
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2023 37

artykuł recenzowany/revised paper IAPGOS, 3/2023, 37–42

http://doi.org/10.35784/iapgos.3828 received: 03.07.2023 | revised: 06.09.2023 | accepted: 27.09.2023 | available online: 30.09.2023

RESEARCH ON CALCULATION OPTIMIZATION METHODS USED

IN COMPUTER GAMES DEVELOPMENT

Nataliia Fedotova
1
, Maksim Protsenko

1
, Iryna Baranova

1
, Svitlana Vashchenko

1
, Yaroslava Dehtiarenko

2

1Sumy State University, Faculty of Electronics and Information Technologies, Department of Information Technology, Sumy, Ukraine, 2Lublin University of Technology,

Faculty of Electrical Engineering and Computer Science, Lublin, Poland

Abstract. In the field of computer game development, there are numerous optimization methods that help to significantly reduce the number of calculations
that the game system performs while playing the game. In its turn, this allows to display increasingly realistic graphics. The paper presents the performed

analysis of general optimization methods used in the game engine Unreal Engine, such as Distance Culling, Occlusion Culling, Frustum Culling, LODs,

Level Streaming, and the Nanite System. The main factors such as resource intensity, visual quality, number of objects, and scale have been determined.
The research results demonstrate that properly applied optimization methods can improve game performance and reduce the computational load

on the system, which is crucial both functionally and aesthetically.

Keywords: UE5, optimization methods, games development

BADANIE METOD OPTYMALIZACJI OBLICZEŃ STOSOWANYCH

W TWORZENIU GIER KOMPUTEROWYCH

Streszczenie. W dziedzinie tworzenia gier komputerowych istnieje wiele metod optymalizacyjnych, które pozwalają znacznie zredukować liczbę obliczeń,

jakie wykonuje system gry podczas renderowania, co z kolei pozwala na wyświetlanie coraz bardziej realistycznej grafiki. W pracy przeprowadzono

analizę ogólnych metod optymalizacji stosowanych w silniku gier Unreal Engine, takich jak Distance Culling, Occlusion Culling, Frustum Culling, LODs,
Level Streaming oraz Nanite System. Zidentyfikowano główne czynniki, które mają znaczenie: zużycie zasobów, jakość wizualna, liczba obiektów

i skalowalność. Wyniki badań pokazują, że prawidłowo zastosowane metody optymalizacji mogą poprawić wydajność gry i zmniejszyć obciążenie systemu

obliczeniowego, co jest istotne zarówno pod względem funkcjonalnym, jak i estetycznym.

Słowa kluczowe: UE5, metody optymalizacji, tworzenie gier

Introduction

A computer game is a complex program that involves a large

number of mathematical calculations. Each object in the game

has its own set of unique geometric (shape, number of polygons)

and physical parameters (weight, size, density) and optical

properties of the object's surface, which characterize the its ability

to reflect light and shadow. Additionally, sometimes it is

necessary to consider the partial or complete destruction

of the object. Each of these aspects requires to be calculated

at least once for each frame, which are sequentially displayed

on the monitor. Depending on the game's characteristics,

this can occur at 30, 60, 120, or even 240 frames per second (fps).

In modern games, the number of objects with the same model

can reach tens of thousands, and the number of polygons on

a single model can reach millions. The resources of gaming

devices are not infinite, which necessitates reducing the load

on the computer's hardware resources used by the game.

At different stages of game development, optimization methods

corresponding to that stage are employed. The developer must

understand how and which optimization method or their

combination affects the game's performance. Performance

optimization in games aims to reduce the time required to display

a game frame and increase the number of frames per second.

This ensures a more convenient and smooth gaming experience

for the user and overall comfort during gameplay.

This research aims to examine the performance optimization

methods used in the computer game industry and to analyze

the most popular and effective of them.

A game prototype using the Unreal Engine 5 (UE5) game

engine environment, where optimization methods will be tested,

was developed to evaluate the effectiveness of existing methods.

The testing will be conducted in two scenarios. The first one will

be carried out without utilizing optimization methods.

And the second scenario will be performed with implementing

the optimization method. Each method will be tested separately.

When analyzing the methods' effectiveness, it is essential

to consider the following aspect. Practically all existing or new

games contain many geometric objects and their textures, complex

shaders for model visualization, and numerous intricate visual

effects. However, computers have certain technical limitations,

such as available memory capacity for the game, frame rate

restrictions, or limits on the number of objects that can

be displayed on the screen. Therefore, solving this issue is urgent.

1. Optimization methods

It should be noted that all users' computers significantly differ

in their efficiency. However, they are all united by the fact that

the fewer calculations will be performed by the device, the better.

One of the key tasks during the game development is to create

a smooth game process. The game should be uninterrupted,

and any delays should only be caused by the plot or game

mechanics. Optimization methods are used exactly to achieve such

gameplay by minimizing delays in calculations.

Optimization methods depend on the game engine used

for the game development. For example, let's consider the most

popular game engines as Unity and Unreal Engine. While Unity

is more oriented towards simple indie games and mobile

applications, Unreal Engine aims to create more labor-intensive

games with many calculations and realistic graphics. Further,

we are going to discuss optimization methods related exactly

to Unreal Engine.

According to research materials [1, 5], the following main

optimization methods are defined in Unreal Engine:

• Distance culling;

• Occlusion culling;

• Frustum culling;

• LODs;

• Level streaming;

• Nanite System.

Let's consider each of them in detail.

Distance culling. The essence of this method is that objects

stop being displayed when the camera is at a certain distance from

them. The distance can be set for each object or a group of objects.

Occlusion culling. In this method objects, which are not within

the camera's field of view, are culled. A preload time is set

in advance to start loading the objects slightly earlier, ensuring

they are loaded by the time the player (camera) looks at them [10].

Figure 1 illustrates an example of disabling objects which

are outside the player's field of view for a better understanding

of the method.

38 IAPGOŚ 3/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

Frustum culling. The principle of this method is very similar

to Occlusion culling’ one, but objects, which overlap by other

objects, are not drawn on the screen.

In other words, the player does not see particular objects

covered by other objects (Fig. 2).

LODs (Level of Detail). This method reduces the number

of geometric elements that must be processed for displaying

on the screen. Instead of fully loading all the fine object details,

its less detailed versions are loaded depending on the distance

to the object.

The model becomes more detailed when the player is close

to the object and can see it clearly [6, 13] (Fig. 3).

Level streaming. This method is used to reduce memory

load. It allows loading the game parts, which are the closest to the

player, while other elements, which are far away, are not loaded.

If everything is done correctly, this allows creating the

extensive seamless maps where the players can feel themselves

like playing in a world which impresses with its scale [14].

The Level Streaming method is represented schematically

by Fig. 4.

The Nanite System. This method is based on geometric

objects’ discretization, which allows rendering highly detailed

scenes with billions of polygons in real-time.

During camera zooming out from the object, the Nanite

System merges multiple model polygons into one, thereby

significantly reduce the system load.

Benefits of Nanite: There is no need to optimize models

according to fewer polygons. The system handles it automatically.

It became possible directly to import high-quality output models,

such as ZBrush sculpts and scanning the photogrammetry. Level

of Detail (LOD) is processed automatically and no longer requires

manual setting for individual LOD mesh. Quality loss is rare

or nonexistent, especially with LOD transitions [15]. Despite

the benefits, there are practical limitations to the Nanite System

which remain in recent versions. For example, the objects amount

with a single model in the scene, triangles amount per the mesh,

material complexity, output resolution as well as efficiency

should be carefully measured for any combination of content

and hardware.

Fig. 1. Occlusion culling principle of operation [12]

Fig. 2. Frustum culling principle of operation [8]

Fig. 3. Using LOD levels [2]

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2023 39

Fig. 4. Level streaming principle of operation [14]

2. Related work

The results of application the optimization methods may differ

and strongly depend on the project itself. One team can bet

on optimization immediately during the project development.

Otherwise, the game may resemble a "dump" that will have

to be sorted out for a long time. In this case, while using

optimization methods, the system load can be reduced tenfold.

There is still no universal answer regarding which

of the existing methods should be used for a specific project.

It all depends on the game and the result the developers want to

achieve. If the game is exceedingly small, it may not be optimized.

If the volume is average, the simplest optimization methods can be

used, such as Distance culling, Occlusion culling and Frustrum

culling [7]. For large projects with various objects and large maps,

it is advisable to utilize a combination of all optimization methods

immediately. When dealing with a large number of identical

objects in the scene, it is worth thinking about using the Nanite

System [9]. In some cases, only this system can increase

the number of fps (frames per second) by multiple times.

If we pay attention to a specific situation, in his book Chris

Dickinson describes a case where he and his team had to optimize

a particular game. In that case, it was possible to increase

the average frame rate in the game from 30 to 120 fps (tests were

conducted on the same computer with the same settings) [4].

What's interesting is that he didn't use all the optimization

methods. He just applied the LODs and set them correctly. Since

the project had many high-poly models, the increase in the frames

number was fantastic. They also used other optimization methods

in the game, but Chris's decision to integrate LODs played

a significant role in achieving such a remarkable result.

Intel's research with Unreal Engine 4 shows a 12.2% increase

in fps. Optimization was carried out only by optimizing

the models and textures [16]. The same optimization principle was

applied in Alberto Alvarez's work, where a simple 2D game

achieved a 5% improvement in fps [3].

Certain specific games often use the same specific

optimization techniques, as described in Hai Xu's article

on optimizing a 3D city in Unreal Engine 5. He describes

an interesting system where the city models are replaced with

a volumetric map for optimization. This map consists of a city

image overlaid on a height map, creating a visually appealing

representation of the city (as long as the camera is not zoomed

in too closely). This approach significantly increased the frame

rate for his project (over 224%) [11].

Therefore, this research has been conducted to analyze

and compare the effectiveness of existing optimization methods.

3. Research of optimization methods using

a UE5 game prototype

3.1. Initial testing conditions

To systematize the results, we used the MSI Afterburner

program [17], which provides statistics of the load on the

processor, RAM, graphics adapter (video card), and the number

of frames per second (fps). Additionally, the Unreal Engine's

built-in tools were used to display CPU and GPU load statistics.

The computer characteristics, using which the optimization

methods were tested, are given in table 1.

To assess the effectiveness of the Occlusion culling, Distance

culling, Frustrum culling, and Level Streaming methods, a game

level was developed. It consists of a set of simple geometric

shapes that have minimal impact on system load and ten fire

sources, which heavily stress the graphics card. The result

of applying these methods is demonstrated by exactly these

fire sources. Testing the Nanite System and LODs methods

was conducted on a game level which contains 1000 identical

high-detailed objects. The objects of the Nanite System have

38,099 polygons, while the LODs have 960 polygons.

Table 1. Hardware characteristics

CPU Ryzen r7 5800x

GPU GTX 1660 super

RAM 32 Gb DDR4 3600 MHz

SSD MSI M390 – 1Tb

Monitor Full HD (1920x1080)

3.2. Researching the impact of the Occlusion

culling method

Occlusion culling is already implemented and enabled

by default in UE5. We can only turn it off and compare the

characteristics of the system load with the method on and method

off. To disable it, the "Occlusion Culling" checkbox should

be deactivated in the project settings in the "Rendering" tab.

3.3. Researching the impact of the Flustrum

culling method

Flustrum culling is also implemented and enabled by default

in UE5. During the testing of Frustum culling, similar results were

obtained compared to the previous tests because the operation

principle is identical. The testing was conducted on the same level

as previously and involved disabling objects which were not

visible to the player.

40 IAPGOŚ 3/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

Based on the increasing in frames per second, we can

conclude that the load on the graphics card at least halved by using

Frustum culling. Without optimization, in average we had forty

frames per second, and with optimization, it increased to 90

frames per second. Since the graphics card was fully utilized

by 100%, it was the main factor limited the system from

generating more frames per second.

3.4. Researching the impact of the Distance

Culling method

Initially, we have checked how the system behaves

if the player moves far away from the load source. The system

load is slightly lower compared to being close to the fire source.

Distance culling in UE5 can also be implemented, but it needs

to be enabled manually. It can be configured specifically

for the fire by setting each actor's Desired Max Draw Distance

setting.

When we are at the specified distance from the fire, the effect

disappears, and the system load returns to the level observed

in the previous methods.

3.5. Researching the impact of the LODs method

To use this method, you have to create a set of LODs (Level

of Detail) for the model that needs setting. This time, the test level

consists of a substantial collection of spheres (2120 units),

the existence of which loads the system by the calculations

of light, physics, etc. Five levels of LODs were created

for the sphere model using the built-in tools of UE5.

The first level of the sphere model has 960 polygons, while

the last one has 120 polygons.

The engine automatically switches LODs regarding

the player's distance from a particular object. It can also be

configured within the LOD creation menu using default

parameters. For this research the system load has been tested using

the default settings.

Comparison the testing results of all the mentioned

optimization methods are presented in table 2. As we can see,

using the LODs method results in a relatively slight decrease

in system load. However, we obtained a significantly higher frame

rate. This is because the RAM bandwidth of the device limited us

due to using 2120 models. And since using LODs in real-time

playback mode, the model's size decreases, and the load

on the RAM bandwidth also decreases. This allows the system

to utilize its potential better, increasing system load while

achieving a higher frame rate.

3.6. Researching the impact of the Level streaming

method

To investigate the impact of the Level Streaming method,

we have created two sub-levels in Unreal Engine 5. The first sub-

level contains elements with a high load on the graphics card, such

as fire simulation or complex graphics. The second one has

a trigger that disables the previous sub-level after the player

reaches a certain point in the game.

This has allowed us to measure the sub-level loading time

and the impact of the Level Streaming method on game efficiency.

The general view of the scene is shown by figure 5. Sub-level 2

contains fire effects which cause significant resource load

on the computer.
The switching of sub-levels is implemented using a trigger.

The logic for the switching was described in the Blueprint

of the level that contains two sub-levels (Fig. 6).

Fig. 5. General view of the level

Fig. 6. Level Streaming logic implementation

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2023 41

Table 2. Test results

Occlusion Culling

Flustrum

culling

Distance

culling
LODs

Level

streaming

Nanite

system

Method usage status Off On Off On Off On Off On Off On Off On

CPU load (%) 2% 3% 2% 3% 2% 3% 5% 7% 3% 1% 3% 2%

Video card load (%) 100% 99% 100% 99% 100% 99% 39% 49% 100% 98% 100% 98%

RAM usage (MB) 17690 17773 17690 17334 17161 16792 15642 17919 17566 17556 19472 20148

The coefficient of load

on the graphics card
25,27 12,78 25,27 10,62 15,98 11,22 6,7 11,89 18,7 10,27 14,92 10,66

Average number of fps 39 78 39 93 62 93 36 46 53 92 66 92

Download time (seconds) 0.3 0.3 0.3 0.3 0.3 0.23 2.65 3.05 0.3 0.3 0.33 0.45

The logic implementation involves disabling one sub-level

under certain conditions, in our case, when we go beyond its

boundaries. The high-load effects are located in the second sub-

level, so the load decreases when we switch to the first sub-level.

When any item hits the trigger, sub-level 2 disappears,

reducing the system load. Disabling the sub-level with high

graphics load (fire effect) has significant impact and reduces

the system load.

3.7. Researching the impact of the Nanite system

method

To test the Nanite system optimization method, we have used

a stone model which has 800 triangles (polygons). The Nanite

system is already implemented in the engine.

We have enabled it for the specific model, waited for shaders

compilation, and tested the changes. The obtained result,

according to terms of frames per second, does not differ from

the initial one. However, both load on the graphics card

and the frame creation time have significantly decreased.

Therefore, we can conclude that the load on the graphics

card has been reduced by half, and the frame rate is limited

by the PC's memory or the engine itself (due to the enormous

number of objects in the scene).

We have used a high-quality model with 38,099 polygons

to simulate a higher load on the graphics card. We have added

100 instances of this model to the scene and observed the results

without optimization (Table 2). As we can see both an increase

in RAM usage and an increase in the number of frames per second

take place. Thus, the Nanite System is a new way to optimize

models. Although, it is not sufficiently developed for games.

It works perfectly when using high-poly models with large file

sizes on the hard disk. While this may be fine in film production,

it poses game challenges. In games, it is still simpler and more

practical to use LOD systems, which can be generated easily

in just a few clicks in UE5.

4. Discussion

Based on the information described above, game optimization

is a complex process which even may not be necessary applied

to all games. Game projects with various gameplay designs

require developers to create combinations of optimization methods

to ensure optimal game operation on different devices and

for diverse audiences.

As the tendency shows, optimization is an important aspect

of modern game development. It is essential to develop techniques

for graphics optimization which allow reducing the load

on calculations resources and maintaining game efficiency.

In addition, the increasing scale of game projects and demand

changing for several games types lead to need of using

the optimization to increase efficiency and provide maximum

comfort for players. To achieve these aims, developers use a wide

range of optimization techniques, including optimizing

the processes of physics processing, reducing the number

of interactions with objects in the scene, and utilizing interim

software.

5. Conclusions

According to the review of optimization methods applying in

the game development, it can be stated that the optimization

process requires a comprehensive approach for analyzing the

project and finding the most problematic areas. Reviewing popular

and effective optimization methods is useful, as game

development is. Based on the results of this research, it is possible

to conclude the following desired scope of using the optimization

methods, which were introduced within the paper framework:

• Occlusion Culling and Frustum Culling should be used in all

games which render sprites and models to prevent excessive

device load due to rendering these graphics.

• Distance Culling is helpful in games with open-world

environments where the player can be far away from particular

objects and can be turned off.

• LODs are useful for games which have detailed models.

• Level Streaming is good for large levels which may be

problematic to display completely.

• Nanite System is appropriate for large projects with many

high-poly models which do not have time for optimization

(especially for cinematography).

References

[1] Akenine-Moller T. et al.: Real-Time Rendering. 4th еd., A K Peters/CRC Press,

2018. 1200.

[2] Akmalia R. et al.: TLS for generating multi-LOD of 3D building model. IOP

Conference Series: Earth and Environmental Science 2014.

[3] Alvarez A.: Exploring Game Design through Human-AI Collaboration, 2022.

[4] Dickinson C.: Unity 5 Game Optimization. Packt Publishing, 2015.

[5] Gregory J.: Game Engine Architecture. 3rd еd., CRC Press, 2019.

[6] Hasenfratz J.-M. et al.: A survey of Real-Time Soft Shadows Algorithms.

Computer Graphics Forum 4(22), 2003, 753–774.

[7] Hogan J. et al.: Analyzing Performance Issues of Virtual Reality Applications.

ArXiv 2022, (abs/2211.02013).

[8] Johansson M., Roupé M., Bosch-Sijtsema P.: Real-time visualization of building

information models (BIM). Automation in Construction 54, 2015.

[9] Penty C.: Behind the Scenes of The Cavern UE5 Cinematic Visual Tech Test

SIGGRAPH ’22. New York, USA: Association for Computing Machinery,

2022.

[10] Sekulic D.: Efficient Occlusion Culling Addison-Wesley Professional, 2018.

[11] Xu H. et al.: Efficient visualization of 3D city scenes by integrating the GIS and

Unreal Engine. SPIE, 2023. 125510I.

[12] Unreal Engine 5 Documentation: Visibility and Occlusion Culling.

https://docs.unrealengine.com/5.1/en-US/visibility-and-occlusion-culling-in-

unreal-engine/ (available: 02 12.07.2022).

[13] Unreal Engine 4 Documentation: Creating and Using LODs.

https://docs.unrealengine.com/4.26/en-US/WorkingWithContent/Types/

StaticMeshes/HowTo/LODs/ (available: 12.07.2022).

[14] Unreal Engine 4 Documentation: Level Streaming Overview.

https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/LevelStreaming/

Overview/ (available: 20.07.2022).

[15] Unreal Engine 5 Documentation. Nanite Virtualized Geometry.

https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-

engine/ (available: 20.07.2022).

[16] Unreal Engine 4 Optimization Tutorial, Part 1:

https://www.intel.com/content/www/us/en/developer/articles/training/unreal-

engine-4-optimization-tutorial-part-1.html (available: 20.09.2022).

[17] MSI Afterburner: https://ua.msi.com/Landing/afterburner/graphics-cards

(available: 20.09.2022).

42 IAPGOŚ 3/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

Ph.D. Nataliia Fedotova

e-mail: n.fedotova@cs.sumdu.edu.ua

Associate professor of the Department of Information

Technology, Sumy State University, Ukraine. Author

and co-author of more than 30 scientific papers.

The author`s research area focuses on e-learning

systems, information technologies of design

and management in complex systems, 3D modeling,

visualization and animation, real-time computer

graphics and simulations.

http://orcid.org/0000-0001-9304-1693

M.Sc. Maksim Protsenko

e-mail: protsenko85g@gmail.com

Bachelor and master of the Department of Information

Technologies, Faculty of Electronics and Information

Technologies, Sumy State University. Middle C++

developer at MoonMana Games.

http://orcid.org/00009-0008-9575-8549

Ph.D. Iryna Baranova

e-mail: i.baranova@cs.sumdu.edu.ua

Associate professor of the Department of Information

Technology, Sumy State University, Ukraine. Author

and co-author of more than 30 scientific papers.

Research interests: 3D modeling, visualization,

animation, software application for the development

of systems of automated design, e-learning systems.

http://orcid.org/0000-0002-3767-8099

Ph.D. Svitlana Vashchenko

e-mail: s.vashchenko@cs.sumdu.edu.ua

Associate professor of the Department of Information

Technology, Sumy State University, Ukraine.

Research interests: software engineering, use

of modern information technologies (in particular,

system modeling, structural-functional analysis)

for the development of application software

in various fields of activity, e-learning systems,

and visualization.

http://orcid.org/0000-0002-7021-2629

Yaroslava Dehtiarenko

e-mail: s99277@pollub.edu.pl

Student of the Faculty of Electrical Engineering

and Computer Science, Lublin University

of Technology, Poland. The author`s research

area focuses on optimization methods, human-

computer interaction, real-time systems, computer

graphics and simulations.

http://orcid.org/0009-0004-9455-7092

