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Abstract: This paper presents a new hybrid algorithm using multiple support vector machines models with a convolutional autoencoder for electrical 
impedance tomography, and ultrasound computed tomography image reconstruction. The ultimate hybrid solution uses multiple SVM models to convert 

input measurements to individual autoencoder codes representing a given scene then the decoder part of the autoencoder can reconstruct the scene. 
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NOWY ALGORYTM HYBRYDOWY WYKORZYSTUJĄCY AUTOENKODER KONWOLUCYJNY 

Z SVM DLA ELEKTRYCZNEJ TOMOGRAFII IMPEDANCYJNEJ I TOMOGRAFII 

ULTRADŹWIĘKOWEJ 

Streszczenie. Artykuł przedstawia nowy hybrydowy algorytm który używa modeli maszyn wektorów nośnych wraz z autoenkoderem konwolucyjnym do 

rekonstrukcji obrazu z elektrycznej tomografii impedancyjnej oraz ultrasonograficznej tomografii transmisyjnej. Ostateczne rozwiązanie hybrydowe używa 

wielu modeli SVM do konwersji pomiarów wejściowych do pojedynczych kodów autoenkodera reprezentujących daną scenę a wtedy dekoder wycięty 
z autoenkodera może zrekonstruować daną scenę.  

Słowa kluczowe: autoencoder konwolucyjny, SVM, elektryczna tomografia impedancyjna, ultradźwiękowa tomografia transmisyjna 

Introduction 

Ultrasound Transmission Tomography [11, 12, 27] is the 

process which enables, among others, reconstruction of the scene 

based on ultrasonic signal measurements. Another [7] paper on 

ultrasound tomography presents an image reconstruction 

algorithm based on a conventional neural network (CNN) for two-

phase imaging materials. It has also been verified with 

experimental data. Finally, the paper [4] describes research into 

applying a dual-domain network for ultrasound tomography. 

The EIT reconstruction [16] is based on reconstructing 

the conductivity from measurements vectors obtained from 

measurements using electrically conductive electrodes. However, 

the best results can be obtained using neural networks (especially 

deep networks). Several works have extensively described the EIT 

method, among which we can mention works [2, 6, 8, 9, 13, 20, 

21, 25]. 

Several machine-learning methods for EIT reconstruction 

have been discussed in the literature. In the article [18], the 

authors explored logistic regression using an elastic net. The paper 

[16] used neural networks for EIT image reconstruction, where N 

neural networks trained separately for each output pixel were used 

to reconstruct image pixel values. Finally, the paper [15] applies 

convolutional neural network structure in EIT reconstruction. 

The multiple ANN reconstruction methods are based on deep 

and convolutional autoencoders. Paper [10] describes a solution 

based on EIT reconstruction obtained using a deterministic 

algorithm (D-Bar) and applies the UNet convolutional model 

to correct these initial reconstructions.  

Another method based on deep convolutional autoencoders 

is described in [24]. This algorithm uses a deep autoencoder 

to reconstruct a lung object based on EIT. The method consists 

of several steps: 

1. Minimizing the cost function of the autoencoder with lung 

images. 

2. The fully connected networks are trained on the measurements 

and outputs of the encoder. 

3. Finally, the two networks are combined, where the network 

from step 2 processes the measurements, and the decoder 

of the developed autoencoder outputs reconstruction. 

 

There are several numerical methods [5, 14, 17, 19, 22, 23, 

24]. The authors have developed an innovative hybrid algorithm 

for image reconstruction of impedance and ultrasonic transmission 

tomography. The solution uses the encoder part from the 

convolutional autoencoder and multiple Support Vector Machines 

[3, 26] models to convert EIT or UTT measurements into 

individual autoencoder codes. In the case of EIT, the synthetic 

data was used only, containing generated scenes and EIT 

simulations. Therefore, the autoencoder is trained using generated 

scenes, and the encoder part is used to encode these scenes. 

In the final solution, the multiple SVM models are used to convert 

potential difference vectors from EIT simulations into AE codes 

representing the corresponding scenes. In the case of UTT, 

the convolutional autoencoder is trained using augmented real-

scene images, and then, the encoder part is used for real-scene 

encoding; next, multiple SVM models are trained to convert real 

UTT measurements into codes representing real scenes. 

The ultimate hybrid algorithm in both cases is constructed using 

multiple SVM models at the input whose outputs are sent 

to the decoder part of AE, which reconstructs the image of the 

scene. Such a hybrid algorithm is particularly useful, especially 

when there is too small of training data (i.e., where training data 

comes from real measurements), so impossible to use a pure deep 

learning solution as in our UTT experiments. 

1. EIT synthetic data 

The model for the synthetic data in Electrical Impedance 

Tomography was prepared with 16 electrodes placed outside 

the area. A finite element mesh was prepared in the model, built 

with 4717 elements. The EIT training dataset used in this 

experiment consists of synthetic data. The data generation 

algorithm generated 50,000 cases containing inclusions 

(one or two inclusions of elliptical or rectangular shape). 

An EIT simulation was performed for each case to generate 

192 measurements between electrodes. 

To generate data, we used an EIT simulation algorithm based 

on the finite element method with square geometry to obtain 

potential vectors based on the cases generated with the ellipse 

and rectangle inclusions. The parameters of the simulation 

algorithm for generating the training dataset used in the 

experiments were adjusted to make the synthetic data as close as 

possible to the real data. Finally, the resulting potential vectors 

were used to calculate the difference between potential – voltage: 

𝑋𝑖 = 𝑥𝑖 − 𝑥0𝑖 

where 𝑥𝑖 – is potential vector for the case with syntethic 

inclusions, 𝑥0𝑖 – is potential vector for the case empty tank, 

𝑋𝑖 – is the voltage vector, i – is the index of potential vectors 

and voltage elements. 
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The 50,000 samples generated from reference images (Y) 

and potential difference vectors (X) were divided into a training 

dataset (40,000 samples) and a test dataset (10,000 samples). 

2. UTT Input data 

The data used in this research was obtained in the laboratory 

under specific conditions. At the bottom of the polypropylene pail, 

76 items numbered 1–77 were marked (no. 18 was omitted). 

The bucket was filled with chlorinated water. Round phantoms 

in plastic tubes filled with air were placed in marked positions. 

An application was written to facilitate data collection. 

The application was intended to give the positions of the 

phantoms. The positions of the phantoms were stored in a defined 

list. In addition, the application controlled the measurements 

as follows. When the phantom was placed at the indicated 

position, and the MEASURE button was pressed, the application 

saved the last measured measurement frame to memory. After the 

measurement, the application pointed to the next position where 

the phantom had to be set. This way, the list (measurement matrix) 

– (position numbers with phantoms) was completed. 

Then, thanks to a hand-prepared set of photos (Fig. 2 and 

based on position numbers, the phantoms' actual positions were 

reconstructed in binary images. Each image marked with a single 

inclusion was segmented into a binary image with a circle in that 

phantom position. The image of the phantom positions 

in the individual setting variants of several phantoms was obtained 

by summing up the appropriate segmented position patterns. 

The resulting image was scaled down to a resolution 

of 64x64 pixels in the "nearest" interpolation mode. 

The active probe of the ultrasonic tomograph performs 

measurements with a single piezo transducer using the absorption 

method. This transducer can operate as a transmitter and receiver 

of the ultrasonic wave. Its resonant frequency is 40 kHz. 

The PCB allows connecting an external transducer via an SMB 

socket. The probe has an integrated signal processing circuit 

and a microcontroller with an integrated A/D converter. 

Each probe can adjust the gain of the received signal using 

a programmable digital potentiometer. Measuring the transit time 

of an ultrasonic wave from one probe to another is achieved 

by connecting all probes to an additional communication line. 

When a low state occurs on this line, all probes except 

the transmitting probe start timing and stop timing when the 

ultrasound wave is received. Each receiving probe then sends 

the measurement result to the tomograph controller. Based 

on the information of which probe was the transmitter and which 

probe sent the result, the measurement value is stored 

in the corresponding cell of the measurement matrix. The probes 

were made to be placed very close to each other. The power 

supply lines, the communication bus and the interruption lines 

necessary for correct timing from sending to receiving on the other 

probes were carried out using RJ12. 

 

Fig. 1. UST active probes on the measuring tank 

There were 21 sensors with a frequency of 40 kHz in the 

bucket area (Fig. 1). The 2121 size M measurement matrix 

contains the ToF (Time of Fly) values of the ultrasonic wave 

between all sensor pairs in microseconds. The diagonal is filled 

with zeros only to ensure that the value of Mi,j stands for the value 

measured between the i-th and j-th sensors and has no effect on 

the measurements, i.e., the sensor transmitting the wave does not 

measure the time. 

After obtaining the data was split into training (2617 samples) 

and test (656 samples) datasets. 

 

Fig. 2. Sample phantom position during measurements 

3. Augmentation of images represented scenes 

from multimodal tomography (UTT) 

Because the collected data from transmission tomography 

contains a small number of samples (a few thousand), it is too 

small to train a convolutional autoencoder, so the scene images 

dataset should be augmented. The image data augmentation is 

simpler than the augmentation of data tomography measurements. 

The augmentation of scene images was realized by three 

transforms performed on images (rotation, scaling and translation) 

using random parameters. During the augmentation, 25000 images 

were generated. As a result, 20% of images are empty, and other 

(80%) images were generated by random affine transformation 

with maximal rotation change equal to 15 degrees, maximal scale 

changes equaling 20% and maximal translation equaling 10 pixels. 

After augmentation, the data was split into a training 

dataset (containing 20000 images) and a test dataset (containing 

5000 images). 

4. Training of convolutional autoencoder for EIT 

data 

The convolutional autoencoder for EIT data was trained using 

synthetic scenes. In table 1, the used convolutional autoencoder 

model structure details are presented. 

The reshape layer (row number 18) in this model makes the 

reshape operation of input from the previous layer into shape 

551024 to achieve the proper input shape for the next layer. 

The training process was performed using 30 training epochs 

during six stages, each containing five epochs with different 

optimizers and settings, presented in table 2. 
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Table 1. Details of the autoencoder model 

id layer name 
neurons 

number 

kernel 

size 
activation 

1 Conv2D 64 33 relu 

2 Conv2D 64 33 relu 

3 MaxPooling2D - 22 - 

4 Conv2D 128 33 relu 

5 Conv2D 128 33 relu 

6 MaxPooling2D - 22 - 

7 Conv2D 256 33 relu 

8 Conv2D 256 33 relu 

9 MaxPooling2D - 22 - 

10 Conv2D 512 33 relu 

11 Conv2D 512 33 relu 

12 MaxPooling2D - 22 - 

13 Conv2D 1024 33 relu 

14 Conv2D 1024 33 relu 

15 Flatten - - - 

16 Dense 512 - relu 

17 Dense 25600 - relu 

18 Reshape - - - 

19 UpSampling2D - 22 - 

20 Conv2D 512 33 relu 

21 Conv2D 512 33 relu 

22 UpSampling2D - 22 - 

23 Conv2D 256 33 relu 

24 Conv2D 256 33 relu 

25 UpSampling2D - 22 - 

26 Conv2D 128 33 relu 

27 Conv2D 128 33 relu 

28 UpSampling2D - 22 - 

29 Conv2D 64 33 relu 

30 Conv2D 64 33 relu 

31 Conv2D 1 33 relu 

Table 2. Training stages of autoencoder model 

stage optimizer learning rate 

1 Adam 10-4 

2 Adam 10-4 

3 Adam 10-5 

4 Adam 10-5 

5 Adam 10-6 

6 Adam 10-7 

The 12 samples of pairs containing original scenes (reference 

images) and scenes images restorations made by autoencoder 

are presented in figure 3. 

 

Fig. 3. Sample results of the convolutional autoencoder. In the 12 pairs 

of samples, there are input scene images (on the left in the pair) 
and reconstructed input scenes by autoencoder (on the right) 

For numerical assessment of results in the form of images, 

the DICE coefficient [27] was used: 

𝐷𝑆𝐶 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

where: 

TP – is the number of true positives (correctly reconstructed 

pixels, FP – is a number of false positives (pixels reconstructed in 

wrong places), FN – is some false negatives pixels not 

reconstructed in the place where the object exists in the real image 

 

The numerical results of pure EIT scenes autoencoder working 

were the following. After training the autoencoder, the MAE equal 

0.0054 and DICE equal 97.7 were achieved on the training 

dataset, while the MAE equal 0.0058 and DICE equal 96.5 were 

achieved on the test dataset.  

It should be noted that the results presented above are not 

reconstruction results but are a measure of the autoencoder's 

ability to reproduce the input image. Nevertheless, this result 

assures us that the encoding part of the autoencoder can encode 

the images correctly. 

5. Training of convolutional autoencoder for UTT 

data 

The convolutional autoencoder for UTT data was trained 

on an augmented scene images dataset similar to real scene 

images. The used model architecture is similar to EIT's, 

but the Dense layer with an id equal to 17 has 16384 neurons 

instead of the 25600 ones used for EIT. In addition, the used 

Reshape layer (id equal 18) has a destination shape equal 

to 441024 instead of 551024 in the previous version 

of the autoencoder. 

The autoencoder was trained using 35 training epochs 

(7 stages, each containing five epochs) which was presented 

in table 3. 

Table 3. Training stages of autoencoder model 

stage optimizer learning rate weight decay 

1 Adam 10-4 - 

2 Adam 10-4 - 

3 Adam 10-4 - 

4 Adam 10-5 - 

5 Adam 10-5 - 

6 AdamWD 10-5 10-8 

7 AdamWD 10-5 10-8 

 

Fig. 4. Samples results of encoding UTT reference images by convolutional 

autoencoder. In each triplet, on the left is a reference image, in the centre 

is autoencoder output, and on the right is thresholded autoencoder output 

After training, the Mean Absolute Error equal to 0.000826 

and DICE equal to 95.37% were achieved on the training dataset, 

while the MAE equal to 0.0011 and the DICE metric equal 

to 93.12% were achieved on the test dataset. Then, the encoder 

part was extracted from the autoencoder pre-trained in the 

previous step. After extraction, the image scenes from 

the real dataset were encoded. Finally, the vectors of codes, 

each containing 512 elements, were generated using the encoder 

and will be used in the SVM training process. 

Figure 3 shows the 10 sample results of EIT reference scene 

image restoration. Each sample contains a reference image, 

restored reference image and thresholded restoration result. 

These samples are generated on the test dataset. The thresholding 

of outputs is used because empty scenes exist in the dataset, 

so thresholding was necessary to visualize the output properly. 
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6. Training of multiple SVM models for EIT 

and UTT codes represents scenes regression 

The final training stage of the ultimate solution uses Support 

Vector Machines for the regression of codes of scene images 

based on input from Electrical Impedance Tomography 

differential potential vectors. The same training stage is performed 

for Ultrasound Transmission Tomography measurements. 

For each i-th code from all 512 available, the separate SVM 

models are trained for regression one of the code based on input 

measurements. 

In Fig. 5 to Fig. 8, four stages of the algorithm were presented. 

The input and output of this autoencoder are the same reference 

image. During training, the autoencoder's reproduction of 

reference images in the latent space produces a compressed vector 

representation of the images as a side effect. This representation 

can be regressed more easily than the original image. 

 

Fig. 5. Training process of the convolutional autoencoder 

In Fig. 6, the encoding process of all reference images using 

the encoder part extracted from the full convolutional autoencoder 

was presented.  

 

Fig. 6. Reference images encoding (conversion of all reference images into 

vector 

In Fig. 7, the training process of 512 SVM models, each 

representing one of 512 codes of autoencoder based on input 

vector with measures (EIT or UTT), was presented. 

In Fig. 8, the reconstruction process was presented. 

In the beginning, the input vector with measures is used 

as the same input for each 512 SVM model. Then, each i-th SVM 

model predicts one i-th value from the autoencoder code vector. 

Finally, the vector of codes is used as input to extracted decoder 

part of the convolutional autoencoder to predict the output image 

(final reconstruction). 

During the creation of the solution, the sigma value 

in the SVM model (SVM parameter) was optimized, and the best 

result was obtained for an epsilon value equal to 0.01 (in the case 

of EIT data) and 0.01 (in the case of UTT data). Epsilon 

is an SVM hyperparameter which is a special margin useful 

for regression. The model's training tries to fit as many samples 

as possible in one "street" with as few margin violations. 

The smaller epsilon values were not tested because of the long 

training process and bigger memory usage.  

 

Fig. 7. Training of multiple SVM models to regress 512 codes of vector 

generated by the encoder 

 

Fig. 8. Whole reconstruction (EIT or UTT) process pipeline 

7. Using a decoder with SVM models 

for transmission tomography image 

reconstruction for EIT and UTT 

The solution for scene image reconstruction has the same form 

as EIT and UTT. After the pretraining of the autoencoder, 

the decoder part is extracted. The reconstruction process for EIT 

and UTT has the following form: 

1. In the beginning, the multiple SVM models (trained earlier) 

are used for individual codes of autoencoder regression based 

on input measurement (EIT or UTT) where each i – th SVM 

model can make regression of i – th code in the autoencoder 

latent space. 

2. Obtained vector of codes generated by SVM models is used 

as an input to the extracted decoder from the pretrained 

autoencoder, and then the decoder can reconstruct a scene 

image (for EIT or UTT). 

3. The settings of the epsilon parameter are described 

in paragraphs 9 and 10. The other settings of a single SVM 

model are the following: 

a) Input is the vector from EIT or UTT measures. 

b) Output is one of regressed value represents one of 

autoencoder code. 

c) The used kernel type is RBF. 

d) The gamma parameter is calculated using the following 

formula: 

𝛾 =  
1

𝑛𝑓 ∗ 𝜎𝑋
2 

where:  

𝑛𝑓 – is a number of features, 

𝜎𝑋
2 – is an input data variance 

e) The tolerance parameter is set to a value of 0.001. 

f) The C parameter is set to 1. 

g) There is no iteration limit. 
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8. EIT reconstruction results 

The numerical results for the EIT reconstruction final solution 

are presented in table 4. 

Table 4. Final results assessments using different SMV models in full hybrid solution 

(with different epsilon values) 

models no. epsilon DICE train DICE test 

1 0.2 84.3894% 83.6964% 

2 0.1 85.8310% 84.9856% 

3 0.05 86.3073% 85.4069% 

4 0.01 86.4789% 85.5485% 

In figure 9, the 12 pairs of results represent original scenes and 

reconstructed scenes are presented using the best SVM models 

(no. 4 in table 2). Next, the table presents the results of four 

models, identified by the "models no." column. The second 

column, "epsilon," represents a hyperparameter used in the 

models. Finally, the "DICE train" and "DICE test" columns show 

the DICE coefficient, a metric used to evaluate the performance 

of image reconstruction models for the training and test sets, 

respectively. 

As the epsilon value decreases (i.e. goes from 0.2 to 0.01), 

the DICE coefficient for both the training and test sets increases. 

It suggests that as the epsilon value becomes smaller, the model 

becomes more precise in its reconstruction. 

Model 1, with an epsilon of 0.2, has a DICE coefficient 

of 84.3894% on the training set and 83.6964% on the test set. 

Model 2, with an epsilon of 0.1, has a DICE coefficient 

of 85.8310% on the training set and 84.9856% on the test set. 

Similarly, Model 3, with an epsilon of 0.05 has a DICE coefficient 

of 86.3073% on the training set and 85.4069% on the test set. 

Finally, Model 4, with an epsilon of 0.01 has a DICE coefficient 

of 86.4789% on the training set and 85.5485% on the test set. 

It suggests that as the epsilon value decreases, the models 

become more precise, and the model's performance increases 

on both training and test sets. 

 

Fig. 9. Sample results of EIT scene reconstructions based on a created 

hybrid solution. The 12 pairs of results represent original scenes (left 
images in pairs) and reconstructed scenes (right images in pairs) 

9. UTT reconstruction results 

The numerical results for the UTT reconstruction final 

solution were also computed using SVM models trained with 

epsilon equal to 0.01. The MSE, MAE and DICE metrics 

are presented in table 5. The table presents the results of a model 

trained and tested on two different datasets, identified 

by the "dataset" column. The "MSE" column shows the mean 

squared error, a metric used to evaluate the performance 

of regression models, for each dataset. The "MAE" column shows 

the mean absolute error, another metric used to evaluate 

the performance of regression models, for each dataset. Finally, 

the "DICE" column shows the DICE coefficient, a metric used 

to evaluate the performance of image reconstruction models 

for each dataset. 

The results generally show that the model performed better 

on the training dataset than on the test dataset. The MSE, MAE 

and DICE values are generally lower for the training dataset than 

for the test dataset. 

On the training dataset, the MSE is 0.01337, the MAE 

is 0.01582, and the DICE coefficient is 51.536%. On the test 

dataset, the MSE is 0.01404, the MAE is 0.01647, and the DICE 

coefficient is 47.556%. 

Table 5. Numerical results of the hybrid model used on UTT data 

dataset MSE MAE DICE 

training 0.01337 0.01582 51.536% 

test 0.01404 0.01647 47.556% 

In figure 10, the 8 samples of results of Transmission 

Tomography reconstruction are presented. Columns 1 and 4 

represent the original scene image, columns 2 and 5 represent the 

reconstructed scene, and columns 3 and 3 represent thresholded 

results. 

 

Fig. 10. Sample results of Ultrasound Transmission Tomography 

reconstruction (columns represent original scenes, reconstructed scenes, 

thresholded reconstructed scenes) 

10. Conclusion 

This paper presents a new hybrid algorithm for EIT and UTT 

scene reconstruction (with all models trained separately). 

This algorithm consists of multiple SVM models that reconstruct 

separate codes from the convolutional autoencoder based 

on EIT or UTT measurements using proper models. Since used 

convolutional autoencoder could be trained using augmented 

image data, this hybrid algorithm is very useful for real datasets 

where data is often limited (as was in our UTT experiments). 

Notice that this is our initial research on EIT and UTT scene 

reconstruction, so the used experimental setup is relatively simple. 

However, we are planning to use this hybrid method for medical 

applications. Since convolutional autoencoders have strong 

possibilities of complex shape reconstruction, we trust that 

this hybrid solution will also be useful for realistic medical 

application setups. 

The models were implemented in Python with a GPU version 

of Tensorflow (for convolutional autoencoder) and Scikit – Learn 

(for SVM libraries). 

References 

[1] Aziz Taha A., Hanbury A.: Metrics for evaluating 3D medical image 

segmentation: analysis, selection, and tool. BMC Medical Imaging 15(29), 

2015, 1–28.  

[2] Chen B. et al.: Extended Joint Sparsity Reconstruction for Spatial and Temporal 

ERT Imaging. Sensors 18, 2018, 4014.  

[3] Chen P. H. et al.: A tutorial on ν-support vector machines. Applied Stochastic 

Models in Business and Industry 21, 2005, 111–136.  

[4] Chen Z. et al.: Application of Deep Neural Network to the Reconstruction 

of Two-Phase Material Imaging by Capacitively Coupled Electrical Resistance 

Tomography. Electronics 10, 2021, 1058. 

[5] Duraj A., Korzeniewska E., Krawczyk A.: Classification algorithms to identify 

changes in resistance. Przegląd Elektrotechniczny 91(12), 2015, 82–84. 

[6] Dusek J., Mikulka J.: Measurement-Based Domain Parameter Optimization 

in Electrical Impedance Tomography Imaging. Sensors 21, 2021, 2507. 



p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 2/2023      9 

[7] Fan Y. et al.: DDN: dual domain network architecture for non-linear ultrasound 

transmission tomography reconstruction. Proc. SPIE 11602, 2021, 1160209 

[http://doi.org/10.1117/12.2580911]. 

[8] Fan Y., Ying L.: Solving electrical impedance tomography with deep learning. 

Journal of Computational Physics 404, 2020, 109119. 

[9] Fernandez-Fuentes X. et al.: Towards a Fast and Accurate EIT Inverse Problem 

Solver: A Machine Learning Approach. Electronics 7(12), 2018, 422. 

[10] Hamilton S. J., Hauptmann A.: Deep D – bar: Real time Electrical Impedance 

Tomography Imaging with Deep Neural Networks. IEEE Trans. Med. Imaging 

37(10), 2018, 2367–2377. 

[11] Józefczak A. et al.: Ultrasound transmission tomography-guided 

heating with nanoparticles. Measurement 197, 2022, 

[http://doi.org/10.1016/j.measurement.2022.111345]. 

[12] Kania K. et al.: Image reconstruction in ultrasound transmission tomography 

using the Fermat's Principle. Przegląd Elektrotechniczny 96(1), 2020, 186–189. 

[13] Khan T. A., Ling S.H.: Review on Electrical Impedance Tomography: Artificial 

Intelligence Methods and its Applications. Algorithms 12(5), 2019, 1–18. 

[14] Kłosowski G. et al.: Comparison of Machine Learning Methods for Image 

Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography. 

Energies 14(21), 2021, 7269. 

[15] Kłosowski G. et al.: Maintenance of industrial reactors supported by deep 

learning driven ultrasound tomography. Przegląd Elektrotechniczny 98(4), 2022, 

138–147. 

[16] Kłosowski G. et al.: Neural hybrid tomograph for monitoring industrial reactors, 

Przegląd Elektrotechniczny 96(12), 2020, 190–193. 

[17] Kłosowski G. et al.: Quality Assessment of the Neural Algorithms on the 

Example of EIT-UST Hybrid Tomography. Sensors 20(11), 2020, 3324. 

[18] Kozłowski E. et al.: Logistic regression in image reconstruction in electrical 

impedance tomography, Przegląd Elektrotechniczny 96(5), 2020, 95–98. 

[19] Krawczyk A., Korzeniewska E.: Magnetophosphenes–history and contemporary 

implications. Przegląd Elektrotechniczny 94(1), 2018, 61–64. 

[20] Li X. et al.: An image reconstruction framework based on deep neural network 

for electrical impedance tomography. IEEE International Conference on Image 

Processing, Beijing, China, 2017. 

[21]  Li X. et. al.: A novel deep neural network method for electrical impedance 

tomography. Transactions of the Institute of Measurement and Control 41(14), 

2019, 4035–4049. 

[22] Łukiański M., Wajman R.: The diagnostic of two-phase separation process using 

digital image segmentation algorithms. Informatyka, Automatyka, Pomiary 

w Gospodarce i Ochronie Środowiska 10(3), 2020, 5–8. 

[23] Mosorov V. et al.: Plug Regime Flow Velocity Measurement Problem Based 

on Correlability Notion and Twin Plane Electrical Capacitance Tomography: 

Use Case. Sensors 21(6), 2021, 2189 [http://doi.org/10.3390/s21062189]. 

[24] Seo J. K. et al.: A Learning – Based Method for Solving III – Posed Nonlinear 

Inverse Problems: A Simulation Study of Lung EIT, SIAM. Journal on Imaging 

Sciences 12(3), 2019. 

[25] Szczesny A., Korzeniewska E.: Selection of the method for the earthing 

resistance measurement. Przegląd Elektrotechniczny 94, 2018, 178–181. 

[26] Yu H., Kim S.: SVM Tutorial: Classification, Regression, and Ranking. 

Handbook of Natural computing, 2012. 

[27] Zhao W. et al.: Ultrasound transmission tomography image reconstruction with 

a fully convolutional neural network. Phys Med Biol. 65(23), 2020, 235021, 

[http://doi.org/10.1088/1361-6560/abb5c3. PMID: 33245050]. 

 

Ph.D Eng. Łukasz Maciura  

e-mail: lukasz.maciura@netrix.com.pl 

 

Since 2019 he has been working in the industry 

as a software designer/developer on projects related to 

computer vision / image processing / deep learning / 

electrical impedance tomography (currently at 

Research and Development Center, Netrix S.A.)  

His research interests include computer vision 

(especially 3D reconstruction), machine learning 

(particularly deep learning and time-series 

recognition), medical informatics and robotics. 

http://orcid.org/0000-0001-8657-3472  

Ph.D. Dariusz Wójcik 

e-mail: dariusz.wojcik@netrix.com.pl 

 

R&D Manager of Algorithmic Systems in Research 

and Development Center Netrix S.A. The author 

of the two-fluid numerical code JOANNA focused 

on the research of the Solar corona. Currently, 

he is interested in machine learning, neural networks 

and computer vision and its application to industrial 

and medical tomography.  

 

http://orcid.org/0000-0002-4200-3432 
 

D.Sc. Tomasz Rymarczyk  

e-mail: tomasz.rymarczyk@netrix.com.pl 

 

Director in Research and Development Center Netrix 

S.A. His research focuses on applying non-invasive 

imaging techniques, electrical tomography, image 

reconstruction, numerical modelling, image processing 

and analysis, process tomography, software 

engineering, knowledge engineering, artificial 

intelligence and computer measurement systems. 

 

http://orcid.org/0000-0002-3524-9151 
 

M.Sc. Eng. Krzysztof Król 

e-mail: krzysztof.krol@netrix.com.pl 

 

He is an employee of the Research and Development 

Department at the Research and Development Centre 

of Netrix S.A. and an assistant at the Higher School 

of Economics and Innovation in Lublin. He has been 

associated with computer science for over 14 years. 

He conducts scientific research in process 

tomography, IoT and sensor networks. He conducts 

scientific research in process tomography, 

IoT and sensor networks. 

http://orcid.org/0000-0002-0114-2794  

 

mailto:lukasz.maciura@netrix.com.pl

