
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2022 17

artykuł recenzowany/revised paper IAPGOS, 4/2022, 17–20

http://doi.org/10.35784/iapgos.3058 received: 2.09.2022 | revised: 13.12.2022 | accepted: 15.12.2022 | available online: 30.12.2022

EFFICIENTLY PROCESSING DATA IN TABLE WITH BILLIONS

OF RECORDS

Piotr Bednarczuk, Adam Borsuk

University of Economics and Innovation in Lublin, Institute of Computer Science, Lublin, Poland

Abstract: Over time, systems connected to databases slow down. This is usually due to the increase in the amount of data stored in individual tables,

counted even in the billions of records. Nevertheless, there are methods for making the speed of the system independent of the number of records

in the database. One of these ways is table partitioning. When used correctly, the solution can ensure efficient operation of very large databases even after
several years. However, not everything is predictable because of some undesirable phenomena become apparent only with a very large amount of data.

The article presents a study of the execution time of the same queries with increasing number of records in a table. These studies reveal and present

the timing and circumstances of the anomaly for a certain number of records.

Keywords: systems aging, partitioning, efficiently data processing, billions of records

WYDAJNE PRZETWARZANIE DANYCH W TABELI Z MILIARDAMI REKORDÓW

Streszczenie: Z biegiem czasu systemy podłączone do baz danych zwalniają. Wynika to zwykle ze wzrostu ilości danych przechowywanych
w poszczególnych tabelach, liczonych nawet w miliardach rekordów. Niemniej jednak istnieją metody uniezależnienia szybkości systemu od liczby

rekordów w bazie danych. Jednym z tych sposobów jest partycjonowanie tabel. Przy prawidłowym zastosowaniu rozwiązanie to może zapewnić wydajne
przetwarzanie danych w bardzo dużych bazach danych nawet po kilku latach działania. Jednak nie wszystko jest tak przewidywalne ponieważ niektóre

niepożądane zjawiska ujawniają się dopiero przy bardzo dużej ilości danych. W artykule przedstawiono badanie czasu wykonania tych samych zapytań

przy rosnącej liczbie rekordów w tabeli. Badania te ujawniają i przedstawiają moment i okoliczności występowania anomalii dla pewnej liczby rekordów.

Słowa kluczowe: starzenie się systemów, partycjonowanie, efektywne przetwarzanie danych, miliardy rekordów

Introduction

Billions of records in single tables are often found in data

warehouses or BIG DATA databases. The administrators of such

databases often face a optimalisation task of queries execution

time. This is an important problem because it occurs in every large

database. The ideal solution would allow, despite the increase

of the number of records in the tables, to perform operations

on the database as quickly as at the time of its implementation [2].

An example of such a solution that is implemented in most

database engines is table partitioning [3].

The report presents a practical example of the use

of partitioning on tables containing up to a billion records.

The greatest advantage of partitioning was presented in the study

which shows that the increase number of records in tables does not

affect the query execution time.

The paper is an extension of publication [1] therefore

appearing repetitions or similarities of the text in first four

chapters result solely from the desire to present a coherent

and complete the course of the research.

1. Table partitioning

Table partitioning is a division of tables into parts, physical

files, constituting some separated ranges of data, e.g.: monthly,

quarterly or annually. This division takes place in the database

files, but the developer sees them as one object; one table.

Although it is always possible to read the contents of each

partition by using the appropriate tags, a standard queries

e.g. SELECT, UPDATE and MERGE on the partitioned table

will processing the data only from one or a few set of records,

not all records.

Fig. 1. Visualisation of table partitioning by yearly partitioning function

In this way, regardless of the increase in the number of records

in the table, the number of records that the query will

be performed on is almost always significantly smaller than the

total size of the table. Then you will achieve the best performance

and predictability of query execution times because it will usually

relate only to a limited number of partitions, e.g. always 2 for data

from the last 30 days. This is the main advantage and benefit

of data partitioning.

2. Preparing for partitioning

The first step to start the implementation of partitioning in our

database, is to first create a partitioning function. For this purpose,

it is worth doing a short analysis of use cases to set the optimal

period of partitioning. Based on my experience, there are three

such most common periods: yearly, quarterly, and monthly,

and in many of cases monthly is the best. This is why the monthly

partitioning function was selected for the research, as can be seen

in listing 1.

Listing 1. A monthly partitioning function

CREATE PARTITION FUNCTION PartitionFunctionByMonth (int)
AS RANGE RIGHT FOR VALUES(

 20150101
 ,20150201
 ,20150301
 :
 :
 :
 ,20201201
);

Instead of date type, partitioning function is based on integer

type and in this way monthly, quarterly or annual ranges are set.

Using integer type can seems to be incorrect. This conscious

optimization procedure used in data warehouses [5]. In queries

of tables with billions of records, it matters what exactly data type

the WHERE clauses will be based on. Queries will run much

faster, with the integer type then date type. The next step is to

create a partitioning scheme based on the partitioning function.

The code responsible for creating the schema is shown in listing 2.

Listing 2. Partitioning scheme based on the monthly partitioning function

CREATE PARTITION SCHEME PartitionSchemaByMonth
AS PARTITION PartitionFunctionByMonth all to ([PRIMARY])

Having a function and a partitioning scheme the tables

can be created where bilions of records will be generate. For this

research there is created partitioned table was created

FactResellerSalesPartitioned along with an identical table without

user
Stempel

18 IAPGOŚ 4/2022 p-ISSN 2083-0157, e-ISSN 2391-6761

partitions FactResellerSales. Is worth to note that the integer type

as a key has too small a range for a writing billion records,

so the bigint type is selected.

To ensure the same measurement conditions of time

executions for NSERT, SELECT, UPDATE, and MERGE

queries, exactly the same data will be inserted into both tables.

Measurements will be taken after added 100 million records added

to both table each time. he structure of the partitioned table

is presented in listing 3.

Listing 3. Partitioned table structure; the unpartitioned table will have the same

structure

CREATE TABLE [dbo].[FactResellerSalesPartitioned](
 [SalesKey] [bigint] IDENTITY(1,1) NOT NULL,
 [DateKey] [int] NOT NULL,
 [EmployeeKey] [int] NOT NULL,
 [CustomerKey] [int] NOT NULL,
 [ProductKey] [int] NOT NULL,
 [SalesValue] dec(5,2) NOT NULL
)

It is not without significance, is to use the partitioning scheme

when creating a clustering index on a partitioned table

(FactResellerSalesPartitioned).To perform this operation before

importing data into the table because it may take a long time,

especially on a table with a large amount of data. the code creating

the index is presented in the listing 4.

Listing 4. Index using a partitioning scheme

CREATE UNIQUE CLUSTERED INDEX [PartitionedIndexReport] on
[dbo].[FactResellerSalesPartitioned]([SalesKey],[DateKey])
on PartitionSchemaByMonth ([DateKey])

Listing 5 shows the code responsible for creating an identical

clustered index for a table without partitions (FactResellerSales).

Except that we do not create this index in the partitioning scheme.

Listing 5. Definition of the Index on the table without partitioning

CREATE UNIQUE CLUSTERED INDEX [IndexReport]
on [dbo].[FactResellerSales]([SalesKey],[DateKey])

Now we can consider that partitioning on

(FactResellerSalesPartitioned) table has been enabled after

created and executed function, schema and clustered index.

You do not need to change of SELECT, UPDATE, and MERGE

instruction to use partitioning. The only necessity is that

the condition in the WHERE section is built on the DateKey

column that was added to the partition key. The query optimizer

reads data only from those partitions that are within the date range

included in the WHERE clause [1, 4]. Listing 6 shows the use

of partitioning in a SELECT query.

Listing 6. A SELECT query on a partitioned table is no different from a query

on a table with no partitions

SELECT EmployeeKey, SUM(SalesValue)
FROM [dbo].[FactResellerSales] –-unpartitioned table
WHERE DateKey between 20070925 and 20070927
GROUP BY EmployeeKey

SELECT EmployeeKey, SUM(SalesValue)
FROM [dbo].[FactResellerSalesPartitioned] -– partitioned table
WHERE DateKey between 20070925 and 20070927
GROUP BY EmployeeKey

As you can see in the example of SELECT query, it looks

almost identical, only the name of the table changes. Therefore,

only queries against partitioned tables will be presented

for subsequent queries. Listing 7 shows the example use

of partitions in the UPDATE query.

Listing 7. A UPDATE query on a partitioned table

UPDATE fs
SET SalesValue = t.SalesValue
FROM [dbo]. [FactResellerSalesPartitioned] fs
JOIN [dbo].[TMP] t on [fs].DateKey = [t].DateKey
AND [fs].[SalesKey] = [t].[SalesKey]
WHERE fs.DateKey between 20320421 and 20320520

The most complicated is use of partitioning on MERGE

query – listing 8.

Listing 8. A MERGE query on a partitioned table

MERGE
dbo.FactResellerSalesPartitioned AS [TargetTable]

 USING (
 SELECT
 [SalesKey]
, [DateKey]
, [EmployeeKey]
, [CustomerKey]
, [ProductKey]
, [SalesValue]
 FROM [dbo].[TMP]
) [SourceTable]
on [TargetTable].DateKey = [SourceTable].DateKey
and [TargetTable].[SalesKey] = [SourceTable].[SalesKey]
when matched and (
 [TargetTable].[SalesValue]!=[SourceTable].[SalesValue]
)
THEN UPDATE
set [TargetTable].[SalesValue]=[SourceTable]. [SalesValue]
WHEN NOT MATCHED BY TARGET
THEN INSERT (
 [DateKey]
, [EmployeeKey]
, [CustomerKey]
, [ProductKey]
, [SalesValue]
)
VALUES (
 [SourceTable].[DateKey]
, [SourceTable].[EmployeeKey]
. [SourceTable].[CustomerKey]
, [SourceTable].[ProductKey]
, [SourceTable].[SalesValue]

);

In the presented queries, the condition in the WHERE clause

had to be based on the DateKey field. Because this is the field that

was defined when creating the clustering index as the one after

which partitioning will take place. This column must be

of the same data type as that defined in the partitioning function.

In this case it is an integer so dates are written as numbers, e.g.,

October 14, 2020 will be 20201014.

3. Method and conditions of research

The AdventureWorksDW 2017 database was used to carry

out the measurements. This database is a training database that

reflects data warehouses used in real systems. The test consisted

in comparing the execution times of operations on a partitioned

table and a table without a partition. Since the

AdventureWorksDW 2017 database contained only tens

of thousands of records, it was necessary to generate more data

based on a combination of records from existing dimensions:

product (DimProduct), sellers (DimEmploye) and customers

(DimCustomer) and dates that already existed in the DimDate

table. The generated data was then inserted in parallel into

a partitioned (FactResellerSalesPartitioned) and non-partitioned

(FactResellerSales) table.

One million records were inserted for each day in a random

way that was a combination of data from the various dimensions:

• 1000 clients from DimCustomer with over 18,000 records,

• 10 sellers from DimEmployee dimension with 300 items,

• 100 products from the dimProduct dimension with over 600

items. Then the combinations of these data were inserted into

the sales fact tables. This is how the daily data increase of one

million records was created (1000 10 100 = 1,000,000).

The measurements were conducted beginning from 1 million

records to 10 million and later every 100 million up to 1 billion

records and every billion records to reach 10 billion. Like this

for each significant number of records: 1, 10, 100, 200 ... 1000,

2000 … 10000 million, measurements were taken of the amount

of time the SELECT, UPDATE, MERGE commands took

to reading data from the last 30 days, i.e. 30 million records.

A monthly partitioning function was used operations were

performed on the last two partitions. The exception was when the

table contained one million and 10 million records what means

that was used only one partition.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2022 19

4. Measurement of query execution times

The measurements concerned the execution times

of the SELECT, UPDATE and MERGE queries from listing 6, 7

and 8 always for the last 30 million records added to the tables.

The time was measured in simply way with a precision

in milliseconds. The script of execution queries time calculated

is shown in listing 9.

Listing 9. A script that measures the execution time of the SELECT, UPDATE

and MERGE operation

DECLARE @start datetime
DECLARE @stop datetime
SELECT @start = getdate ();

SELECT, UPDATE OR MERGE

@stop = getdate ()
SELECT DATEDIFF (ms, @start, @stop) /1000.00

It is worth noting that in this research, precision time

measurement is not so important. It is mainly about checking

whether the query execution time on a partitioned table will

remain at the same level while the time of performing the same

query on a table without a partition will increase. It does not

matter if it is three seconds, five or ten seconds. It is only

important that the query execution time on a partitioned table

is independent of the data increment.

5. Results

The measurements times for the following SQL statements:

INSERT, SELECT, UPDATE, MERGE are compare for a non-

partitioned and partitioned table for configuration:

 hardware: Samsung 870 QVO drive, Intel Core i5-3210M

processor, 2.5GHz, memory 8GB RAM,

 software: Microsoft SQL Server 2018 Standard Edition

with recommended by Microsoft training database

AdventureWorksDW 2017.

Always, for each SQL statements: SELECT, UPDATE,

MERGE the same constant conditions were keeping for the table

with and without partitions:

 the same table structures,

 identical structure of the cluster index, which included

the fields SalesKey and DateKey,

 always the same number of partitions: 2,

 always the same number of records participating

in the each operations – 30 millions – see chapter 3.

Method and conditions of research

 exactly the same data in both tables.

The measurement results are presented in table 1.

For better readability, the comparing the execution times

of INSERT, SELECT, UPDATE, MERGE queries are presented

on separate graphs on a logarithmic scale (figure 2–5).

Fig. 2. Execution times of INSERT query on a table with and without partitioning,

on a logarithmic scale

The execution time of the INSERT operation of the same

number of records into a table with an increasing number

of records is constant. For partitioning, it is only important that

the INSERT execution time is also constant, and due to the use

of the partitioning scheme and the partitioning function it is

slightly longer.

Table 1. Execution times of INSERT, SELECT, UPDATE, MERGE query performed

on tables with and without partitioning

N
u
m

b
er

 o
f

re
co

rd
s

Execution time of

INSERT SELECT UPDATE MERGE

o
n
 t

ab
le

 w
it

h
o
u
t

p
ar

ti
ti

o
n
in

g

o
n
 t

ab
le

 w
it

h

p
ar

ti
ti

o
n
in

g

o
n
 t

ab
le

 w
it

h
o
u
t

p
ar

ti
ti

o
n
in

g

o
n
 t

ab
le

 w
it

h

p
ar

ti
ti

o
n
in

g

o
n
 t

ab
le

 w
it

h
o
u
t

p
ar

ti
ti

o
n
in

g

o
n
 t

ab
le

 w
it

h

p
ar

ti
ti

o
n
in

g

o
n
 t

ab
le

 w
it

h
o
u
t

p
ar

ti
ti

o
n
in

g

o
n
 t

ab
le

 w
it

h

p
ar

ti
ti

o
n
in

g

[mln] [s] [s] [s] [s] [s] [s] [s] [s]

1 93.63 127.4 0.11 0.11 2.08 4.9 6.3 6.34

10 91.74 104.3 0.97 1 16.56 49.27 58.99 65.48

100 93.69 105.4 6.92 4.61 56.34 159.3 212.84 231.6

200 92.32 106.7 15.62 4.7 66.7 162.5 218.59 240.5

300 92.91 105.4 23.17 5.35 74.71 156.3 235.89 252.7

400 94.08 104.7 34.09 5.87 88.98 156.7 258.48 263

500 91.54 104.9 41.2 3.97 91.81 165.3 267.73 256.2

600 93.25 104.3 49.25 4.72 167.8 160.3 289.45 270.2

700 95.33 106.6 54.7 5.64 171.8 155.8 309.27 292.6

800 94.35 107.6 69.67 4.42 180.7 159.4 327.99 291.5

900 95.91 104.5 71.14 3.86 192.2 155.2 352.87 303.3

1000 98.22 108.9 81.57 5.54 197.6 159.9 374.99 337.8

2000 96.78 104.2 208.48 5.72 135.3 160.6 584.78 444.9

3000 94.56 105.8 307.11 5.45 137.3 154.5 776.89 547.8

4000 92.26 105.3 461.23 5.42 138.3 158.8 977.45 212.3

5000 97.88 104.4 513.26 5.73 138.8 156.3 1186.7 224.9

6000 93.78 106.5 644.78 5.12 139.2 156.8 1365.4 218.3

7000 91.11 105.4 724.59 5.33 143.8 158.9 1600.8 227.6

8000 96.27 104.7 852.17 5.53 140.8 163.6 1855 238.4

9000 97.54 105.9 1106.2 5.49 227.9 219.2 2062.7 297.5

10000 94.75 104.9 1160.7 5.88 289.2 348.3 2339.7 349.1

Fig. 3. Execution times of SELECT query on a table with and without partitioning,

on a logarithmic scale

Fig. 4. Execution times of UPDATE query on a table with and without partitioning,

on a logarithmic scale

20 IAPGOŚ 4/2022 p-ISSN 2083-0157, e-ISSN 2391-6761

As you can see in the figure 3, SELECT execution times

for a partitioned table remain constant with exponentially

increasing execution time of the same query on a table without

partitioning.

UPDATE query times look similar for both partitioned

and non-partitioned tables. Similarly, they also rise at the limit

of 10 billion records. There is also a peak around three billions

of records for a query on a table without partitioning (figure 4).

Fig. 5. Execution times of MERGE query on a table with and without partitioning,

on a logarithmic scale

The results presented in table 1 and figure 3 clearly indicate

that the SELECT query times from the partitioned table are

relatively constant and fluctuate around 5-6 s. It is different for the

table without partitioning, where this time always increases

with the increase of data. The similar results is for the MERGE

query where times from the partitioned table grows slightly to

350 s while the execution time on a non-partitioned table grows

exponentially to 2340 s. I remind you that the tested SELECT

query always operated on the same, invariable number

of 30 million records.

Fig. 6. The strange behavior of the MERGE query around three billions of records

That confirm that we do not lose much when arguing

with tables without partitions on inserting and updating records,

while we gain a lot from SELECT and MERGE queries on tables

with partitions.

Noteworthy is the strange behavior of the MERGE query

appearing from one billion of records, where a significant increase

in processing time is visible, in the peak to over 500 s for three

billions of records (figure 6). This may be due to the native

optimization algorithm of the database engine or to hardware

characteristic. This is what we will focus on in future research.

6. Conclusions

The research clearly indicate the partitioning table gives

effectiveness of data processing in databases with billions

of records. This is confirmed by the results of measurements

of INSERT, SELECT, UPDATE, MERGE. We do not lose much

with inserting and updating records, and we gain a lot from

selecting and merging data on tables with partitions even

on database with billions of records. The proposed solution solves

the problem of "systems aging" with time when more and more

records are added to the database. Thanks to partitioning, we can

achieve the same system efficiency at the beginning, right after

starting and after a few years of its implementation.

Additionally, when processing a large number, billions

of records, an anomaly was noticed that to some extent

deteriorates the SELECT and MERGE times on partitioned tables,

it requires further investigation if the problems occur with

a different hardware and software configuration.

References

[1] Bednarczuk P.: Optimization in very large databases by partitioning tables,

Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska

10(3), 2020, 95–98.

[2] Bandle M., Giceva J., Neumann T.: To Partition, or Not to Partition, That

is the Join Question in a Real System. International Conference on Management

of Data, 2021.

[3] Kumar A., Jitendra Singh Y.: A Review on Partitioning Techniques in Database.

International Journal of Computer Science and Mobile Computing 13(5), 2014,

342–347.

[4] Microsoft documentation, Data partitioning guidance,

https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-

partitioning

[5] Qi W., Song J., Yu-bin B.: Near-uniform Range Partition Approach

for Increased Partitioning in Large Database. 2nd IEEE International Conference

on Information Management and Engineering, 2010, 101–106.

[6] Song J., Bao Y.: NPA: Increased Partitioning Approach for Massive Data

in Real-time Data Warehouse. 2nd International Conference on Information

Technology Convergence and Services, 2010, 1–6.

[7] Tanvi J., Shivani S.: Refreshing Datawarehouse in Near Real-Time.

International Journal of Computer Applications 46(18), 2012, 24–29.

[8] Zheng K. et al.: Data storage optimization strategy in distributed column-

oriented database by considering spatial adjacency. Cluster Computing 20, 2017.

Ph.D. Eng. Piotr Bednarczuk

e-mail: Piotr.Bednarczuk@wsei.lublin.pl

He is a doctor in the Institute of Computer Science

at the University of Economics and Innovation

in Lublin. Studied and defended his Ph.D. thesis

at Lublin University of Technology. He supports

his scientific knowledge with professional practice

gained in a leading IT company, where he has been

working for over 15 years, currently as the head of the

database solutions department in the mobile systems

department. His research area focuses on the software

engineering web database systems, mobile-device

systems and databases and data warehouses.

http://orcid.org/0000-0003-1933-7183

M.Sc. Adam Borsuk

e-mail: adam.max.borsuk@gmail.com

He is a master degree absolvent of the Institute

of Computer Science at the University of Economics

and Innovation in Lublin. Studied programming

and data analysis and defended his master’s thesis

in 2021. He supports his scientific knowledge

with professional practice gained in a leading IT

company, where he has been working for over 4 years,

currently as the database developer.

http://orcid.org/0000-0003-2316-1694

