
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2023 117

artykuł recenzowany/revised paper IAPGOS, 3/2023, 117–120

http://doi.org/10.35784/iapgos.3679 received: 25.05.2023 | revised: 19.07.2023 | accepted: 24.09.2023 | available online: 30.09.2023

REMOTE SOTA ALGORITHM FOR NB-IOT WIRELESS

SENSORS – IMPLEMENTATION AND RESULTS

Piotr Szydłowski, Karol Zaręba
Efento sp. z o.o., Cracow, Poland

Abstract. In this paper we share our experience with remote software updates for NB-IoT devices. The experience was collected over the years,

when managing a fleet of tens of thousands of NB-IoT wireless sensors deployed worldwide by our customers. The paper discusses the main concerns

that must be taken into account when designing the remote software over the air (SOTA) update mechanism, describes the remote update algorithm
developed and used by us and presents the achieved experimental results based on remote software update of 5 000 NB-IoT sensors deployed

in 10 European countries.

Keywords: Internet of Things, wireless sensors, NB-IoT, software over the air

ALGORYTM ZDALNEJ AKTUALIZACJI OPROGRAMOWANIA W BEZPRZEWODOWYCH

SENSORACH NB-IOT – IMPLEMENTACJA I REZULTATY

Streszczenie. W tym artykule dzielimy się naszymi doświadczeniami ze zdalnymi aktualizacjami oprogramowania w urządzeniach NB-IoT. Doświadczenie

zbieraliśmy przez lata, zarządzając flotą dziesiątek tysięcy czujników bezprzewodowych, które używane są na całym świecie przez naszych klientów.

W artykule omówiono główne zagadnienia, które należy wziąć pod uwagę przy projektowaniu mechanizmu zdalnej aktualizacji oprogramowania (SOTA),
opisano algorytm zdalnej aktualizacji opracowany i wykorzystywany przez nas oraz omówiono eksperymentalne wyniki aktualizacji oprogramowania

na podstawie aktualizacji 5 000 czujników NB-IoT pracujących w 10 krajach europejskich.

Słowa kluczowe: internet rzeczy, sensory bezprzewodowe, NB-IoT, zdalna aktualizacja oprogramowania

Introduction

One of the key challenges for IoT solution providers

is to develop an efficient remote software update method

for hundreds of thousands of battery-powered devices deployed

around the world. The lack of secure, remote firmware updates

is identified as a key security issue for IoT devices,

by both organisations dedicated to security like OWASP [1]

and researchers that test particular IoT solutions [3].

This may be one of the key issues that slow down the IoT

adoption, as many users, especially large organisations, are not

able to use IoT devices that do not meet their security

requirements and standards. Moreover, the security breaches

resulting from the firmware update may even lead to serious

injuries of the devices’ users. The most famous example of it dates

back to 2015, when the researchers got almost full control over

a car by injecting the malicious code into its entertainment system

[1]. A recent example of large scale firmware related security

breach is Mozi [10] – a botnet composed of over 1.5 million

of non-computer devices used to launch DDoS attacks and steal

the data.

There are many remote update mechanisms that have been

used for years to update operating systems, software or hardware.

However, it’s impossible to implement the same mechanisms

and algorithms in battery powered IoT devices due to their

constrained resources (RAM, ROM, CPU) and the fact that these

mechanisms require the updated device to stay long in the active

state – the state, when the device communicates with the server

and consumes a lot of energy.

Recently, there have been few attempts to standardise

the IoT devices software updates mechanisms, which resulted

in documents describing the best practices, firmware update

architecture (e.g. IETF [4]) or documentation describing

the updates (OMA [6]).

There are several key concerns that have to be taken into

account when designing an update solution for IoT devices:

• The update must be secure – there are many security aspects

that should be taken into account, but all of them are grouped

in the following categories of the security threats, based

on the S.T.R.I.D.E model [5]: spoofing identity, tampering

with data, repudiation, information disclosure, denial

of service, elevation of privilege.

• The update process must be safe – in case there are any issues

with the update process, the device should be able to

automatically roll back to the older version of the software.

• The update process must not impact the device’s operations

– e.g. in case of IoT sensors the update should not block

taking the measurements for a long time (or ideally, not block

it at all).

• The update package must be small – there are few very

important reasons behind this:

◦ The smaller the file the shorter the communication

time with the server. In case of battery powered devices

this has a direct impact on the battery life time.

◦ In case of the cellular IoT devices the update package size

has a direct impact on the cost of ownership, as the users

are billed for the data sent / received over the mobile

network.

◦ According to different researchers, the number of cellular

IoT devices will grow significantly in the coming years

[8]. Sending large amount of data required to perform

updates on these devices over the cellular networks

that are optimised for small data packages (NB-IoT) can

cause serious problems on the network side.

◦ The update package must be small enough to be processed

by an IoT device with constrained resources (memory

and processing power).

All the above requirements are considered and satisfied

in our remote differential SOTA update algorithm presented

in section 2. Section 3 presents experimental results that show

all aspects and advantages provided by our approach.

1. Typical method of Software over the air

(SOTA) updates

Many IoT solution providers allow remote updates on their

devices. The typical software over the air update procedure

is simple: a development team compiles the code after

the modifications and generates an entirely new software image,

which is then distributed to the devices over the air [12]. However,

the typical Over the Air (OTA) update is very troublesome,

with millions of battery-powered sensors based on cellular

networks (NB-IoT and LTE-M). The amount of data transmitted

can not only cause destabilisation of the network but also

seriously burden those devices that are optimised for short

transmission sessions.

118 IAPGOŚ 3/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

2. Proposed solution

2.1. Key requirements

We develop and produce wireless NB-IoT sensors used

by customers around the globe. To provide the end users with

the best experience and address the potential issues resulting

from software bugs we had to implement an effective, remote

software over the air update mechanism. On top of the general

software over the air updates requirement described in section 1,

the update process must be handled by the wireless sensors with

the constrained resourced. The sensors are based on 64 MHz

Cortex-M4, 512 KB Flash, 64 KB RAM and the only power

source used by them are batteries.

2.2. Proposed SOTA update algorithm

We have developed an update process that seems to fit the IoT

devices very well. The solution incorporates a differential update

mechanism – a software update system based on sending only

the changes in the software to the already-deployed devices.

This update method has many advantages over the classic OTA

updates, including:

• the amount of data transmitted to the device is several times

reduced compared to the classic OTA update;

• the network load is minimised;

• longer device battery life is ensured, as due to the small size

of the update package, the device spends less time

in the active (connected) mode,

• the measuring system is not destabilised by the lack

of measurements during the long update process.

The update process was designed to be used with UDP

protocol, as it is supported by NB-IoT networks and minimises

the data sent between the sensors and the servers. On top

of the UDP we use the CoAP as it is one of the most popular

and widely used IoT protocols and thanks to its small overhead

it can be used by almost any IoT device.

The security threats are taken into the account during

the update process. The developed algorithm guarantees that each

of the devices will check the authenticity of the software, make

sure that the update file was not corrupted during the transmission

over the NB-IoT network and, if it was, request the server

to resend the missing packages. The full encryption of the

software transmission between the server and IoT devices makes

it impossible for any third party to interfere the update process.

Thanks to the server authentication and the mechanisms

that verify the correctness of the received differential software

file, the software update process is completely secure.

Fig. 1. Remote software over the air update developed by us

The security mechanisms incorporated in the SOTA

update mechanism are based on the Elliptic-curve Diffie–

Hellman (ECDH) [9] key agreement protocol. Each of the sensors

has its own pair of public and private keys, securely generated

and flashed on each device during the production. The server’s

pair of public and private keys are generated for each update

session. The differential software file is signed during

the compilation using the ECDSA SEC256k1 algorithm [11]

with a private key securely stored in our CI infrastructure. The

overview of the SOTA update mechanism is presented on Fig. 1.

The new SOTA update algorithm consists of the following

steps:

1. After completing the work on the new version of the software,

we prepare a differential file that is the difference between

the new and the current versions of the software. The software

is signed with ECDSA signature.

2. The differential file is sent to the update server and IoT

devices are notified of the available update.

3. Sensor sends a CoAP message to the update server with

its current software version number and its own public key.

4. The update server calculates a shared secret from its own

private key and sensor’s public key. The first 16 bytes

of the secret will be used as the AES128 encryption key

for the communication with the sensor, for a single update

session.

5. The update server responds to the sensor with an encrypted

CoAP message that contains the new software version

number, hash (SHA256) from the new software, ECDSA

signature of the new software hash and CRC16 from

the whole frame. Along with the encrypted payload the update

server sends its public key (not encrypted).

6. The sensor receives the update server’s public key

and calculates a shared secret from the server’s public key

and sensor’s private key. The first 16 bytes of it will be used

as an AES128 encryption key, valid for a single update

session.

7. The sensor decrypts the response from the update server

and decides, based on the new software version number,

whether the software update is needed. If the update is not

needed, the sensor terminates the update procedure.

8. If the update is needed the sensor verifies the authenticity

of the update file based on the software hash and ECDSA

signature. If the authentication fails, the sensor terminates

the update procedure

9. If the authentication is successful, the sensor requests

the differential software file from the update server.

10. The update server provides the sensor with the differential

software file by sending encrypted data packages over raw

UDP sockets.

11. Once the download of all the packages is completed,

the sensor checks, if none of the packages is missing.

If any of the packages is missing, the sensor requests

the missing package(s) using a CoAP message. Downloading

of the missing packages may be repeated twice. If the sensor

was not able to download and build the differential file,

the update is terminated and the sensor will try to perform

the update again at the next communication.

12. The sensor enters the bootloader. The bootloader calculates

the hash (SHA256) from the new software (old software

merged with the differential software file received from

the update server). If the calculated hash matches the hash sent

by the update server, the sensor performs the software update.

Otherwise, the update process is terminated and sensor reboots

with the old software version.

13. Once the software update is successfully finished, the sensor

notifies the update server about that by sending a message

with its new software version number.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2023 119

3. Algorithm testing and results

The results are based on remote software updates performed

by us on 5 000 NB-IoT sensors located in 10 European countries,

operating in NB-IoT networks of different mobile operators.

The network coverage in the places where the sensors operate

varies. For the simplicity of presenting the results, we decided

to group the devices by their Coverage Enhancement Level (ECL)

[2] – a parameter, dynamically set by an NB-IoT device based on

the signal quality indicators (RSSI, RSRP, RSRQ). Each ECL

determines the number of times downlink and uplink messages

can be repeated to reach devices in poor coverage and the number

of repetitions in each ECL is predefined by the network. ECL can

have one of three values: 0 – used when coverage is good,

1 – used with moderate coverage, 2 – used with poor coverage.

Out of the 5 000 devices, 2 964 were in good coverage

(ECL0), 1 424 were in moderate coverage (ECL1) and 612 were

in poor coverage (ECL2).

The maximum number of the update attempts (point 11

of the Proposed SOTA update algorithm description in section 2)

was set to 3. If a device had not been able to successfully perform

the software update three times, the update server will not initiate

the process anymore.

We defined the following metrics for the evaluation

of the remote SOTA algorithm performance:

 Success rate - how many devices out of the whole test batch

(5 000) successfully performed the software update. We also

analysed the impact of the signal related parameters on the

SOTA update

 Data usage – data required to send the update file to the device

over the NB-IoT network.

 Energy consumption – energy consumed by a sensor

for the update process.

 Downtime – total time during which the sensor is not able

to perform its regular operations (taking the measurements

and sending it to the server) due to the update process.

3.1. Success rate

Out of 5 000 devices, 4 988 (99.76%) managed to successfully

perform the software update. Some of the devices required

more than one attempt to successfully update their software.

The 12 devices that failed to update the software were located

in poor coverage (ECL2).

Table 1. Results of the remote software update of 5 000 devices

Coverage
Number

of devices

Successful

update at the

1st attempt

Successful

update after

repetition(s)

Success

rate

ECL0 2 964 2 842 122 100%

ECL1 1 424 1 066 358 100%

ECL2 612 172 428 98%

Total 5 000 4 080 908 99.76%

3.2. Data usage

The size of the differential software file depends on

the changes implemented in the software – the larger the changes,

the larger the differential file. The total size of the current version

of sensors’ software is 250 kB. Based on the history of the remote

updates performed by us, the smallest differential file was 7 B,

the largest 33 kB and the average size of the differential software

file was 21 kB. Using the remote update mechanism based on the

differential files decreases the data consumption for the remote

software update by 229 kB (91.6%) on average. This is a large

difference as during its regular operations, with the measurement

interval set to 5 minutes and the transmission interval set to

60 minutes, a single sensor consumes 183 kB of data per month.

3.3. Energy consumption

During the tests performed in our office, in good network

coverage (ECL0), the total energy consumption during the update

was 0.07 mAh for the differential update file of 7 B and 0.5 mAh

for the differential file of 33 kB. As the majority of the energy

consumed during the update is used to download the update file

from the server, the conclusion is clear: the larger the update

file, the more energy is required to perform the update.

The total capacity of the batteries used in our wireless sensors

is 6 300 mAh, so the remote update process based on the

differential update files does not drain the battery too much.

The energy consumption during the remote software

update process may vary, depending on the network coverage.

As in the poor network coverage (ECL2), some packets

of the differential file may not be delivered to the sensor at the

first attempt and may require repetition(s), the energy

consumption will be higher. Due to the specification of the test

setup (5 000 devices are deployed in 10 countries around Europe),

we were not able to measure to energy consumption of every

single device during the update process and asses the network

coverage impact on the energy consumption.

3.4. Downtime

As the majority of the remote software update tasks

are performed by the main application and only the verification

of the software hash and the update itself are performed

in the bootloader, the device downtime is minimised. The total

downtime (time required to perform the update and restart

the device once the update is finished) is 24.5 seconds, no matter

what is the update file size.

As the new software file is built by the device once

the download of the differential file is completed, the network

coverage and the number of repetitions required to deliver

the differential file have no impact on the device’s downtime.

4. Conclusions

The software over the air algorithm developed

and implemented by us meets the security and performance

requirements for the remote software update. The conducted tests

proved, that the software update mechanism is reliable

and the impact on both sensors’ batteries and the network

is minimised. The proposed software over the air algorithm can be

successfully used to perform the updates not only of NB-IoT

wireless sensors but to update any type of IoT devices with

constrained resources.

The update process based on sending only the differential file

to the wireless sensors decreases the data usage, what is beneficial

for their owners (lower amount of data sent / received by the

devices equals lower fees paid to the mobile operator), but also

decreases the impact of the update process on the stability

of the NB-IoT network.

We did not notice any impact of the particular operator’s

NB-IoT network configuration on the update process. The devices

that failed to update their software were located in different

countries and the common point, that made the update impossible

was the poor network coverage.

We think, that it would be possible to achieve 100% success

rate (remotely update all the devices, including the 12 devices

located in poor coverage that were not able to perform the update),

if the maximum number of the allowed update attempts was

increased. This however would also increase the battery

consumption and decrease the device life time.

Due to the tests specification (devices are deployed

in 10 countries) we were not able to fully assess the impact

of the network coverage on the energy consumption during

the update. In order to get the full picture of that, further tests

are required.

120 IAPGOŚ 3/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

Acknowledgments

The research described in this paper was part of project

„Opracowanie systemu monitoringu danych fizycznych opartego

na technologii NB-IoT / LTE Cat M1 i platformie w chmurze,

z wykorzystaniem nowej generacji bezprzewodowych sensorów”,

co-financed by European Union, program “Regionalny Program

Operacyjny Województwa Małopolskiego na lata 2014-2020“

References

[1] Greenberg A.: Hackers Remotely Kill a Jeep on the Highway, With Me in It.

[http://www.wired.com] (21.07.2015).

[2] Khan S. M. Z.: Narrowband Internet of Things (NB-IoT): from Radio

Network Coverage to Device Energy Consumption Modeling

and Energy-Efficient Application. Tallinn University of Technology

[http://doi.org/10.23658/TALTECH.7/2022].

[3] Klinedinst D., King C.: On Board Diagnostics: Risks and Vulnerabilities of the

Connected Vehicle. Software Engineering Institute, Carnegie Mellon

University, 2016.

[4] Moran B. et al.: A Firmware Update Architecture for Internet of Things. RFC

9019. Internet Engineering Task Force, April 2021.

[5] Moran B. et al.: A Manifest Information Model for Firmware Updates in IoT

Devices. RFC 9124. Internet Engineering Task Force, 2021.

[6] OMA SpecWorks, OMA LightweightM2M (LwM2M) Object and Resource

Registry, 2023.

[7] OWASP IoT Security Team, OWASP Internet of Things Top10, 2018.

[8] Sinha S.: State of IoT 2023: Number of connected IoT devices growing 16% to

16.7 billion globally, IoT Analytics, May 24, 2023.

[9] Standards for Efficient Cryptography, Certicom Research, SEC 1: Elliptic Curve

Cryptography, 2009.

[10] Tu T. F. et al.: A comprehensive study of Mozi botnet. International Journal

of Intelligent Systems 37, 2022, 6877–6908 [http://doi.org/10.1002/int.22866].

[11] Vanstone S. A.: Responses to NISTs Proposal. Communications of the ACM

35(7), 1992, 50–52.

[12] Zandberg K. et al.: Secure Firmware Updates for Constrained IoT Devices

Using Open Standards: A Reality Check. IEEE Access 7, 2019, 71907–71920

[http://doi.org/10.1109/ACCESS.2019.2919760].

M.Sc. Eng. Piotr Szydłowski

e-mail: piotr.szydlowski@efento.pl

Cofounder and CEO of Efento Ltd., a company

that designs, develops and produces wireless sensors

and platform for device management. Prior funding

Efento, he had experience in consulting (management,

technology).

He graduated from AGH University of Krakow

in 2011 and holds magister degree in computational

physics.

http://orcid.org/0009-0007-1384-2011

M.Sc. Eng. Karol Zaręba

e-mail: karol.zareba@efento.pl

Cofounder and CTO of Efento Ltd., a company

that designs, develops and produces wireless sensors

and platform for device management. Prior funding

Efento, he had experience at various software

development positions.

He graduated from AGH University of Krakow

in 2011 and holds magister degree in automation and

robotics.

http://orcid.org/0009-0009-7886-5163

