
4 IAPGOŚ 2/2022 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 2/2022, 4–9

http://doi.org/10.35784/iapgos.2901 received: 16.03.2022 | revised: 01.06.2022 | accepted: 15.06.2022 | available online: 30.06.2022

CKRIPT: A NEW SCRIPTING LANGUAGE FOR WEB APPLICATIONS

Wiktor Kania, Radosław Wajman
Lodz University of Technology, Institute of Applied Computer Science, Lodz, Poland

Abstract. The project aimed to develop and implement an efficient web server in the C++ programming language. A highly concurrent network server was

achieved using system calls such as polls and a limited number of threads. The server has built-in support for a new scripting language called Ckript. It is

an original project that exposes most of the server’s functionality and is the primary way of developing back-end web applications. Ckript is an interpreted
language with a strong typing system, garbage collection, semi-manual memory management, first-class functions, explicit variable references, support for

certain object-oriented patterns and many others. In the article the syntax of the language but also the environment architecture has been explained.

Finally, the testing procedure has been described with the results’ presentation and discussion at each step.

Keywords: HTTP server, scripting language, interpreter, parser, garbage collector, C++

CKRIPT: NOWY JĘZYK SKRYPTOWY APLIKACJI INTERNETOWYCH

Streszczenie. Celem projektu było opracowanie oraz implementacja wydajnego serwera przy użyciu języka C++. Zastosowanie wywołań systemowych

oraz ograniczonej liczby wątków pozwoliło zbudować wysoko współbieżny serwer. Posiada on wbudowane wsparcie dla nowego języka skryptowego

Ckript. Jest to projekt autorski, który udostępnia większość funkcjonalności serwera i jest głównym środkiem budowania aplikacji back-endowych. Ckript

to język interpretowany z systemem silnego typowania, mechanizmem porządkowania pamięci, półautomatycznym zarządzaniem pamięcią, wbudowanymi

funkcjami, referencjami do zmiennych, obsługą pewnych wzorców zorientowanych obiektowo i wiele innych. W artykule wyjaśniono składnię języka, ale

także architekturę środowiska. Na koniec opisana została procedura testowania wraz z prezentacją wyników i dyskusją na każdym etapie.

Słowa kluczowe: serwer HTTP, język skryptowy, interpreter, parser, garbage collector, C++

Introduction

PHP was one of the first programming languages for building

dynamic web applications, even though it has a mixed reputation.

However, it is still one of the favourite programming languages

due to its simplicity and approach to solving challenges associated

with building web applications. When run on a web server such as

Apache or nginx, PHP shares many similarities with the project.

This work aimed to build a highly efficient HTTP server

written in C/C++ called Mish. To achieve this, research on parallel

and concurrent programming techniques was done to find optimal

ways to handle a few thousand connections at a time. Ckript is a

general-purpose scripting language developed to integrate it with

the server’s architecture and make it more suitable for back-end

development. Ckript has been inspired by other programming

languages such as C, JavaScript, and Go. It is an interpreted

language with a strong typing system, garbage collection, semi-

manual memory management, first-class functions, explicit

variable references, and support for certain object-oriented

patterns. What makes Ckript different from most other

programming languages is its support for high-level and low-level

programming and integrated type system while remaining a

dynamically interpreted language. Most scripting languages

abstract away things like memory management and variable

references. Ckript allows the programmer to choose whether to

allocate data on a stack or the heap. The programmer can also use

explicit references to other variables making it possible to choose

between passing by value and passing by reference. This is usually

only possible in low-level programming languages such as C/C++,

most high-level languages pass all compound type (arrays,

objects) variables by reference and primitive types (integers,

Booleans) by value. Manual memory allocation is also exclusive

to lower-level languages.

The integrated type system and strong typing allows writing

more error-free and readable code. Usually, only compiled

languages use static typing, scripting languages often opt instead

for dynamic typing with the possibility of installing extensions to

enable type annotations (Typescript, Ruby RBS).

A series of benchmarks was run with the implemented HTTP

server to compare the server’s capabilities to existing and widely

used solutions. The whole project was written in C/C++ in the

C++17 standard. C++ was chosen due to its high performance,

extensive standard library, and access to some low-level network

functionality.

1. Ckript syntax characteristics

1.1. Variables type system

Ckript is strongly and statically typed. Each variable needs to

have a type assigned before the program can run. There is no type

inference, and a variable’s type cannot change during runtime.

Since Ckript is an interpreted language, type checking is done at

the program’s execution time. Even though the language is

strongly typed, some features are implemented to simplify a

developer’s life, such as implicit casts, e.g., when adding an

integer to a float. Ckript defines 7 built-in types:

 int – a 64-bit signed integer value,

 double – a double-precision floating-point value,

 str – a string of characters used to represent human-readable

text,

 bool – a boolean (false or true) value,

 func – a first-class function,

 arr – a dynamic array capable of holding multiple different

values of the same type,

 obj – an instance of a class containing methods and fields.

There’s also the ref keyword which can be coupled with any

of the type mentioned above to indicate a reference to a type e.g.,

ref int.

Additionally, each variable declaration requires an

assignment. There are no default or null values. This makes the

whole language null-safe and less error-prone. Early versions of

Ckript allowed provoking null pointer errors through invalid use

of manual memory management e.g., by accessing a dynamically

allocated variable after deallocating it. Situations like this are not

possible after adding garbage collection and removing the ability

to deallocate variables manually.

1.2. Functions

All functions in Ckript are first-class functions meaning that

they are treated like any other variable. Functions can be passed as

arguments to other functions, returned by other functions, stored

in variables or data structures such as objects and arrays. There is

support for anonymous functions (also known as lambdas in

languages like Python or C++) and immediately-invoked function

expressions making Ckript a very flexible language. Since

functions can be stored in variables, a decision was made not to

implement named functions.

user
Stempel

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2022 5

Ckript functions must respect the language’s type system,

which means that all function expressions must define types

for their parameters and return values. A function declaration and

invocation might look like this:

Fig. 1. Ckript functions

This expression declares a function that accepts one parameter

of name n and type int and returns a value of type int.

Fig. 2. An immediately-invoked function

This is an example of an immediately-invoked function

expression. The function is executed right after declaration

without storing it in a variable, instead the result of the function

is stored.

Fig. 3. The usage of a first-class function

Fig. 3 presents an example of a function being passed

to another function by argument. The above code should display

the message “Hello” ten times on separate lines.

1.3. Variable scope

The scope of a variable is the part of a program where

the variable’s name can be used to access it. In Ckript,

all variables are local to the function they were declared

in by default and can be only accessed in that function. While

there is no way to make a variable visible outside the function,

there is a way to make a function capture outside variables

by adding the > operator. See the function expression in line 3:

Fig. 4. Capturing variables

Even though the language makes this possible, the preferred

way of passing values between functions is by arguments or return

values as it minimizes the number of possible human-errors, hence

why functions don’t capture outside variables by default.

An exception to the rule are the function variables. When a

function is assigned to a variable, its name is pushed onto its own

stack to allow recursion. Ckript allows for variable shadowing.

There is no block scope in Ckript i.e., variables declared

in statements like if, while, or for are still local to the function

they were declared in.

1.4. Classes and objects

Ckript allows defining classes and instantiating objects. Ckript

objects are very similar to structures from C – they are composite

data types that allow a programmer to hold several variables under

the same name. These variables can be of any type.

Even though Ckript functions are first-class functions and are

treated like any other variable, there is a way to treat a function

as a method. When an object is allocated on the heap and one

of its fields is of func type, the reference to that object is bound

to the function. The virtual machine creates a new variable of type

ref obj and named this and pushes it onto the function’s stack,

allowing it to reference the object it is assigned to.

Fig. 5. The usage of Ckript classes

Line 8 references the object allocated on line 7 by using this

keyword. If the variable Wiktor was not allocated with the alloc

keyword, the program would throw an error on line 11 saying that

‘this’ is not defined.

Class declarations are treated like variable declarations.

Classes are allocated on the current function’s stack and are

local to it. There are no complex object constructors, instead

a programmer is encouraged to write their own functions that can

act as constructors. This pattern is commonly found in languages

such as C and Go.

Fig. 6. Constructor’s example in Ckript

1.5. Standard library and other properties

Ckript includes a small standard library for most common

programming tasks such as file I/O, math operations, string

manipulation, and type conversions. The full list may be found

in the README.md file on the Ckript GitHub repository. Follow

the repository’s URL in the chapter 5.

There are also several mathematical functions such as sin,

sinh, cos, cosh, tan, tanh, sqrt, log, log10, exp, floor, ceil, round,

pow, and abs.

Ckript strings can be concatenated by using the + operator.

One of the convenient features of the language is the ability to

format strings.

Fig. 7. Strings concatenation and formatting

Line 1 declares a string variable. Line 2 executes the string

like a function and passes two arguments. The corresponding

arguments will replace the placeholders @n. Finally, execution

of line 3 will print “<div>123</div>”. Since this method allows

6 IAPGOŚ 2/2022 p-ISSN 2083-0157, e-ISSN 2391-6761

 any type of arguments to be passed, it is more than a mere

shorthand for writing functions for string formatting. Functions

need to specify the type of their arguments, so the same

functionality wouldn’t be possible without major code duplication.

Ckript allows creating arrays of any built-in type, including

arrays and objects (see Fig. 8). Arrays in Ckript are strongly typed,

meaning that each array can hold values of one type, and it’s not

possible to mix different types together. To create an array in

Ckript, the array keyword must be used. Optionally, initial

elements inside the parentheses can be defined. At the end of an

array declaration there must be the type of its elements defined

explicitly.

It is possible to check the size of an array with the size

function, iterate over it, and print each individual element.

To append or prepend a new element to an array, it simply needs

to be added to it. To remove an element from an array, the index

of the element can be subtracted from the array.

Fig. 8. The usage of arrays (left) and its output (right)

2. The environment architecture

2.1. Memory allocation

Most high-level scripting languages do not give the choice

of whether to allocate a variable on the stack or heap. In Ckript,

all variables are allocated on function stacks by default. However,

the alloc keyword instructs the interpreter to allocate the variable

on the heap. What’s the difference? There are multiple stacks

(one for each function), but only one global heap. Whenever

a function finishes execution, its stack is destroyed, and all the

variables allocated on it are popped. When a variable is allocated

on the heap, it remains there as long as some part of the program

has at least one reference to it. It means, it may still be reachable.

Variables without references are eventually garbage collected.

Using references also avoids the problem of unnecessary data

duplication when passing variables to functions – by default, all

variables are passed by copy. Passing by reference is especially

useful when dealing with bigger objects or arrays.

Fig. 9. The usage of references in Ckript

Both passByCopy and passByReference increment

the argument a by 5, but passByReference uses the ref keyword on

line 5 to indicate that it accepts a reference to an int. Line 12 will

copy foo, and the value of foo will remain the same after

the function execution. Line 13 will copy the reference to bar,

and the value of bar will change. Line 14 will output “3 8”.

2.2. Bump allocator

Ckript implements a bump allocator on top of C++’s standard

allocator. A bump allocator is simple in design – it can only grow

and never shrink. It maintains a list of free chunks (a free list).

Whenever a chunk is freed, it is placed on the free list and marked

as “free” on the heap as in free to use, but not deallocated.

Whenever a new chunk is requested, a chunk from the top of the

free list is returned. If there are no free chunks, the allocator

allocates a new chunk and expands the heap. This approach

enables very fast allocation and free operations, but never allows

the heap to shrink during the program’s execution time. Since the

Ckript programming language is intended for developing back-end

scripts that shouldn’t take more than a couple of hundred

milliseconds, this trade-off bears more positives than negatives.

The implementation of such allocator is straightforward and much

less error prone.

2.3. Garbage collector

The garbage collector (GC) in Ckript is based on the mark-

and-sweep algorithm [2]. The idea behind it is very simple –

during the mark phase, it goes through all the variables on stacks

and marks them as reachable. The sweep phase goes through all

the variables on the heap and deallocates all the variables that are

not marked as reachable. If a variable is not reachable in any

of the program stacks, it will never be reachable, and it can be

safely deleted from the heap. The GC in Ckript uses the previously

described bump allocator interface to free variables, so they’re not

deleted, making it faster. This matters because it is a stop-the-

world garbage collector, which means that once it runs, the whole

program execution halts until garbage collection is finished.

Ckript’s garbage collector has threshold before looking for data to

free. At first, it waits for at least five chunks to be allocated on the

heap before it runs and then adjusts this threshold dynamically

depending on how many chunks there are.

2.4. Lexer

Before the source code can be executed, it needs to be

transformed into a more computer-friendly format [2]. The Ckript

interpreter uses a linear sequence of specialized components

to achieve that, namely the lexer, parser, and evaluator.

The lexer performs lexical analysis (also known as tokenization).

It is the process of transforming source code, which is a string

of characters, into a series of tokens. Source code often contains

information that is not very useful to a computer, such

as whitespace and comments, and many of the keywords

are unnecessarily verbose.

Fig. 10. The outline of the lexer’s workflow

Fig. 11. The conversion of the source code to tokens

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2022 7

A single token is a bit more complex. It holds information

about its type, a value, and some metadata such as the source file

and line to help build meaningful error messages. Tokens of type

FUNCTION, RETURN, TRUE, FALSE etc. are self-contained

and don’t need to store more information since they’re used

to describe language keywords. The enum type defining the type

of a token is implemented as an integer value in the C++ language

making tokens lightweight to use and store. Tokens such

as STRING_LITERAL, DECIMAL, or IDENTIFIER need to

store additional information about the contents of the token. That’s

where the value field comes in. See in Fig. 11 a string literal such

as “lorem” in the example would be transformed to a token

of type STRING_LITERAL and value “lorem”.

The Ckript lexer iterates through source code character

by character and groups them. A group of characters that means

something is called a lexeme. When a new lexeme is found,

it is transformed into a token. A set of rules that determines how

a language groups characters into lexemes is called a lexical

grammar. The Ckript grammar is very similar to that of the C

programming language.

2.5. Parser

The parser is responsible for syntax analysis. It takes a series

of tokens as input and transforms them into an Abstract Syntax

Tree (AST). An AST is a tree structure that consists of nodes.

Each node can have child’s nodes. An AST does not contain

information such as braces, semicolons, or parentheses. The

structure of an AST is designed in a way to represent these

implicitly.

Fig. 12. The outline of the parser’s workflow

The Ckript parser distinguishes three types of nodes:

 Declaration – a piece of code that introduces a new variable

or class i.e., int number = 5;

 Expression – a piece of code that evaluates to a value e.g.,

a mathematical operation i.e., sin(5)*a;

 Statement – any executable piece of code. That includes

expressions and declarations.

In Ckript, all nodes are some kind of statement nodes. Ckript

defines a program as a set of statements, that’s why treating

everything as a statement makes it easier to execute code.

Fig. 13. The grammar of a declaration statement

Every declaration statement must start with a type, followed

by an identifier, followed by an equal sign, followed by an

expression, and end with a semicolon.

Every expression statement must start with an expression

and end with a semicolon.

Every compound statement (a statement that can contain

multiple other statements) must start with a left brace {, then

contain one or more statements, and end with a right brace }.

Every while statement must start with the “while”

keyword, followed by a left parenthesis, followed by

an expression, followed by a right parenthesis, and end with

a statement.

Expressions are also a complicated concept in Ckript since

a lot of code can fall under that category, and most expressions

are made up from other expressions.

Fig. 14. An example of a binary expression

Binary expressions are made up from two expressions

separated by a binary operator (such as “+”, “-” etc.).

The binary expressions can also contain compound expressions

on either of the sides, such as in the following example (Fig. 15)

where the right-hand side of the binary expression is another

binary expression.

Fig. 15. Compound binary expression Fig. 16. The tree representation

of an expression

Parsing mathematical expressions introduces two new

problems to solve – operator precedence and associativity.

Ckript’s operator precedence was heavily inspired by the C++

operator precedence [3]. If there was no precedence, an excessive

number of parentheses would be required to write valid

mathematical expressions. Thanks to operator precedence, the

parser knows that, for example, multiplication should be evaluated

before addition. An expression like 123+5*8; should be parsed to

an AST node like this in Fig. 16:

By traversing the tree recursively from left to right and

evaluating it, the correct result will be calculated.

To parse an expression to a tree, the Shunting Yard Algorithm

[5] can be used. Ckript uses a slightly modified version of the

algorithm that parses tokens to Reverse Polish Notation [1]

(RPN). For example, the expression “1 + 2 * 3 + 4” will be

converted to “1 2 3 * + 4 +” which can be later reduced

to the actual value with an RPN calculator.

2.6. Evaluator & Virtual Machine

The evaluator is the place where the actual program execution

happens. It takes an AST as input, traverses it, and executes each

statement node. Another important part of the evaluator is the

expression evaluator which takes an RPN stack and evaluates it to

a value. There are also functions responsible for declaring

variables, classes, executing built-in and user-defined functions,

instantiating objects etc. The evaluator is closely tied to the virtual

machine.

The virtual machine (VM) is the place where all the data

is stored during program execution. The VM contains the global

8 IAPGOŚ 2/2022 p-ISSN 2083-0157, e-ISSN 2391-6761

heap, the stack trace, output buffers, references to all the

evaluators using the VM, and the reference to the client that made

the HTTP request that invoked the script. Usually, there

are multiple evaluators (one for each executed function), but only

one VM. Each evaluator instance holds the reference to the same

VM so that all functions can access the exact same data, and the

VM keeps track of all the active evaluators to enable garbage

collection (since function stacks are stored in their respective

evaluators). The VM also defines all the built-in (standard library)

functions available globally during program execution, such

as echo(), abort() etc.

For example, whenever an evaluator defines a new variable

on the heap, it needs to use the associated VM to store

the variable’s value.

The Value class models all available data types, such

as integers, strings, arrays etc. A value can be either stored

in a Variable object or a Chunk object on the heap, depending

on whether it was allocated on the heap or a stack. Values that live

on stacks are returned as variables that hold the actual values.

Values allocated on the heap are returned as variables with a heap

reference value, which basically acts as a pointer to the location

of the Chunk object on the heap that holds the actual value.

The Heap class holds an array of Chunk objects, it also has

a Cache instance that holds references to unused Chunks.

The NativeFunction class in an abstract class defines

a standard library function. Other classes can implement their

own execute methods – see Fig. 17. The standard library is a map

of key-value pairs where the keys are the names of the functions,

and the values are NativeFunction pointers - each having its own

implementation.

Fig. 17. C++ source code of the echo function implementation

For example, the echo function accepts at least one argument

and saves the string representation of all of them to the output

buffer (which is later rendered to the client) and returns void.

The CVM (Ckript Virtual Machine) class is the heart

of the whole VM. It is closely tied to the Heap object, contains

garbage collection utility methods, keeps track of stack traces,

and can throw all kinds of errors.

3. Tests and results

To test the performance of the HTTP server, Siege [4] utility

program was used. The tests compared Ckript scripts running on

the server with similar PHP scripts running on an Apache server.

The machine used for testing was running on an Intel Core

10th Gen i5-10210U Processor with 4 cores, 8 threads, clocking

1.60 GHz at base frequency and 4.20 GHz at max frequency.

The machine had 16GB DDR3 RAM. The tests were run

on Ubuntu 20.04 on WSL2 on Windows 10.

All the tests used the same Siege settings – there were no

delays between requests, there were 200 concurrent users

simulated at the same time, and the tests were repeated 200 times,

meaning that each test ran 40000 times. The command used to

invoke the tests looked like this:

siege -r200 -c200 -b <URL>

The following test cases were performed.

Hello world test

The first test ran a script that only returned the “Hello world”

string back to the client. It tested the speed of parsing simple

HTTP requests and constructing HTTP responses.

 Elapsed time Transaction rate Throughput

Mish server 4.97 secs 8048.29 trans/sec 0.08 MB/sec

Apache server 3.59 secs 11142.06 trans/sec 0.12 MB/sec

Simple HTML page test

The second test requested an HTML page from the server.

The page used for testing was the Apache2 Ubuntu Default Page.

The results are as follows:

 Elapsed time Transaction rate Throughput

Mish server 10.75 secs 7441.86 trans/sec 50.56 MB/sec

Apache server 9.95 secs 8040.20 trans/sec 24.83 MB/sec

One might notice an oddity here - even though the elapsed

time and transaction rates are comparable, the Mish server

doubled the throughput. It is due to caching mechanisms that the

Apache server is using, some page resources were not transferred

multiple times (such as images).

Fibonacci sequence test

The last test ran a script that generated and displayed first

ten Fibonacci numbers recursively (see Fig. 18). This method

is known for being a CPU-intensive task.

 Elapsed time Transaction rate Throughput

Mish server 49.88 secs 801.92 trans/sec 0.11 MB/sec

Apache server 4.11 secs 9732.36 trans/sec 0.78 MB/sec

The speed of parsing HTTP requests and serving HTTP

responses is comparable between the two tested servers, with

the Apache server performing a bit better.

Fig. 18.Recursive Fibonacci function in PHP (top) and Ckript (bottom)

It is noticeable that Ckript is a rather slow programming

language and was a bottleneck in the Fibonacci test, it performed

about ten times slower than PHP. This is because Ckript uses

a tree-walk interpreter, while PHP has been a just-in-time

compiled language since version 8.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2022 9

4. Summary

The server at its current state is fully capable of powering

small and medium-sized web projects. It’s fast enough to handle

the traffic of a semi-popular website, and the scripting language

allows for developing most common back-end tasks. Ckript

enables web developers to build complex page templates when

combined with HTML code. Most other programming languages

require external templating engines or front-end libraries to

achieve that. Most popular front-end frameworks such as React,

Vue, or Angular rely on client-side rendering, which is not great

for a site’s SEO. There are libraries (such as Nuxt or Next) that

work on top of these frameworks to solve this problem. Ckript

coupled with the web server makes server-side rendering possible

without having to install any additional software. It is possible to

define business logic directly in the presentation layer or make

reusable components by creating template strings and then

interpolating them later. These components can be exported to

external files and then included in the presentation layer if needed.

There are a few ways that could improve the usability of the

server, such as implementing user sessions which would

streamline developing authentication and authorization systems.

Right now, this can be achieved by sending tokens to the server

with each request, but most web servers available today offer tools

that handle cookies and sessions under the hood. Database drivers

could be added to enable integration with databases such as

MySQL, PostreSQL, or MongoDB and allow for easier persistent

data storage. Although Ckript offers file I/O capabilities, these can

prove to be hard to work with if there’s structured data to be

stored. The scripting language could be made faster by optimizing

the interpreter or writing an ahead-of-time or a just-in-time

compiler for it. Ckript is not a blazing fast language due to its tree-

walk interpreter. Traversing an AST is rather slow since its nodes

are all over the place in memory, which leads to cache misses. A

way to speed it up would be writing a compiler targeting bytecode.

Bytecode can be represented as an array that can be processed

linearly, reducing the number of cache misses and so-called

pointer chasing. This would also require writing an entirely new

virtual machine, since the existing one can only work with ASTs

but would speed things up significantly.

5. Additional resources

Language repository with documentation:

https://github.com/Roller23/ckript-lang

HTTP server repository with language fork and documentation

for the server only: https://github.com/Roller23/Mish

Online interpreter for language. It uses WebAssembly (C ++

compilation to WASM) to run the interpreter in the browser:

https://ckript.netlify.app/ and the repository for the online

interpreter: https://github.com/Roller23/ckript-online.

Ckript implementation in Javascript in the Node.js

environment. This version is being developed in parallel with the

C ++ version. It has some improvements such as access to

network functions or a simplified type system for numbers:

https://github.com/Roller23/ckript-js.

Acknowledgments

The authors want to thank Dr Piotr Duch (ORCID ID 0000-

0003-0656-1215) and Dr Tomasz Jaworski (ORCID ID 0000-

0001-8600-3760) for their inspiration, support and fruitful advice.

This work was financed by the Lodz University

of Technology, Faculty of Electrical, Electronic, Computer

and Control Engineering as a part of statutory activity

no. 501/2-24-1-2

References

[1] Hamblin C. L.: Translation to and from Polish Notation. Comput. J. 5, 1962,

210–213. [http://doi.org/10.1093/COMJNL/5.3.210].

[2] Nystrom R.: Crafting Interpreters. Genever Benning, 2021.

[3] C++ Operator Precedence – cppreference.com, (n.d.).

https://en.cppreference.com/w/cpp/language/operator_precedence

(18.02.2022).

[4] Siege: HTTP/HTTPS stress tester – Linux man page, (n.d.).

https://linux.die.net/man/1/siege (18.02.2022).

[5] The Shunting Yard Algorithm, (n.d.).

http://mathcenter.oxford.emory.edu/site/cs171/shuntingYardAlgorithm/

(18.02.2022).

Eng. Wiktor Kania

e-mail: victorkaniaweb@gmail.com

Wiktor Kania is a graduate of Lodz University

of Technology. His interests lie in modern web

development, network programming, operating

systems, and computer architecture.

http://orcid.org/0000-0002-0128-2762

DSc. Ph.D. Eng. Radosław Wajman, prof. TUL

e-mail: radoslaw.wajman@p.lodz.pl

Radosław Wajman is a professor at the Institute

of Applied Computer Science at the Lodz University

of Technology. In his work, he deals with the issues

in the field of electrical capacitance tomography,

fuzzy inference, software engineering, two-phase gas-

liquid flow recognition, image reconstruction,

and recognition.

http://orcid.org/0000-0002-6372-5960

https://github.com/Roller23/ckript-lang
https://github.com/Roller23/Mish
https://ckript.netlify.app/
https://github.com/Roller23/ckript-online
https://github.com/Roller23/ckript-js

