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Abstract. Two ways of approximation of the BEM kernel singularity are presented in this paper. Based on these approximations extensive error analysis 

was carried on. As a criterion the preciseness and simplicity of approximation were selected. Simplicity because such approach would be applied 
for the tomography problems, so time of execution plays particularly significant role. One of the approximations which could be applied for the wide range 

of the arguments of the kernel were selected. 
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CAŁKI OSOBLIWE W METODZIE ELEMENTÓW BRZEGOWYCH DLA RÓWNANIA 

HELMHOLTZA SFORMUŁOWANEGO W PRZESTRZENI CZĘSTOTLIWOŚCI 

Streszczenie. Dwie metody aproksymacji osobliwości funkcji Greena zaproponowano w tej pracy. Bazując na tych aproksymacjach dokonano wnikliwej 

analizy błędów. Jako kryterium wybrano dokładność i prostotę zaproponowanych aproksymacji. Prostotę dlatego, że takie podejście będzie proponowane 

w zagadnieniach tomograficznych. Tak więc czas odgrywa zasadniczą rolę. Wybrano aproksymację, która może być stosowana dla szerokiego zakresu 
argumentów. 

Słowa kluczowe: równania różniczkowe cząstkowe, analiza numeryczna, aproksymacja funkcji, równania całkowe 

Introduction 

Singular integrals are an especially important question 

for the Boundary Element Method. Only for the Laplace’s 

equation and for the basic boundary elements of the zero order, 

such an integral could be calculated analytically (see for example 

[11]). But the second order boundary element demands a special 

treatment [11]. Many technical problems described by Helmholtz 

equation [5, 7] demands integration of difficult functions like 

for example the Green function. Then, particularly useful 

is the procedure of approximation. In this paper some difficulties 

associated with this procedure will be presented. Unfortunately, 

there is no one single universal approximation for the Green 

function. Below, following [1, 6] we will show a simple 

approximation which could be useful for Helmholtz integral 

formulation in a frequency domain. As simple as possible because 

the approximation function should be easily integrable. 

But the kind of approximation depend on the value of the Green 

function arguments as it will be presented in this paper. 

1. Treatment of singularity 

For the small arguments |𝑥| → 0 the modified Bessel function 

(see for example Diffuse Optical Tomography (DOT) [2]) 

becomes, asymptotically simple power of their arguments [1]: 

for n = 0: 

 𝐾0(𝑥) ≅ −ln(𝑥) = ln
1

𝑥
 (1) 

and for n > 0: 

 𝐾𝑛(𝑥) ≅
(𝑛−1)!

2
(

𝑥

2
)

−𝑛
 (2) 

So, for the first order we will get: 

 𝐾1(𝑥) ≅
(1−1)!

2
(

𝑥

2
)

−1
=

1

𝑥
 (3) 

Modified Bessel functions and their approximation for the 

small arguments are shown in Fig. 1. 

As we can see in the next figure – Fig. 2 the approximation 

of the modified Bessel function of the second kind and first order 

is much better than for the same function but zero order. 

So, the small parameter in the case of the Helmholtz equation 

(DOT problems for example) mean that the arguments should not 

exceed value of 0.1. 

a)  b)  

Fig. 1. Comparison for the small arguments between the modified Bessel function of the second kind and their approximation for a) zero order and b) first order (in semi-

logarithmic scale) 

a)  b)  

Fig. 2. Relative error of approximation for the small arguments for the modified Bessel function of the second kind a) zero order and b) first order 
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If the arguments become higher than more sophisticated 

approximations are required. Exists plenty of excellent 

approximations, for example in [1, 6, 12]. Following the [1] we 

have selected simple but effective approximation: 

 𝐾0(𝑥) = − {ln (
1

2
𝑥) + 𝛾} 𝐼0(𝑥) +

1

4
𝑥2

(1!)2
+ (1 +

1

2
)

(
1

4
𝑥2)

2

(2!)2
+ 

 (1 +
1

2
+

1

3
)

(
1

4
𝑥2)

3

(3!)2
+ ⋯ (4) 

where: 𝐾0 and 𝐼0 stands for approximation, 𝛾 is the Euler-

Mascheroni constant [12]. 

The approximation of the function 𝐼0 is the modified Bessel 

function of the first kind and zero order which could be 

approximated by [1]: 

 𝐼0(𝑥) = 1 +
1

4
𝑥2

(1!)2 +
(

1

4
𝑥2)

2

(2!)2 +
(

1

4
𝑥2)

3

(3!)2 +… (5) 

a)  

b)  

Fig. 3. a) approximation of the modified Bessel function of the second kind and zero 

order for the arguments less than 4 in a semilogarithmic scale and b) relative error 

of such approximation 

The approximation proposed by Eq. (4) and (5) extend the 

range of arguments significantly and the approximation error does 

not exceed low value for example 0.3% as it is shown in Fig. 3b. 

2. Governing equations 

As an example of the problem leading to the Hemholtz 

equation let us consider the light transport in biological tissue [2]. 

The governing equation describing the light transport 

is a Boltzman equation approximated by diffusion equation 

(see for example [2]). For harmonic excitation it could be 

formulated in a frequency domain: 

 𝛻2𝜑(𝒓, 𝜔) − 𝑘2𝜑(𝒓, 𝜔) = 𝑞 (6) 

where 𝑘 = √
𝜇𝑎

𝐷
− 𝑖

𝜔

𝑐𝐷
 [mm] – is the wave number, 𝑐 speed 

of light, 𝜔 angular frequency, 𝐷 =
1

2(𝜇𝑠
, +𝜇𝑎)

 [mm] for 2D space, 

𝜇𝑠
, , 𝜇𝑎 the optical parameters of the tissue and 𝑞 =

𝑞𝑠

𝐷
 right hand 

side of Eq. (6) containing source of light. 

On the external boundary the Robin boundary conditions 

are imposed: 

 𝜑(𝒓, 𝜔) + 2𝐷𝑛 ∙ 𝛻𝜑(𝒓, 𝜔) = 0         ∀ 𝒓 ∈ 𝜞 (7) 

After discretization for the Boundary Element Method, one 

must deal with a couple of unknowns in one node – 𝜑(𝒓, 𝜔) 

and 
𝜕𝜑(𝒓,𝜔)

𝜕𝑛
, so it is convenient to present the boundary conditions 

in the following form: 

 
𝜕𝜑(𝒓,𝜔)

𝜕𝑛
= −

1

2𝐷
 𝜑(𝒓, 𝜔)        ∀ 𝒓 ∈ 𝜞 (8) 

The fundamental solution for BEM of the problem described 

by Eq. (6) is given by the Green function of the form 

(consult [2,3,6]): 

 𝐺(|𝒓 − 𝒓′|, 𝜔) =
1

2𝜋
𝐾0(𝑘|𝒓 − 𝒓′|, 𝜔) (9) 

where 𝐾0 – is the modified Bessel function of the second kind 

of zero order. 

Using the Green’s second identity to arrive at a boundary 

integral equation: 

𝑐(𝒓)𝜑(𝒓, 𝜔) + ∫
𝜕𝐺(|𝒓 − 𝒓′|, 𝜔)

𝜕𝑛𝜞

𝜑(𝒓′, 𝜔)𝑑𝜞 

= ∫ 𝐺(|𝒓 − 𝒓′|, 𝜔)
𝜕𝜑(𝒓′, 𝜔)

𝜕𝑛𝜞

𝑑𝜞 + 

 − ∫ 𝐺(|𝒓𝒊𝒔 − 𝒓′|, 𝜔) 𝑞
𝜞

𝑑Ω (10) 

where 𝒓 and 𝒓′ ∈ 𝜞, 𝒓𝒊𝒔 ∈ Ω, and 𝐺(|𝒓𝒊𝒔 − 𝒓′|, 𝜔) is the value 

of the fundamental solution at the point 𝒓𝒊𝒔.  

 

In optical tomography, concentrated light (point) sources 

are frequently used and modelled by Dirac delta function 

in a following way: 

 𝑞 = 𝑄𝑖𝑠𝛿𝑖𝑠 (11) 

where 𝑄𝑖𝑠 is the magnitude of the light source and 

𝛿𝑖𝑠(|𝒓𝒊𝒔 − 𝒓′|, 𝜔)  is the Dirac delta function which integral 

is equal to 1 at the point 𝒓𝒊𝒔 and zero elsewhere.  

Assuming that there are no light sources, the equation (10) 

could be written: 

𝑐(𝒓)𝜑(𝒓, 𝜔) + ∫
𝜕𝐺(|𝒓 − 𝒓′|, 𝜔)

𝜕𝑛𝜞

𝜑(𝒓′, 𝜔)𝑑𝜞 = 

 = ∫ 𝐺(|𝒓 − 𝒓′|, 𝜔)
𝜕𝜑(𝒓′,𝜔)

𝜕𝑛𝜞
𝑑𝜞 (12) 

Now the boundary integral equation (12) for constant 

boundary elements can be written in terms of local coordinate ξ 

instead of the boundary line 𝜞, as follows: 

 𝑐(𝒓)𝜑(𝒓) + ∑ 𝜑𝑗(𝒓′)𝑀
𝑗=1 ∫

𝜕𝐺(|𝒓−𝒓′|)

𝜕𝑛

+1

−𝟏
𝐽(𝜉)𝑑𝜉 = 

 =∑
𝜕𝜑𝑗(𝒓′)

𝜕𝑛

𝑀
𝑗=1 ∫ 𝐺(|𝒓 − 𝒓′|)𝐽(𝜉)𝑑𝜉

+1

−1
 (13) 

where M – is the total number of constant elements, 

and 𝐽(𝜉) – is the Jacobian of transformation: 

𝐽(𝜉) =
𝑑𝜞

𝑑𝜉
= √(

𝑑𝑥(𝜉)

𝑑𝜉
)

2

+ (
𝑑𝑦(𝜉)

𝑑𝜉
)

2

= 

 = √(
𝑥3−𝑥1

2
)

2
+ (

𝑦3−𝑦1

2
)

2
=

1

2
𝐿 (14) 

where 𝑥3, 𝑦3 and 𝑥1, 𝑦1 are the coordinates of the edge points 

of the zero-order boundary element and 𝑥2, 𝑦2 is a middle node 

when state function and its derivative is fixed, L is the length 

of element. 

The functions under integral sign which contain the kernels 

can be substituted by the functions 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗 as follows: 

 𝑐(𝒓)𝜑(𝒓) + ∑ 𝜑𝑗(𝒓′)𝑀
𝑗=1 𝐴𝑖,𝑗(𝒓, 𝒓′) = 

 = ∑
𝜕𝜑𝑗(𝒓′)

𝜕𝑛

𝑀
𝑗=1 𝐵𝑖,𝑗(𝒓, 𝒓′)  (15) 

To form a set of linear algebraic equations, we take each node 

in turn as a load point 𝒓 and perform the integrations indicated 

in Eq. (13). This will result in the following system of algebraic 

equations: 

 [𝑨][𝝋] = [𝑩] [
𝜕𝝋

𝜕𝑛
] (16) 

where the matrices [𝑨] and [𝑩] contain the integrals of the 

kernel’s normal derivative 
𝜕𝐺(|𝒓−𝒓′|)

𝜕𝑛
 and the kernels 𝐺(|𝒓 − 𝒓′|) 

respectively, i.e. the functions 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗 of Eq. (15). 



6      IAPGOŚ 4/2021      p-ISSN 2083-0157, e-ISSN 2391-6761 

It is apparent that the kernels in Eq. (12) may be written 

in more explicit form: 

𝜕𝐺(|𝒓 − 𝒓′|, 𝜔)

𝜕𝑛
=

𝜕

𝜕𝑛
(

1

2𝜋
𝐾0(𝑘|𝒓 − 𝒓′|, 𝜔)) = 

 =−
𝑘

2𝜋
𝐾1(𝑘|𝒓 − 𝒓′|, 𝜔)

𝜕𝑅

𝜕𝑛
 (17) 

where 𝐾1 is the modified Bessel function of the second kind 

of order one. 

The derivative of the radius R with respect to the unit outward 

normal n at the point 𝒓′ is calculated as follows: 

 
𝜕𝑅

𝜕𝑛
=

𝜕𝑅

𝜕𝑥

𝜕𝑥

𝜕𝑛
+

𝜕𝑅

𝜕𝑦

𝜕𝑦

𝜕𝑛
=

𝜕𝑅

𝜕𝑥
𝑛𝑥 +

𝜕𝑅

𝜕𝑦
𝑛𝑦 (18) 

where 

  
𝜕𝑅

𝜕𝑥
=

𝑥′−𝑥

𝑅
  and   

𝜕𝑅

𝜕𝑦
=

𝑦′−𝑦

𝑅
 . 

Now, the kernel from Eq. (13) can be rewritten more 

explicitly: 

 
𝜕𝐺(|𝒓−𝒓′|,𝜔)

𝜕𝑛
= −

𝑘

2𝜋
𝐾1(𝑘|𝒓 − 𝒓′|, 𝜔) (

𝑥′−𝑥

𝑅
𝑛𝑥 +

𝑦′−𝑦

𝑅
𝑛𝑦) (19) 

When we put Eq. (17) into Eq. (13) than it can be solved 

numerically. However, the problem arises when the 𝒓′ −>  𝒓 

than the singularity of the integrand must be specially treated. 

3. Singular integration for constant element 

The singular integrals are a particularly important problem 

for integral formulation for the partial differential equations [4]. 

For the Dirichlet problem and for the Diffuse Optical Tomography 

(DOT) it was already solved [6,10,11]. However, for DOT 

integrand singularity only in case a small argument of the kernel, 

where successfully solved. Then the function in Eq. (10) which 

is the Bessel function was approximated by a quite simple 

equation (see for example Eq. (1)). 

For many other problems like for example the acoustic ones 

[7, 8] it is insufficient and more sophisticated approximation 

is necessary (see for example Eq. (4) and Eq. (5)). After some 

mathematical operations Eq. (4) could be presented in the 

following form [1]: 

𝐾0(𝑥) = −ln (
1

2
𝑥) 𝐼0(𝑥) − 𝛾 + 0.42278420 ∗ (

𝑥

2
)

2

+ 

 +0.23069756 ∗ (
𝑥

2
)

4
+ 0.03488590 ∗ (

𝑥

2
)

6
+ 0.00262698 ∗ 

∗ (
𝑥

2
)

8
+ 0.00010750 ∗ (

𝑥

2
)

10
+ 0.00000740 ∗ (

𝑥

2
)

12
+ 𝜖  (20) 

where |𝜖| < 10−8. 

The Bessel function of the first kind and zero order 𝐼0(𝑥) 

appearing in the first term of Eq. (20) has the following shape 

and is completely covered by its approximation – Fig. 4. 

In Fig. 4 it is clearly visible that function 𝐼0(𝑥) it is not 

singular within the interesting us range of independent variable 

and its approximation is very precise (consult Fig. (4b)). 

So, still we are facing the problem of integration of singular 

integrals because the first term of approximation is the logarithmic 

one. Some term of the kernel could be integrated in an analogous

way as for the Laplace’s equation, but the rest term of integrand 

could be calculated using the Gauss quadrature. For this case, 

the 𝐴𝑖,𝑗 coefficients are equal zero and the 𝐵𝑖,𝑗 integrals can 

be calculated analytically and numerically as well. The distance 

between point 𝒓 and point 𝒓′(𝜉) depends on local coordinate 

system in a following way: 𝑅(𝜉) =  |𝒓 − 𝒓′(𝜉)|. 
The entries of the matrices in Eq. (13) are: 

𝐵𝑖,𝑗(𝒓, 𝒓′) = ∫ 𝐺(|𝒓 − 𝒓′|)𝐽(𝜉)𝑑𝜉
+1

−1

= 

 = ∫ 𝐾0(𝑘 𝑅(𝜉)) 𝐽(𝜉)𝑑𝜉
+1

−1
 (21) 

where 𝒓 depends on index 𝑖 and 𝒓′ depends on index 𝑗 and 

𝐽(𝜉) =
𝐿

2
 is a Jacobian of transformation defined by Eq. (14), so:  

𝐵𝑖,𝑗(𝑘 𝑅(𝜉)) = ∫ 𝐾0(𝑘 𝑅(𝜉)) 𝐽(𝜉)𝑑𝜉
+1

−1

= 

=
𝐿

2
∫ [−ln (

1

2
𝑘 𝑅(𝜉)) 𝐼0(𝑘 𝑅(𝜉)) − 𝛾 +

+1

−1

 

+0.42278420 ∗ (
𝑘 𝑅(𝜉)

2
)

2

+ 0.23069756 ∗ (
𝑘 𝑅(𝜉)

2
)

4

+ 

+0.03488590 ∗ (
𝑘 𝑅(𝜉)

2
)

6

+ 0.00262698 ∗ (
𝑘 𝑅(𝜉)

2
)

8

+ 

+0.00010750 ∗ (
𝑘 𝑅(𝜉)

2
)

10

+ 0.00000740 ∗ (
𝑘 𝑅(𝜉)

2
)

12

] 𝑑𝜉 

  (22) 

To simplify consideration let us divide the integrand on two 

parts. The first one consists of the logarithmic term and the second 

one consists of the rest of the Eq. (20) as follows: 

𝐵𝑖,𝑖(𝑘 𝑅(𝜉)) =
𝐿

2
∫ [−ln (

1

2
𝑘 𝑅(𝜉)) 𝐼0(𝑘 𝑅(𝜉)) − 𝛾] 𝑑𝜉

+1

−1

= 

=
𝐿

2
∫ [0.42278420 ∗ (

𝑘 𝑅(𝜉)

2
)

2

+
+1

−1

 

+0.23069756 ∗ (
𝑘 𝑅(𝜉)

2
)

4

+ 0.03488590 ∗ (
𝑘 𝑅(𝜉)

2
)

6

+ 

+0.00262698 ∗ (
𝑘 𝑅(𝜉)

2
)

8

+ 0.00010750 ∗ (
𝑘 𝑅(𝜉)

2
)

10

+ 

+0.00000740 ∗ (
𝑘 𝑅(𝜉)

2
)

12

]  𝑑𝜉 

  (23) 

The integral of the first part is the logarithmic type so we 

could calculate it analytically in the similar (integration by parts 

must be involved) way as for the Laplace’s equation but for more 

complex cases a special logarithmically weighted numerical 

integration formula can be used [11]. Note that the limits 

of integration are from 0 to 1 instead of the –1 to +1 range used in 

the non–singular integrals of Boundary Integral Equations (BIE). 

The remained part is not singular so it could be calculated 

numerically by the standard Gaussian rule. 

a)  b)  

Fig. 4. a) The modified Bessel function of the first kind of zero order for the small arguments and b) relative error of approximation (see Eq. (5)) 
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4. Benchmark solution 

To solve the Helmholtz equation in the frequency domain, 

let us consider the excellent benchmark problem suggested 

by P. Jablonski in his monograph [6]. 

Inside the domain which is the interior of a rectangle of the 

width a and the height b as it is denoted in Fig. 5. On the boundary 

the following Neumann boundary conditions are imposed: 

 
𝜕𝜑

𝜕𝑛
= {

   0        when 𝑦 = 0,
 100    when 𝑥 = 𝑎,
   0        when 𝑦 = 𝑏,
  0        when 𝑥 = 0.

 (24) 

The analytical solution of the state function 𝜑 (see Eq. (6) 

and boundary conditions Eq. (7) and Eq. (24)) is equal to: 

 𝜑(𝒓(𝑥, 𝑦)) =
100

𝑘

𝑐𝑜𝑠ℎ(2𝑘)

𝑠𝑖𝑛ℎ(𝑎𝑘)
 (25) 

where k is the wavelength, a=4 is the length of the rectangular 

area (Fig. 5). 

Solutions of the problem (6) with the boundary conditions (7) 

for different wavelength are presented in the Fig. 6 and in the 

Fig. 7. 

The bigger wave number the more rapid state function 

diminishing along the x axis direction. 

Interesting is the error distribution of the state function along 

the boundary. In Fig. 9 it can be observed as the error rapidly 

erase on two corners where the Neumann boundary conditions 

were imposed. But only up to the value of 1.17%. It is quite 

satisfactory especially that no special treatment of the sharp 

corners was applied.  

As the exact analytical solution exists it is possible to control 

exactness of the numerical solution within the internal points of 

the region. 

In Fig. 9 for different wave numbers relative error was 

calculated for the point in the centre of the region. Coordinates of 

this point were: (a/2, b/2). The error was calculated for two cases: 

1) for the logarithmic approximation of the kernel, 

2) for the approximation by the series suggested in [1]. 

 

The second case is much more precise for the Helmholtz 

equation than the simple logarithmic approximation as it is visible 

in the Fig. 9. 

 

Fig. 5. Discretization of the region of interest with the internal points where the state function is calculated 

 

 

Fig. 6. Numerical solution for 𝑘 = √4

 

 

Fig. 7. Numerical solution for 𝑘 = √20

  

 

Fig. 8. Relative error distribution along the boundary 

 

 

Fig. 9. Relative error distribution as a function of the wavelength with power two 
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5. Conclusions 

Two ways of approximation of the kernels for the Helmholtz 

equation in the frequency domain were presented in this paper. 

Based on the benchmark provided in [6] error analysis was carried 

on for two cases of approximation of BEM singular integrands. 

The second one represents exceedingly high precision so it could 

be suitable for the imaging method for the different kind of 

tomography [9]. 
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