
14 IAPGOŚ 1/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 1/2023, 14–17

http://doi.org/10.35784/iapgos.3396 received: 30.12.2022 | revised: 12.03.2023 | accepted: 15.03.2023 | available online: 31.03.2023

APPLICATION OF EXPLAINABLE ARTIFICIAL INTELLIGENCE

IN SOFTWARE BUG CLASSIFICATION

Lukasz Chmielowski
1,2

, Michal Kucharzak
1,2

, Robert Burduk
2

1Nokia Solutions and Networks sp. z o.o., Warsaw, Poland, 2Wroclaw University of Science and Technology, Faculty of Information and Communication Technology, Wroclaw,

Poland

Abstract. Fault management is an expensive process and analyzing data manually requires a lot of resources. Modern software bug tracking systems may
be armed with automated bug report assignment functionality that facilitates bug classification or bug assignment to proper development group.

For supporting decision systems, it would be beneficial to introduce information related to explainability. The purpose of this work is to evaluate the use

of explainable artificial intelligence (XAI) in processes related to software development and bug classification based on bug reports created by either
software testers or software users. The research was conducted on two different datasets. The first one is related to classification of security vs non-

security bug reports. It comes from a telecommunication company which develops software and hardware solutions for mobile operators. The second
dataset contains a list of software bugs taken from an opensource project. In this dataset the task is to classify issues with one of following labels crash,

memory, performance, and security. Studies on XAI-related algorithms show that there are no major differences in the results of the algorithms used when

comparing them with others. Therefore, not only the users can obtain results with possible explanations or experts can verify model or its part before
introducing into production, but also it does not provide degradation of accuracy. Studies showed that it could be put into practice, but it has not been

done so far.

Keywords: software bug assignment, software bug triaging, explainable artificial intelligence, text analysis, vulnerability

ZASTOSOWANIE WYJAŚNIALNEJ SZTUCZNEJ INTELIGENCJI

W KLASYFIKACJI USTEREK OPROGRAMOWANIA

Streszczenie. Zarządzanie usterkami jest kosztownym procesem, a ręczna analiza danych wymaga znacznych zasobów. Nowoczesne systemy zarządzania

usterkami w oprogramowaniu mogą być wyposażone w funkcję automatycznego przypisywania usterek, która ułatwia klasyfikację usterek

lub przypisywanie usterek do właściwej grupy programistów. Dla wsparcia systemów decyzyjnych korzystne byłoby wprowadzenie informacji związanych
z wytłumaczalnością. Celem tej pracy jest ocena możliwości wykorzystania wyjaśnialnej sztucznej inteligencji (XAI) w procesach związanych z tworzeniem

oprogramowania i klasyfikacją usterek na podstawie raportów o usterkach tworzonych przez testerów oprogramowania lub użytkowników

oprogramowania. Badania przeprowadzono na dwóch różnych zbiorach danych. Pierwszy z nich związany jest z klasyfikacją raportów o usterkach
związanych z bezpieczeństwem i niezwiązanych z bezpieczeństwem. Dane te pochodzą od firmy telekomunikacyjnej, która opracowuje rozwiązania

programowe i sprzętowe dla operatorów komórkowych. Drugi zestaw danych zawiera listę usterek oprogramowania pobranych z projektu opensource.

W tym zestawie danych zadanie polega na sklasyfikowaniu problemów za pomocą jednej z następujących etykiet: awaria, pamięć, wydajność
i bezpieczeństwo. Badania przeprowadzone przy użyciu algorytmów związanych z XAI pokazują, że nie ma większych różnic w wynikach algorytmów

stosowanych przy porównywaniu ich z innymi. Dzięki temu nie tylko użytkownicy mogą uzyskać wyniki z ewentualnymi wyjaśnieniami lub eksperci mogą

zweryfikować model lub jego część przed wprowadzeniem do produkcji, ale także nie zapewnia to degradacji dokładności. Badania wykazały, że można
to zastosować w praktyce, ale do tej pory tego nie zrobiono.

Słowa kluczowe: przypisywanie usterek oprogramowania, klasyfikacja usterek oprogramowania, wyjaśnialna sztuczna inteligencja, analiza tekstu, podatności

Introduction

For large scale software development many tools related to the

environment are usually used including among others code

repositories, bug tracking systems or decision support systems.

Part of them might use machine learning predictions. They are

supporting or providing different decisions like assigning priority,

severity, group to investigate or solve problem, or label issue

as security related or not. An example of black-box model

application for identifying security bugs is described

in publication [9]. In contrast to black-box solutions a proposition

of application of one based on expert rules is shown in paper [2].

Bug mining tool to identify and analyze security bugs using naive

bayes and tf-idf was shown in International Conference

on Reliability Optimization and Information Technology [4]. Both

methods used allow solution to be explainable, but this

circumstance was not used. The main aim was to analyse

possibilities of application of the explainable artificial intelligence

(XAI) in specific cases related to software development.

There are two major taxonomies related to explainability

of Machine Learning (ML) models. The first, related to distinction

between transparency (including models that are transparent by

design), including post-hoc explainability. The second taxonomy,

which concerns XAI methods tailored to explain deep learning

models. In this context, XAI uses classification criteria based on

ML techniques, e.g., representation vectors, layerwise attention

[3]. As the first taxonomy is more general and extensive, it is used

as a baseline definition of XAI in this document. General review

on XAI and its various applications can be found in material [16].

According to the best knowledge of authors there is no

application of explainable artificial intelligence techniques

in neither solving the problem of assigning security labels nor

group responsible for investigating or solving software bug.

Nevertheless, there are articles related to possible applications

of XAI techniques and their benefits into a system that suggests

patches into source code. According to authors of publication [14]

in cases where proposed patches are provided without

explanations they are usually ignored. In that paper was

a statement that those kinds of systems which support developers

in way that it can be explained to them is a future of supporting

tools in software development.

Another application of explainable artificial intelligence

in software development was found in paper [11]. There is

a description of works related to predict whether the software

commit is risky. To explain it uses predefined features extracted

from commits like among others number of modified lines, files,

subsystems, and information if change was related to fixing

defect. In article [1] are shown results of application of model

agnostic explanation methods like LIME and iBreak on bug

prediction models. Paper [10] presents assigning the bug severity

level. Even if it is not strictly related to XAI methods, at one

of steps it is uses algorithm based on dictionary of critical terms

related to appropriate severity level. That information might

be useful to support the creation of expert systems to support

or provide such decisions when there is lack of trust in black-box

models.

user
Stempel

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2023 15

Explainable artificial intelligence systems might be applied

in cases where there is special need for trust in model predictions

especially in safety critical applications [6]. Part of those white-

box models make the option to generate rules which might

be verified by experts with domain knowledge possible. Those

kinds of solutions might be useful especially in systems with high

responsibility. One of methods of extracting rules which might

be verified by experts is to use univariate tree classifier. Then the

tree structure might be inspected. Another use case is to provide

expert support by providing decision of model with explainable

rule extracted from tree. Example of publication with use of such

trees is paper [13]. For extracting rules with a decision tree from

black-box model as example may be an article [5]. The research

questions which are being answered in the work are presented

below:

 What is accuracy when comprising standard and easily

explainable algorithms?

 What benefits might that gives?

 Does information provided by explainable models seem to be

consistent?

1. Methods

The data used for research comes from two different sources:

1. Internal company data:

The purpose of internal data is to distinguish between security

and non-security issues. Due to trade secrets no details about

the quantity of samples could be provided, but information

about distribution of data is shown in table 1. Another

example of article using data comes also from NOKIA

is publication [8].

Table 1. Diagram of tree build on dataset from Mozilla to recognize types of issues

Type of issue Percent of reports

Security related issues 4.1 %

Non-security related issues 95.9 %

2. Mozilla Defect Dataset:

Data from Mozilla is widely available. It contains software

bugs labeled as performance problem, security related issue

or crash, memory. Details with quantity of samples of dataset

extracted for this publication are shown in table 2. Samples with

multiple labels were removed. Generally, publicly available bug

reports from Mozilla projects are accessible, among others,

in repository [12] or can be gathered with script [7].

Table 2. Distribution of type od issue (Mozilla Defect Dataset)

Type of issue Percent of reports

Crash related issue 66.3 %

Memory related issue 11.4 %

Security related issue 11.2 %

Performance related issue 11.1 %

For chosen selected classification not found any publication

which has data to comparison. The selection of those specific

datasets is justified by the fact that relatively no such deep domain

knowledge is required to interpret those cases. Research has been

carried out in both cases according to the same experimental

protocol. Firstly, on raw text data extracted from title of cases was

performed preprocessing contains among others, removing special

characters, stopwords then applying lemmatization. In the next

step vectorization was applied with usage of tf-idf with limitation

of max features parameter to 1000. Features which were taken into

consideration by tf-idf are both unigrams and bigrams. On data

prepared that way calculations were performed with usage

of different algorithms. Results of selected standard algorithms

used for XAI applications were compared against rest which were

introduced. The method to explain results was univariate tree

to extract the rules. Moreover, most important features according

to different models were extracted to be compared in subjective

way. That extraction may potentially be used in context

of creation expert rules.

2. Results and discussion

Comparison of results with usage of both types of algorithms

which can be used straightforward to as explainable and not are

shown in tables 3–8. Headings used in tables are:

 kNN – k – Nearest Neighbors;

 LR – Logistic Regression;

 NB – Naive Bayes;

 SVC – Support Vector Classifier;

 XGBoost – eXtreme Gradient Boosting;

 tree x-y-z – Decision Tree Classifier where:

o x – minimum number of samples required to split an

internal node leaf,

o y – minimum number of samples required to split an

internal node,

o z – maximum depth of tree.

Table 3. Comparison most important features related to label issue as security

related or not (internal company data) in condition of selected algorithm

tree 5-5-15 LR SVC XGBoost

vulnerability vulnerability vulnerability vulnerability

sensitive security sensitive sensitive

security svm security security

svm sensitive svm svm

password sec scan password

As is shown in table 3 most important features for chosen

classifiers related to task to distinguish if case is security related

or not are: vulnerability, svm, sensitive, security. For use case

related to label issue as performance, security, crash, or memory

related problem following terms are most important: crash, leak,

memory (table 4). It is noticeable in both of cases that at least

some of the same features are common for most important

classifiers. This is also confirmed in figure 1 and figure 2.

Diagrams (figures 1–3) present decision making process, how

the classification is performed with the use of decision trees. Each

of them shows a section of the decision tree related to one of the

discussed problems. Analyzing the content of diagram in figure 3,

the root node is shown at the top. The first text line of that node

indicates that the decision depends on frequency of occurrence

of keyword vulnerability. It is shown that in that case, if value

of parameter related to vulnerability is above threshold,

the condition for node is False. Therefore, following the arrow

(branch) marked False, the next node is selected. It has the

majority class Yes, what means it is related to security as it was

expected. As that one node is not a leaf node, algorithm follows

the next conditions. Color of node which is used for presentation

depends on the purity of the node. In this example security related

issues are in blue and non-security related ones are in orange.

There is also presented a measure of impurity which is in that

case Gini.

Table 4. Comparison most important features related to type of issue (Mozilla Defect

Dataset) in condition of selected algorithm

tree 5-5-15 LR SVC XGBoost

crash crash crash crash

regression application leak leak

content intermittent memory regression

memory leak usage addresssanitizer

slow moz_crash lazily build

Results between decision tree as one which is interpretable

by design (transparent model) and support vector classifier which

requires external XAI techniques to be explained (post-hoc

explainability) were used for explainability comparison.

With significance threshold at α = 0.05, performing paired

t test 5x2cv procedure returned p − value = 0.19. As p − value > α,

the null hypothesis cannot be rejected, and it may be concluded

that the performance of the two algorithms is not significantly

different. That is expected as we gain explainability, without

loss of quality of results. More details about used test procedure

is in [15].

16 IAPGOŚ 1/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

Table 5. Comparison of results related to label issue as security related or not (internal company data)

 kNN LR NB SVC XGBoost

class prec recall prec recall prec recall prec recall prec recall

Security related 0.96 0.84 0.98 0.79 0.32 0.90 0.97 0.85 0.99 0.76

Non-security related 0.99 1.00 0.99 1.00 1.00 0.92 0.99 1.00 1.00 0.92

Table 6. Comparison of results related to label issue as security related or not (internal company data)

 tree 5-5-10 tree 5-5-15 tree 10-10-15 tree 3-3-15 tree 5-5-5

class prec recall prec recall prec recall prec recall prec recall

Security related 0.93 0.86 0.93 0.86 0.92 0.82 0.95 0.84 0.96 0.79

Non-security related 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.99

Table 7. Comparison of results related to type of issue (Mozilla Defect Dataset)

 kNN LR NB SVC XGBoost

class prec recall prec recall prec recall prec recall prec recall

Crash 0.88 0.94 0.97 0.97 0.97 0.47 0.98 0.96 0.98 0.95

Memory 0.72 0.38 0.83 0.46 0.12 0.65 0.78 0.59 0.69 0.33

Performance 0.72 0.65 0.83 0.88 0.76 0.68 0.83 0.88 0.97 0.49

Security 0.52 0.47 0.70 0.74 0.25 0.69 0.69 0.74 0.38 0.85

Table 8. Comparison of results related to type of issue (Mozilla Defect Dataset)

 tree 5-5-10 tree 5-5-15 tree 10-10-15 tree 3-3-15 tree 5-5-5

class prec recall prec recall prec recall prec recall prec recall

Crash 0.98 0.95 0.98 0.95 0.98 0.95 0.98 0.95 0.98 0.92

Memory 0.77 0.33 0.77 0.33 0.69 0.30 0.80 0.31 0.78 0.17

Performance 0.99 0.59 0.99 0.59 0.99 0.59 0.99 0.59 0.98 0.43

Security 0.41 0.87 0.99 0.87 0.41 0.87 0.41 0.90 0.33 0.87

Fig. 1. Diagram of tree build on dataset from Mozilla to recognize types of issues

Fig. 2. Diagram of tree build on dataset from Mozilla to recognize types of issues

Fig. 3. Diagram of tree built on internal company dataset to recognize security related issues

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2023 17

3. Conclusion

The paper discusses potential application of the explainable

artificial intelligence in software bug report classification.

In the article the authors discuss the possibility of using XAI

methods in the context of assigning a department, group, or any

label for software bug reports created by the user or testers.

According to authors there is currently no application of such

solution, however there are papers which consider different,

but sometimes confused with the mentioned problem. That

similar, but significantly different topic is software bug prediction,

which aims to indicate whether introducing software change will

lead to a defect. The presented results show experimental research

with the use of simulations of predictions of type of software bug

or classify the issue as security related or not. One of the steps

in the research was to apply explainable artificial intelligence

methods and compare results between standard black-box methods

and XAI ones. The result of comparison on Mozilla data shows

that it can be useful. When applying XAI methods on dataset with

company internal data it can be clearly noticed that rules generated

seem to be legit and might be potentially used for explaining

decisions or suggestions. For both cases there have been gathered

most important features according to the trained models. In the

presented diagrams (figures 1–3) the way how chosen built

models make the decisions are shown. For one algorithm shown

that has been applied, the decision-making process is shown.

For each step (node) a decision condition is presented, what is the

main class of samples that meets the specified conditions

of the current node. To sum up this paper clearly shows that there

is a possibility to apply explainable artificial intelligence methods

in the context of problems related to bug assignment

and the results are reasonable.

Author contributions

Author contributions statement L.C. independently conceived

the experiments; L.C., M.K., R.B. analyzed results; L.C. wrote

original draft; M.K., R.B. provided editorial suggestions; L.C.,

M.K. conducted editing of work; L.C., M.K., R.B. attempted

to disprove the novelty. All authors reviewed the manuscript.

Acknowledgements

This work has been carried out in cooperation between

NOKIA and Wroclaw University of Science and Technology

in context of a Ph.D. grant under the fourth edition of the

Implementation Doctorate Programme.

Conflicts of interests

The authors declare no conflicts of interests.

References

[1] Aleithan R.: Explainable Just-In-Time Bug Prediction: Are We There Yet?

43rd International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion), 2021, 129–131 [http://doi.org/10.1109/ICSE-

Companion52605.2021.00056].

[2] Anjali, Mohan D., Sardana N.: Visheshagya: Time based expertise model

for bug report assignment. Ninth International Conference on Contemporary

Computing (IC3), 2016, 1–6 [http://doi.org/10.1109/IC3.2016.7880218].

[3] Barredo Arrieta A. et al.: Explainable Artificial Intelligence (XAI): Concepts,

taxonomies, opportunities and challenges toward responsible AI. Information

Fusion 58, 2020, 82–115 [http://doi.org/10.1016/j.inffus.2019.12.012].

[4] Behl D., Handa S., Arora A.: A bug Mining tool to identify and analyze security

bugs using Naive Bayes and TF-IDF. International Conference on Reliability

Optimization and Information Technology (ICROIT), 2014, 294–299

[http://doi.org/10.1109/ICROIT.2014.6798341].

[5] Carlevaro A., Maurizio M.: A New SVDD Approach to Reliable

and Explainable AI. IEEE Intelligent Systems 37.2, 2022, 55–68

[http://doi.org/10.1109/ACCESS.2022.3180026].

[6] Carlevaro A. et al.: Counterfactual Building and Evaluation via eXplainable

Support Vector Data Description. IEEE Access 10, 2022

[http://doi.org/10.1109/MIS.2021.3123669].

[7] Castelluccio M. et al.: bugbug. Available online:

https://github.com/mozilla/bugbug (accessed on 02.11.2022).

[8] Chmielowski L., Kucharzak M.: Impact of Software Bug Report Preprocessing

and Vectorization on Bug Assignment Accuracy. Progress in Image

Processing, Pattern Recognition and Communication Systems. Edited by Michal

Choraś, et al.: Springer International Publishing, Cham 2022, 153–162

[http://doi.org/10.1007/978-3-030-81523-3_15].

[9] Choquette-Choo C. A. et al.: A Multi-label, Dual-Output Deep Neural Network

for Automated Bug Triaging. 18th IEEE International Conference On Machine

Learning And Applications (ICMLA), 2019, 937–944

[http://doi.org/10.1109/ICMLA.2019.00161].

[10] Gujral S., et al.: Classifying bug severity using dictionary based approach.

International Conference on Futuristic Trends on Computational Analysis

and Knowledge Management (ABLAZE), 2015, 599–602

[http://doi.org/10.1109/ABLAZE.2015.7154933].

[11] Khanan C. et al.: JITBot: An Explainable Just-In-Time Defect Prediction Bot.

35th IEEE/ACM International Conference on Automated Software Engineering

(ASE), 2020, 1336–1339.

[12] Lamkanfi A., Pérez J., Demeyer S.: The Eclipse and Mozilla defect tracking

dataset: A genuine dataset for mining bug information. 10th Working

Conference on Mining Software Repositories (MSR), 2013, 203–206

[http://doi.org/10.1109/MSR.2013.6624028].

[13] Matzka S.: Explainable Artificial Intelligence for Predictive Maintenance

Applications. Third International Conference on Artificial Intelligence

for Industries (AI4I), 2020, 69–74

[https://doi.org/10.1109/AI4I49448.2020.00023].

[14] Monperrus M.: Explainable Software Bot Contributions: Case Study

of Automated Bug Fixes. IEEE/ACM 1st International Workshop on Bots

in Software Engineering (BotSE), 2019, 12–15

[http://doi.org/10.1109/BotSE.2019.00010].

[15] Raschka S.: 5x2cv paired ttest. Available online:

https://rasbt.github.io/mlxtend/user_guide/evaluate/paired_ttest_5x2cv (accessed

on 04.01.2021).

[16] Vilone G. Longo L.: Explainable Artificial Intelligence: a Systematic Review.

2020 [http://doi.org/10.48550/arXiv.2006.00093].

M.Sc. Eng. Łukasz Chmielowski

e-mail: lukasz.chmielowski@nokia.com

Łukasz Chmielowski received a M.Sc. degree with

distinction in Computer Science with specialization in

Intelligent Information Systems. He is currently

working towards Ph.D. in Information and

Communication Technology at Wroclaw University of

Science and Technology (Poland). He is with the

Nokia Solutions and Networks sp. z o.o. (Poland) for

five years. He is working with machine learning

techniques related to natural language processing and

software bug assignment.

http://orcid.org/0000-0001-6970-8144

Ph.D. Eng. Michał Kucharzak

e-mail: michal.kucharzak@pwr.edu.pl

Michał Kucharzak received his Ph.D. in computer

science in area of network optimization. In recent

years, he cooperated with numerous R&D centers and

has been a member of reviewer committees for many

international journals, program, and technical

committees for various conferences as well. His

current research interests are primarily in the areas of

network modeling and network optimization with

special regard to overlays, simulations, design of

efficient algorithms and wireless system protocols,

including software testing and quality assurance.

http://orcid.org/0000-0001-5068-5229

D.Sc. Eng. Robert Burduk

e-mail: robert.burduk@pwr.edu.pl

Robert Burduk is professor of Computer Science

in the Department of Systems and Computer

Networks, Faculty of Information and Communication

Technology, Wroclaw University of Science

and Technology, Poland. He received an Ph.D.

and D.Sc. degrees in Computer Science in 2003

and 2014 respectively. His research interests cover

among the others: machine learning, classifier

selection algorithms and multiple classifier systems.

He serves on program committees of numerous

international conferences, published over 100 papers

and edited 5 books.

http://orcid.org/0000-0002-3506-6611

