented in Table 6. 

Table 6. Network factors for a reference point, based on measurement from 

location X 

j nX,Rj nRj fX,Rj 

1 2 4 0.50 

2 3 6 0.50 

3 2 5 0.40 

4 4 6 0.67 

5 4 6 0.67 

6 4 7 0.57 

 

Based on network factors, reference points R1, R2 and R3 will 

be rejected from further processing. 

Then, for the remaining reference points, the strengths of the 

network signals from the measurement point set are analyzed, 

along with the mean signal strengths and the standard deviation 

of the network in the set for each reference point. For each pair 

of sets the distance factor is determined according to the following 

formula: 

 𝑑𝑋,𝑅𝑗 = ∑ 𝑟𝑚𝑖(𝑋, 𝑅𝑗) ⋅ 𝑐𝑖(𝑋, 𝑅𝑗)
𝑛𝑋,𝑅𝑗
𝑖=1  (2) 

For each considered network – i – the multiplication of two 

functions is performed. The first can be called the reference point 

assignment and is defined as the fuzzy assignment of the 

measurement point X to the reference point 𝑅𝑗: 

 𝑟𝑚𝑖(𝑋, 𝑅𝑗) =

{
 
 

 
 

1, |𝑠(𝑅𝑗 , 𝑖) − 𝑠(𝑋, 𝑖)| < 1

0.5, |𝑠(𝑅𝑗 , 𝑖) − 𝑠(𝑋, 𝑖)| ∈ ⌈𝑠𝑡𝑑(𝑅𝑗 , 𝑖) , 2 ⋅ 𝑠𝑡𝑑(𝑅𝑗 , 𝑖))

0.25, |𝑠(𝑅𝑗 , 𝑖) − 𝑠(𝑋, 𝑖)| ∈ ⌈2 ⋅ 𝑠𝑡𝑑(𝑅𝑗 , 𝑖) , 3 ⋅ 𝑠𝑡𝑑(𝑅𝑗 , 𝑖))

0, |𝑠(𝑅𝑗 , 𝑖) − 𝑠(𝑋, 𝑖)| ≥ 3 ⋅ 𝑠𝑡𝑑(𝑅𝑗 , 𝑖)

  (3) 

where 𝑠(𝑅𝑗 , 𝑖) is the average signal strength for the network from 

the description of the reference point, 𝑅𝑗 is the measured signal 

strength for the network at the measuring point 𝑅𝑗, and 𝑠𝑡𝑑(𝑅𝑗 , 𝑖) 

is the standard deviation of the signal strength for the network i 

from the description of the reference point 𝑅𝑗. 

In the early stages of location procedure development, many 

different fuzzy assignment functions were taken into 

consideration: triangular, piece-wise linear, trapezoidal, 

trigonometrical (cosine and arcus tangent-based), and many more. 

However, from the point of view of location accuracy and 

implementation complexity (SQL queries) the presented solution 

gave the best results. 

The second function c represents the signal strength correction 

factor and is defined as follows: 

 𝑐𝑖(𝑋, 𝑅𝑗) =

{
  
 

  
 
0.2, 𝑠(𝑅𝑗 , 𝑖) ∈ (−100;−90]

0.5, 𝑠(𝑅𝑗 , 𝑖) ∈ (−90; −80]

0.8, 𝑠(𝑅𝑗 , 𝑖) ∈ (−80;−55]

1, 𝑠(𝑅𝑗 , 𝑖) ∈ (−55;−35]

0.8, 𝑠(𝑅𝑗 , 𝑖) ∈ (−35; 0]

 
 
 
 
 

 (4) 

The results of using distance only based on reference point 

assignment functions were unsatisfactory. This was mostly due to 

the fact that the radio signal strength results from many other 

factors such as transmitter power, the output of the transmission 

and reception antennas, attenuation on the receiver and 

transmitter, and signal reflections (amplifying or weakening the 

signal in the receiver). This implied introducing an additional 

correction factor whose final form, presented above, was obtained 

through trial and error. 

Step 4: After performing the above calculations, the 

determined distance factor is corrected with the previously 

calculated network factor 𝑓𝑋,𝑅𝑗 . The correction takes place for 

each reference point. 

This is expressed by the formula: 

 𝑓𝑋,𝑅𝑗 =
𝑛𝑋,𝑅𝑗

𝑛𝑅𝑗
 (5) 

As a result, after performing the above calculations, we obtain 

a measure matching measurement point X to individual reference 

points. As the obtained all room assignment levels have positive, 

non-limited values, they must be normalized. The range 

[0;max𝑗𝑚𝑋,𝑅𝑗] is scaled linearly to [0;1]. 

The results showing the measure of matching the X measuring 

point to the map reference points are presented in Table 7. 

Table 7. Raw levels of assignment and normalized levels of assignment 

j mX,Rj
 normalized mX,Rj

 

4 1.63 1.00 

5 1.07 0.65 

6 0.60 0.37 

 

After sorting the table according to the value of the measure 

of matching from the highest to the lowest value, in the first place 

we obtain the location of the measurement point. In the example, 

this is the reference point, i.e. based on the performed calculations 

it can be concluded that the measurement was conducted in room 

4. The obtained results can be filtered by rejecting the values 

of the matching measure which did not exceed the limit value. 

Such filtering, however, requires additional research that will 

allow to deliberately set a results rejection threshold. Without the 

use of such filtering, the order in the list shows the distance 

of the measuring point from the reference point. The measuring 

point is located closest to the reference point in the first position 

and farthest from the reference point in the last position. 

5. Experiments 

5.1. Data acquisition 

The building, in which the procedure was developed and 

applied, is a three-storey one with several dozen rooms on each 

floor. In the experiments, 20 of them were taken into 

consideration. One of them was the conference hall which was 

divided into four separate areas, so the final number of locations 

was 23. The criterion for selecting these rooms was the frequency 

of changes of the monitored people’s locations. 

As it occurred, inside these rooms over 100 different wireless 

network IDs were detected. In each room, 30 measurements 

of wireless network signal levels were conducted. These 

measurements were taken using several different types of mobile 

phones. The highest number of detected signals in a room was 

almost 35. This implies that the raw data were rather sparse. It also 

confirms that in the presented problem a non-resistant method 

could not be applied for missing values. 

Finally, the collected dataset consisted of 690 objects and over 

100 features. The measured signal strength was expressed in dB 

and, as it is assumed in the wireless network area, the signal 

strength is a negative number, and as the level of the signal 

decreases, the value of the strength decreases too. 

A sample part of the collected data is presented in Table 8. 

Table 8. Sample data acquisition results 

mes_id dev_id n001 … n012 n013 n014 n015 … n100 ven_id 

595803 2    -71 -71    16 

595804 1   -33 -63 -63 -73   16 

595812 2         17 

595813 2         17 

595814 1   -63 -62 -63 -61   17 

595815 1         17 

595831 2    -80 -80    14 

595832 1    -67 -66 -76   14 

595833 1   -80      14 

 

The mes_id column represents the specific measurement 

identifier, the dev_id column is connected with the specific 

measurement device, columns from n001 up to n100 deal with 

wireless networks, and finally – ven_id – is the venue identifier 

in the building. The collected data, due to the nature of the 
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environment (dozens of networks and hundreds of measurements 

detecting only several networks), are characterized by a very high 

number of missing values. The total amount of non-missing ones 

was approximately 6%. For that reason, the application of the 

most popular multiclass classifiers was impossible. 

5.2. Simple experiments 

All experiments were carried out in the leave-one-

out/stratified cross-fold validation method. In each of the 30 

iterations, exactly one measurement from each venue was moved

to the test set. This ensured that the fuzzy maps of venues were 

built on 29 measurements (each of the maps). On the other hand, 

the proportion of venue representation in the training and test set 

was equal. The proposed scheme also ensured that the prediction 

accuracy, measured as the fraction of correctly and incorrectly 

classified positions, is equal to the class-weighted accuracy. 

Finally, it is possible to present the prediction results in one 

confusion matrix as each measurement is only taken once as the 

testing object. 

The results of the localization procedure are presented 

in Table 9. 

Table 9. Confusion matrix for the classified objects 

 predicted venue 

o
ri

g
in

al
 v

en
u
e 

 1 2 3 4 5 6 7 8 9 10 12 13 14 17 18 19 20 21 22 24 25 26 27 

1 21 3 6                                         

2 2 20 1 5         2                             

3 1   28           1                             

4 3 13 1 13                                       

5         30                                     

6         1 28                         1         

7 3     1 1   13 2           6 1       3         

8             1 28                     1         

9                 28 2                           

10                 3 26                 1         

12                     25           1   4         

13                 2     27             1         

14     2                   23       4   1         

17         9 1 1             8 9 2               

18         1                   27       1       1 

19   1             1           5 19 3   1         

20                         1     1 28             

21                             10 1   15 4         

22     1               2           4   22 1       

24                     1       1       4 24       

25                 1                   3   26     

26 1                 2           1 3 4 12     7   

27                             1               29 

 

The total accuracy reaches a level of almost 75% (74.64%). 

The least class prediction accuracy was at the level of 23.33% 

but it should rather be considered the outlier because the median 

is 83.33%, which is quite more than the average. It is also worth 

noticing that none of the objects was unclassified. In other words: 

each wireless network signal level measurement was classified 

to one of the possible venues. 

Let us remember that the first four places can be interpreted 

as one location (the conference hall divided into four regions). 

That simplification increases the prediction accuracy up to 78.63% 

and the median up to 86.66%. However, from the perspective 

of utility, we would not consider the class aggregation in further 

experiments. 

5.3. Haste makes waste 

Typically in the case of classification or regression tasks, 

a situation where an object is not classified to any known class 

(it is not possible to predict the real value of the dependent 

variable) is usually considered the misclassification (the error 

of predicting a known value). This results from the fact that 

the environment of independent variables remains unchanged. 

This is very easy to explain: in the case of character recognition, 

the image of acquired pixels does not change in time; while 

in the case of real values prediction, the constant current value 

of the predicted variable should be constant due to constant 

independent variables values. However, in the case in question, 

when a person enters the room, we can agree that as long as that 

person stays in the same room the prediction may be done 

at a certain cost in terms of prediction duration time. In other 

words: in such a case – haste makes waste. We agree for the 

longer time of prediction provided that the prediction accuracy 

also increases. This issue will be explained later in this section. 

The maximum number of networks in the venue maps is 33. 

This leads to the remark that we may define the condition of the 

minimal percentage of venue map networks to be recognized by 

the measuring device (network factor) as the necessary condition 

for taking the map into consideration. For example: if the map is 

built on the strength of 10 network signals and the assumed 

minimal percentage of the measured signal is 25%, at least three 

signal levels must fulfill the map criteria to begin to consider the 

location pointed by that map. 

Let us consider all possible signal threshold levels, varying 

from 0 to 1. The smallest sensible value of the threshold is 0.03 as 

there is no map built on more than 30 network signals. Then, 

similar experiments were carried out for each considered 

threshold. The results are presented in Figure 2. 

 

Fig. 2. Data classification accuracy 

The solid line represents how the classification accuracy of the 

map covered the sample changes due to the threshold increase. 

Starting from the value of 0.7464 (which is the same as in the 

previous experiments) it increases to 1.0 (for the threshold of 

0.8700). The dotted line also represents the classification accuracy 

but in this case, unclassified objects are considered wrongly 

classified. We can observe the intuitive effect: as the threshold 

increases, the accuracy decreases. The decrease in the accuracy is 

caused by the decrease in the data coverage. In the next figure 

(Figure 3) we can compare both tendencies. 
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Fig. 3. Comparison of accuracy and coverage decrease 

The intuitive reflection about the increasing range of 

unclassified objects says that the model degrades with the 

threshold level. 

It is a well-known procedure of parametrized classifier quality 

description to present the chart called ROC – Receiver Operator 

Curve. In terms of the classification issue, it shows how the true 

positive and false positive rates change due to the classifier 

parameters modification. In our case, it is worth taking into 

consideration two other criteria. We are interested in high 

accuracy and low non-coverage (difference between a set of 

objects and a set of objects classified by the model/map - the 

measure complement to the coverage). Let us check how this 

dependence looks like in the case of our predictor. ROC is 

presented in Figure 4. 

 

Fig. 4. Comparison of accuracy and coverage decrease 

The presented figures confirm that in this specific case, with 

changing environmental conditions, the ''lazy'' decision is 

preferred due to its correctness and it is worth considering the 

threshold increase in the real application. The following section 

will be devoted to proper threshold level selection. 

5.4. Network factor level selection 

As it was mentioned in the previous section, the main goal 

of the issue is to predict the proper location even at the cost 

of time spent to obtain this prediction. So it is important to define 

the appropriate compromise between the coverage of the model 

and the accuracy of the model predictions (limited only to the final 

statements – unclassified objects do not degrade the prediction 

accuracy). 

One of the most intuitive approaches is to compare 

the coverage decrease and the accuracy increase due to the 

threshold increase. It is easy to find the threshold level in which 

the mentioned two measurements intersect. The comparison 

of data coverage and covered data prediction accuracy is presented 

in Fig. 5. 

 

Fig. 5. Coverage and covered data accuracy 

The analysis of that figure should imply the proper threshold 

level on the value equal to 0.23. A higher level will cause the 

coverage to be lower than the accuracy. With the assumed 

threshold, the accuracy would be equal to 0.807. 

Another approach is to build the average of mentioned 

measures. The average result is presented in Fig. 6. 

 

Fig. 6. Coverage and covered data accuracy together with their average 

It occurs that such averaged measure decreases at the 

threshold level equal to just 0.1. That means that the optimal 

threshold value is a step-before one (0.066) and this situation 

corresponds with the initial prediction accuracy: 0.7518. 

The mentioned two approaches are based on the raw quality 

measurement values. However, the most important quality 

criterion should take into consideration the real application results. 

The increase of the threshold value simultaneously increases the 

accuracy and decreases the data coverage, which was presented in 

the previous section. The crucial question is ”How long can the 

threshold be increased to assure all venues be covered by the 

prediction results?’’. In other words, what is the maximum 

threshold level that assures at least one correct classification into 

each of the possible venues? 

This leads us to the results presented in Fig.7. 

 

Fig. 7. The minimum number of objects classified correctly to the class 

It occurs that the maximum threshold level that assures at least 

one correct object classification (for each possible object class) 

is 0.50. Up to this level, it is only a matter of time to obtain 

the correct location for the considered device. Over this level, 

there is a possibility that we are in a venue that we will never 

be classified into. The classification accuracy at this threshold 

level is 0.8953. 

6. Conclusions and further works 

The paper presents a novel approach to the location issue 

based on the wireless network signal measurement. A single 

measurement observed with the mobile phone is compared with 

the previously built description of all venues in the building. 

The final venue assignment is made based on the fuzzy 

assignment to each of the considered rooms. 

The developed strategy of building the description (map) and 

the fuzzy location procedure is now applied in the people location 

tracking system developed at the Institute of Innovative 

Technologies EMAG.  

The presented solution is adaptable but it requires an advanced 

implementation phase: the process of creating the map 

of the building based on averaged measurements. Additionally, 

the analysis of the proper network factor should be performed 

for each building separately. 
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Our later works will focus on further fuzzy location 

improvement – especially on using other wireless signal measures 

to improve the location accuracy (e.g. beacons). 

The data acquired during experiments are also a valuable 

source of information on how the location procedure duration 

depends on the network factor: it was shown that increasing 

this factor improves the classification accuracy but only 

if the condition of the minimum number of detected networks 

is fulfilled. A more detailed analysis of these durations may help 

to define a longer time of procedure application with the 

advantage of better location accuracy. 
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