
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2023 73

artykuł recenzowany/revised paper IAPGOS, 4/2023, 73–78

http://doi.org/10.35784/iapgos.4279 received: 20.07.2023 | revised: 29.08.2023 | accepted: 27.11.2023 | available online: 20.12.2023

THE EFFICIENCY AND RELIABILITY OF BACKEND TECHNOLOGIES:

EXPRESS, DJANGO, AND SPRING BOOT

Dominik Choma, Kinga Chwaleba, Mariusz Dzieńkowski
Lublin University of Technology, Department of Computer Science, Lublin, Poland

Abstract. Increasing popularity of web applications has led to the development of many technologies that enable their production, both on the client

and server side. This article attempts to compare three most popular server-side frameworks – Django, Spring Boot and Express. Each of the selected

technologies is based on a different programming language. These frameworks were compared in terms of request processing time and reliability. Within
the conducted research three backend applications handling HTTP requests were created, all of them using the same database consisting of employees’

data. Afterwards, a series of load tests was performed to determine levels of efficiency and reliability of created applications for various numbers of virtual

users sending requests to the server at the same time. Five test cases with the following number of requests: 1000, 2000, 4000, 8000, and 16000 were
planned and performed for each type of HTTP requests handled by the server simultaneously. Based on the obtained results, it was concluded that

the Spring Boot framework was the best in terms of request processing time and high reliability. However, it was noted that for many test cases under

extreme load, it had a significantly higher percentage of incorrectly processed requests compared to the Express application, even though the application
was noticeably slower. The worst results were observed for Django because the test application created for this framework revealed the longest requests

processing time and the highest error rate during processing requests out of the three tested applications. The performed studies helped to determine

the efficiency and reliability of the tested technologies at various levels of load. Furthermore, the studies were crucial in obtaining knowledge about

the evaluated frameworks as well as their properties and formulating conclusions that will be able to help the developers choose technologies before

the implementation of their programming projects.

Keywords: efficiency, reliability, request processing time, Spring Boot, Express, Django

WYDAJNOŚĆ I NIEZAWODNOŚĆ TECHNOLOGII WYTWARZANIA APLIKACJI

INTERNETOWYCH STRONY SERWERA: EXPRESS, DJANGO ORAZ SPRING BOOT

Streszczenie. Wzrastająca popularność aplikacji internetowych doprowadziła do powstania wielu technologii umożliwiających ich wytwarzanie, zarówno

po stronie klienta jak i serwera. W niniejszym artykule podjęto się dokonania porównania trzech najbardziej popularnych szkieletów programistycznych

strony serwera – Django, Spring Boot, Express. Każda z wybranych technologii opiera się na innym języku programowania. Szkielety zostały porównane
pod względem czasu obsługi żądań i niezawodności. W ramach przeprowadzonych badań utworzono trzy serwerowe aplikacje testowe realizujące obsługę

żądań HTTP i wykorzystujące tę samą bazę danych, zawierającą dane pracowników. Następnie wykonano serię testów obciążeniowych pozwalających
określić wydajność i niezawodność napisanych aplikacji dla różnych liczb wirtualnych użytkowników wysyłających żądania do aplikacji w tym samym

momencie. Zaplanowano scenariusze testowe zakładające następujące liczby żądań: 1000, 2000, 4000, 8000 oraz 16000, wykonanych dla każdego

z obsługiwanych przez aplikacje testowe typów żądań HTTP. Na podstawie otrzymanych wyników wywnioskowano, że szkielet programistyczny Spring
Boot cechuje się najwyższą prędkością wykonywania żądań oraz wysoką niezawodnością. Jednak zauważono także, że dla wielu przypadków testowych

przy ekstremalnym obciążeniu miał on wyraźnie wyższy odsetek błędnie obsłużonych żądań w porównaniu z aplikacją utworzoną na bazie szkieletu

Express, pomimo że ta była znacznie wolniejsza. Najsłabsze wyniki zaobserwowano dla Django, ponieważ aplikacja testowa opracowana na podstawie
tego szkieletu uzyskała zarówno najdłuższe czasy, jak i najwyższy odsetek błędów podczas obsługi żądań spośród wszystkich trzech testowanych aplikacji.

Wykonane badania pozwoliły określić wydajność oraz niezawodność przebadanych technologii przy różnych poziomach obciążenia, pozwoliły poznać

działanie i właściwości testowanych szkieletów oraz sformułować wnioski, które mogą pomóc deweloperom w doborze technologii przed realizacją
ich projektów programistycznych.

Słowa kluczowe: wydajność, niezawodność, czas obsługi żądań, Spring Boot, Express, Django

Introduction

The widespread availability of the Internet has resulted

in the popularity of Internet applications, which facilitate the use

of a variety of services directly through a web browser.

This eliminates the need to install additional software or consume

device hardware resources. Internet applications are software

programs hosted on remote servers, and users can access

them through a graphical user interface displayed in a browser

window. Communication between the browser and web services

is facilitated by programming interfaces, commonly referred to as

Application Programming Interfaces (APIs). Web applications are

dependent on sending requests and receiving responses using

various protocols, including the Hypertext Transfer Protocol

(HTTP). Over time, numerous programming languages have been

developed to facilitate the creation of Internet applications.

However, using a pure language would necessitate building all

of the necessary functionalities from the ground up. This results

in numerous issues and takes up a significant amount of time.

Therefore, developers typically employ pre-existing solutions that

provide tried-and-tested features that can improve both

performance and security.

To improve the efficiency of software development,

developers use frameworks that enhance performance of web

applications and provide them with greater ease of use.

A framework consists of a set of components offering various

functions and capabilities to developers. These functions include

database management, performing operations on databases,

as well as authentication and authorization mechanisms that

enhance the security of applications.

A common approach is to divide web applications into two

parts: the client-side (frontend) and the server-side (backend).

The client-side is responsible for sending requests to the server,

receiving and processing responses, and presenting data to the user

in an appropriate format. On the other hand, the server-side

manages requests, communicates with the database, processes

data, and generates responses. This separation allows for the

parallel development of both parts of the application, which can

reduce the overall software development time. When selecting

a framework, it is important to consider the specific requirements

of a project, as each of them provides slightly different solutions

that can significantly impact parameters such as performance,

reliability, maintainability, and portability. These factors

contribute to the overall quality of the final product.

The authors of this paper researched the performance

and reliability of the most widely used server-side frameworks

for JavaScript, Python, and Java. These tests aimed to determine

which of the tested frameworks would be the most suitable choice

under specific test conditions.

1. Literature overview

Currently web applications have attained a high degree

of prevalence, which is associated with the multitude of available

server-side tools utilized for their development. The selection

of the most suitable technology that satisfies the requirements

user
Stempel

74 IAPGOŚ 4/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

of software is one of the primary decisions that must be taken

to create a fully functional web application. This process is closely

connected with the choice of a suitable programming language

and framework. There are numerous scholarly articles addressing

the topic of choosing optimal tools for the development of web

applications with particular levels of complexity and scope

of operations.

A crucial part of the web application development process

is the design and implementation of its server-side logic. This

subject was considered in the article [5]. The author describes

this process in many aspects, including an examination of web

applications within the contexts of both static and dynamic

websites, the utilization of programming frameworks, and their

helpfulness in accessing databases. Then, a more detailed

explanation is provided regarding programming frameworks,

which includes the characteristics of Express, Spring Boot,

and Django and the comparison of their speed in executing

a single statement to the database. What is more, the significance

of the correct database design is mentioned in the conclusions.

In a subsequent publication, referenced as [2], the authors

conducted a comprehensive comparison of four frameworks

(Laravel, Ruby On Rails, Django, Spring) based on a three-point

scale established by them. The assessment covered various aspects

of each framework, including code generators, popularity,

business trends, integration with additional software, and plug-in

support. According to the authors, Spring received the highest

score among the evaluated frameworks, primarily due to its

business trends and popularity among programmers. The authors

also rate criteria such as scalability, entry threshold for novice

programmers, and popularity on specific internet platforms (Haker

News, Google Trend, Reddit, GitHub, StackOverflow). In these

criteria, Spring ranked third, behind Laravel and Django.

The authors concluded that Django was the best framework

among those analyzed, citing its ease of use for novice

programmers and its adaptability for large web applications.

Articles [1, 4, 6] compare currently popular web application

development technologies to identify their advantages

and disadvantages. The analysis was carried out based on prepared

test applications implementing CRUD (Create, Read, Update,

Delete) functionalities. Almost all applications [1, 4] were

connected to the database. Only in [6] the database was not

used for fear of a possible slowdown in the response and

interference in the measurements. The main examined parameter

of the performed operations was efficiency. In the case

of applications using a database, GET, POST, PUT, and DELETE

requests were considered. On the other hand, in the article [5],

the bandwidth and its impact on Internet applications

and computer resources used were also examined. Article [4]

additionally presented the assessment of authentication

and authorization, where individual aspects were assessed using

a point system. Articles [1, 6] presented the use of JMeter

software to simulate virtual users utilizing the created

applications.

The comparison of the performance of popular frameworks

has been also the subject of scholarly articles [3, 7]. In both

publications, two test applications were implemented for the

surveyed frameworks, enabling a connection with the database.

Furthermore, the Apache JMeter tool was utilized for conducting

the tests, as previously mentioned. The first article described

the evaluation of the efficiency of the GET, POST, PUT,

and DELETE statements for the REST application. In the second

article, the efficiency was surveyed using GraphQL as well.

The CPU and memory usage was established, and in addition,

the first article's tests were conducted for different loads defined

by the number of users (1, 8, 64, 128, 256, 512, 1,024). To obtain

reliable results, each test was carried out 10 times. The second

article presented the parallel execution of requests (100, 250, 500)

with varying numbers of rows (1, 50, 100). The tests executed in

both articles allowed for the efficiency comparison of frameworks

applied for developing the server-side of web applications.

Choosing a technology sufficiently advanced for this

application can help in the performance not only for a beginner

but also for an experienced programmer. In addition, it is essential

to consider the number of elements that are required to combine

various programming frameworks and to calculate them for

multiple applications. In this study, the authors decided to compile

a list of the most popular technologies currently used for web

applications on the server side. This was achieved by using test

applications on these frameworks and then compiling the results.

It is worth noting that this research stands out due to the selection

of other tested technologies, their respective versions, and test

cases.

2. Aim, hypotheses, scope of work

The aim of this work is to perform a comparative analysis

of backend frameworks: Express, Spring Boot, and Django,

in their latest stable versions at the time of conducting

the research. The efficiency of three test applications, which have

been created based on selected backend frameworks, will be

compared according to the applied load, depending on the number

of requests sent.

The following research hypotheses have been formulated:

1) Express, due to working in the Node ecosystem, which was

designed in order to optimize efficiency and scalability

of the web applications, is distinguished by better efficiency

compared to Spring Boot and Django in the case

of a significant number of requests sent to the server.

2) Spring Boot, by utilizing configuration based on annotations,

is characterized by the best efficiency compared to Express

and Django in the case of a limited number of requests.

3) Django, due to the significant usage of network bandwidth,

is marked by the worst efficiency compared to Express

and Spring Boot regardless of the number of requests sent.

3. Used technologies and tools

To compare the chosen programming frameworks, identical

applications have been developed using technologies such

as Spring, Express, and Django based on a REST architectural

style. The established test applications consist of the same

functionalities. A tool Apache JMeter has been utilized to simulate

requests sent from the client-side to the server applications

and to measure response time to these requests.

3.1. REST

REST [13] (REpresentational State Transfer) is an

architectural style that defines the way web applications

are created to be smoothly usable and user-friendly. REST

is an implementation of this architecture that uses HTTP protocol

to perform operations on resources and returns data in formats

such as JSON or XML, enabling their seamless utilization

by client-side applications.

3.2. Apache JMeter

JMeter [8] is an open source software specifically designed

for testing the efficiency of an application. It enables conducting

tests that simulate user traffic and measure the efficiency

of a tested system under load. Test cases and parameters can

be adjusted based on the user's preferences. What is more, JMeter

provides various tools for analyzing the obtained test results such

as generated charts or reports. It is stated to be a popular choice

for testing multiple protocols, including HTTP. Moreover, it could

simulate virtual users who use the tested system. Weaknesses

of the system can be identified, which is a crucial step in taking

measures to improve the application’s performance.

3.3. Compared frameworks

After analyzing the popularity of the available frameworks

on the market it can be observed that Express, Spring Boot,

and Django belong to the top-tier technologies used in backend

application development [11]. The comparison was conducted by

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2023 75

examining stars given to the official repositories of the surveyed

frameworks by GitHub users [10], and votes received in Stack

Overflow’s annual summary of the programming market for 2022

[12]. This comparison is presented in table 1. It can be noticed

that the discussed frameworks are similarly popular. Django

is the most popular framework based on data obtained from

GitHub, while Express is the most recognized according

to the Stack Overflow survey.

Table 1. A comparison of the popularity of the surveyed frameworks based on data

obtained from GitHub and Stack Overflow

Framework/Service GitHub (stars)
Stack Overflow

(received votes)

Express 59,600 22.99 %

Spring Boot 65,100 16.13%

Django 68,200 14.65 %

4. Research methodology

Created applications built on the REST architecture were

deployed in a designated testing environment. They implement the

basic CRUD methods using the same database. The implemented

functionalities were tested with varying numbers of user requests

sent within a one-second interval, in order to examine the

correlation between the number of requests made and response

time.

4.1. Test environment

The research was conducted using a computer with Windows

10 operating system installed. Table 2 presents the parameters

that are crucial from the perspective of the performed research.

On the other hand, Table 3 provides information about

the versions of the frameworks used in the research, which were

the latest stable versions available at the time, along with their

corresponding programming languages.

Table 2. Parameters of the computer utilized in the research

Parameters Device

Processor Intel Core i5-10210U

RAM memory 16 GB

Operating system Windows 10

Table 3. A characteristic of the tested frameworks

Framework Version Language Version

Express 4.18.2 JavaScript ES6

Spring Boot 3.0.2 Java 17

Django 4.1.6 Python 3.11

4.2. Test cases

A comparative analysis of the backend application

development technologies - Express, Spring Boot, and Django –

was conducted using the Apache JMeter tool. The test cases were

planned based on common HTTP requests sent by the client

to the server. A comparison was performed for the following test

cases:

1) the measurement of the execution time of a GET request,

2) the measurement of the execution time of a POST request,

3) the measurement of the execution time of a PUT request,

4) the measurement of the execution time of a DELETE request.

The goal of that research is to examine how the application

works in variable testing conditions - using various loads.

According to the analysis of the literature, it was decided

to undertake test cases for the following cases:

1) sending 1 request by 1,000 users at the same time,

2) sending 1 request by 2,000 users at the same time,

3) sending 1 request by 4,000 users at the same time,

4) sending 1 request by 8,000 users at the same time,

5) sending 1 request by 16,000 users at the same time.

Apart from efficiency, the reliability of an application

is known to be a crucial characteristic. It was also the subject

of the research in this study.

4.3. Test applications

The created test applications were based on a fragment

of an open-source MySQL database called Employees [9], which

consists of approximately 4 million records. The diagram

representing a part of the database containing information

about employees and their salaries is presented in figure 1.

The employees table contains employee data, and the salary table

is related to it through a one-to-many relation which comprises

information about employee salary.

Fig. 1. The diagram presenting a database with a selected fragment, which

the application utilizes

The GET request implemented in the study retrieves employee

data using the identification number specified in the path.

The request returns all details pertaining to the selected employee,

along with a list comprising information on their remuneration.

Conversely, the POST request is responsible for adding a new

employee, achieved by sending an appropriate JSON object

containing the user's data in the request's body. The PUT request,

on the other hand, modifies the employee data associated with

the employee ID specified in the path, replacing it with the data

provided in the sent JSON object. Finally, the DELETE request

deletes the employee's data with the indicated ID, along with

all information concerning their earnings.

During the application testing, it was observed that certain

development frameworks implement mechanisms that boost

application performance by default, with Spring Boot featuring

the largest number of such solutions. Conversely, Express lacks

pre-implemented mechanisms of this nature, and their use requires

additional programming and configuration efforts. To enhance

the efficiency of the test application based on Express, a clustering

mechanism was developed, allowing for the launch of multiple

application instances within a single process. This mechanism

improved overall performance while simultaneously reducing

resource consumption.

5. Results analysis

The conducted load tests of the three implemented

applications allowed for an analysis of the surveyed frameworks

in terms of both the speed of request execution and determining

their reliability.

5.1. GET request

The results for the GET request are pictured in figure 2,

with a horizontal axis representing the test load and a vertical axis

representing the average request time.

In this case for each of the conducted test cases,

the application written using Spring Boot was characterized

by the best request execution time. The Express framework

application was distinguished by its worse efficiency, while

the request execution times for the subsequent test cases are

76 IAPGOŚ 4/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

significantly longer compared to those of the applications

developed using Spring Boot. The least favorable results in terms

of efficiency were obtained from the Django application.

The operation execution times are approximately twice the times

achieved for the application implemented in Express. Despite

the number of requests, the average request execution time ranged

between 2,800 and 4,100 ms.

Fig. 2. The GET request processing time depending on the number of requests

for each of the tested frameworks

Figure 3 depicts the reliability tested for the GET request, with

the vertical axis representing the percentage of wrong requests.

Fig. 3. The percentage of incorrectly handled GET requests by the application based

on a given framework

The test application developed using the Spring Boot

framework exhibited a high level of reliability, as errors only

appeared in the last test case (Fig. 3). For the Express frameworks,

errors were noticed for 8,000 users sending requests

simultaneously, with approximately 26.23% of requests failing.

However, for the server loaded with requests from 16,000 users,

the number of unsuccessful requests was lower for this framework

than for the Spring Boot framework (34.86% for Express

and 51.65% for Spring Boot). On the other hand, the application

created with Django was identified by the error occurring

at the stage where fewer virtual users were simulated compared

to the previous two applications.

5.2. POST request

The results obtained for the GET and POST request were

similar. For the evaluated handling of the POST request,

the outputs were presented in Figure 4, where the horizontal axis

represents the test load, and the vertical axis shows the average

time of one request.

It has been acknowledged that the test application based

on the Spring Boot framework exhibited the best request

execution time. On the other hand, the application utilizing

Express demonstrated slightly worse reliability. Although

the outcomes marginally varied for an insignificant number

of requests sent simultaneously (1,000-2,000), the discrepancy

considerably increased for a greater number of virtual users.

Among the three test applications, the one based on the Django

framework achieved the least favorable result. Execution times

for all test cases were markedly higher and substantially deviated

from the outputs acquired for the remaining two applications

– the obtained times ranged between 3,000-5,000 ms.

Fig. 4. The POST request processing time depending on the number of requests

for each of the tested frameworks

The tested reliability of the POST request was demonstrated

in figure 5, with the vertical axis containing information

on the percentage of the incorrect requests.

Fig. 5. The percentage of incorrectly handled POST requests by the application

based on a given framework

In the conducted tests, the test application utilizing the Django

framework exhibited the highest number of failed requests.

Specifically, the initial test resulted in a high error rate of 65.9%.

Moreover, subsequent tests showed a further increase in the error

rate, reaching 97% with 16,000 virtual users. In contrast,

the Spring Boot framework exhibited no errors when the server

was loaded with 1,000, 2,000, 4,000, and 8,000 virtual users

sending requests. Correspondingly, the Express framework

demonstrated a zero-error rate for 1,000 and 2,000 requests sent

concurrently. An abrupt increase in the number of failed requests

was observed during the load simulation involving 16,000 users,

as 76% of requests failed for the Spring Boot framework test case.

Regarding reliability, Express maintained a zero percent error rate,

with a small deviation (11.45% of unsuccessful requests) detected

for the test case handling 4,000 requests. Nevertheless, this value

decreased to 0.38% for 8,000 requests. For the highest load,

43.69% of requests, sent by 16,000 users at once, were found

to be ineffective. Notably, this error rate was lower than that

noticed for the application based on the Spring Boot framework

under the same load.

5.3. PUT request

Figure 6 shows the average request handling time depending

on the number of PUT requests sent. The horizontal axis

represents the load levels subjected to experimentation, while

the vertical axis corresponds to the average time duration

of a single request.

In this instance, it is evident that the Spring Boot framework

delivered the most favorable performance outcomes. Nevertheless,

it is worth mentioning that when subjected to a server currently

handling requests from a thousand virtual users, the Express

framework exhibited a noticeably superior processing speed.

For other load levels, the average duration of request execution

remained stable within the range of 800 to 2,000 ms. Conversely,

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2023 77

Django demonstrated considerably longer request handling times

(with the exception of a scenario involving simultaneous requests

from 8,000 users), spanning from 3,500 to 4,500 ms.

Fig. 6. The PUT request processing time depending on the number of requests

for each of the tested frameworks

Figure 6 depicts the reliability data acquired for the PUT

request, with the vertical axis displaying information about

the percentage of requests that failed. The horizontal axis denotes

the number of virtual users whose requests were handled

by the server.

Fig. 7. The percentage of incorrectly handled PUT requests by the application based

on a given framework

During the testing, the Spring Boot framework recorded zero

failed requests. However, the error rate increased significantly

when the server was loaded with 16,000 simultaneous requesting

users, with a rate of over 75%, which was considerably higher

than that of the Express framework. The Express framework

consistently demonstrated average performance with respect

to average error rate scores. The only exception was in a case

involving 1,000 users requesting a server, where the Express

framework outperformed the others. On the other hand, when

the server was loaded with 8,000 users, the Express framework

exhibited the highest error rate, which was slightly different from

that obtained with the Django framework. In the initial three

studies, the Express framework exhibited a minimal number

of failed requests. However, when the server application

was loaded with requests sent by 8,000 and 1,600 users

simultaneously, the rate increased to 40%. Conversely, the Django

framework fared the poorest of the three evaluated technologies,

with a range of failed requests varying between 75% and 90%.

5.4. DELETE request

As a part of the tests for DELETE method requests,

the functionality of cascade deletion for specific employees

and their corresponding salaries was implemented. The results

of this request are illustrated in Figure 8. The vertical axis

represents the mean duration of a single request, while

the horizontal axis denotes the applied load.

In contrast to prior studies, the results of this experiment did

not reveal any distinct disparities in the mean request duration,

relative to the used framework and the number of users. Among

the three frameworks tested, Express demonstrated the fastest

average request execution time of approximately 1,000 ms,

for 1,000 virtual users. However, Django and Spring Boot were

comparatively slower, with Django exhibiting a difference of less

than 500 ms and Spring Boot exhibiting a variance of 1,000 ms.

It is noteworthy that Express exhibited the most pronounced

decrease in performance among the development frameworks

tested, as the number of users increased, ultimately yielding

the least favorable results under heavy loads. In contrast,

the outcomes obtained with Spring Boot and Django were

comparable, with execution time differences for individual tests

falling within the range of 1,500 ms. Nonetheless, when tested

with 16,000 virtual users, both frameworks exhibited an almost

identical mean request execution time, of approximately 3,700 ms.

Fig. 8. The DELETE request processing time depending on the number of requests

for each of the tested frameworks

Figure 9 displays the data pertaining to the reliability of a PUT

request. The vertical axis denotes the proportion of requests

that failed, while the horizontal axis represents the applied load

under examination.

Fig. 9. The percentage of incorrectly handled DELETE requests by the application

based on a given framework

With regard to the reliability of the DELETE request, Spring

Boot (as depicted in Figure 9) produced the most favorable results,

with no errors recorded across request loads ranging from 1,000

to 8,000 virtual users. However, when the server was subjected

to a load of 16,000 users, the number of requests that were

incorrectly handled amounted to approximately 50%. Notably,

Django yielded considerably high error percentages, spanning

from the lowest to the highest load tested. Meanwhile, Express

exhibited an increasing trend of errors, rising from 0%

for the 1,000-user server load to over 50% for a load of 16,000

users.

6. Conclusions

As a part of the experiment, three identical test applications

were developed, each implementing a connection with

the database and handling HTTP requests. Prior to implementing

the test applications, a comprehensive literature review was

conducted which helped define the type and parameters

of these applications. The chosen database features a compact

structure containing six tables, which have been populated with

a significant amount of data. The selection of technology

was predicated on the identification of the most prevalent server-

78 IAPGOŚ 4/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

side programming languages, followed by choosing the top

programming frameworks available for them. The conducted

surveys made it possible to determine the efficiency and the

reliability of tested technologies at various levels of load, obtain

knowledge of the operation and properties of the evaluated

frameworks, and draw conclusions that can help developers in

selecting appropriate technologies for their programming projects.

Based on the obtained results, the following conclusions were

formulated:

1) When comparing test cases under extreme load (with the

server handling requests from 16,000 virtual users

simultaneously), it was observed that Express had

a significantly lower rate of failed requests than Spring Boot,

although the application developed with the Express

framework was noticeably slower.

2) Out of the surveyed frameworks, Spring Boot is identified

by the highest request processing speed and high reliability

for a server loaded with requests sent by 1,000-8,000 users.

3) The application utilizing the Django framework demonstrated

the longest response time and the highest rate of errors during

request handling.

Based on the above conclusions, it can be inferred that

the research hypotheses have been verified. The superior results

obtained with Spring Boot arise from the implementation

of performance-enhancing mechanisms from the Spring

framework. Unlike the Express framework, these mechanisms

are an integrated part of the Spring and are configured and utilized

by default. Express, on the other hand, according to its creator’s

arrangements, is a minimalist framework, which means that by

default there are no these types of mechanisms. They are feasible

to use thanks to the many libraries available for those purposes

installed through the package manager. Nevertheless, that requires

a programmer's knowledge of these mechanisms, their selection,

and their configuration. Django exhibited the poorest performance

compared to the other two technologies. This may be caused

by its threaded architecture, which assigns a distinct thread

to handle each request. In situations involving substantial loads,

this approach results in augmented memory consumption

and required processing time.

References

[1] Dhalla H. K.: A Performance Comparison of RESTful Applications

Implemented in Spring Boot Java and MS.NET Core. Journal of Physics:

Conference Series 1933, 2020.

[2] Kaluža M., Kalanj M., Vukelić B.: A comparison of Back-End Frameworks for

Web Application development. Zbornik Veleučilišta u Rijeci 7, 2019, 317–332.

[3] Karlsson P.: A performance comparison Between ASP.NET Core and Express.js

for creating Web APIs. Jönköping University 2021.

[4] Kopyl P., Rozaliuk T., Smołka J.: Comparison of ASP.NET Core and Spring

Boot ecosystems. Journal of Computer Sciences Institute 22, 2022, 40–45.

[5] Muittari J.: Modern Web Back-End. What happens in the back end

of the application? Oulu University of Applied Sciences 2022.

[6] Qvarnström E., Jonsson M.: A performance comparison on REST-APIs

in Express.js, Flask and ASP.NET Core. Mälardalen University, 2022.

[7] Söderlund S.: Performance of REST applications: Performance of REST

applications in four different frameworks. Linnaeus University 2017.

[8] Apache JMeter [https://jmeter.apache.org/] (available: 2023.03.04).

[9] Employees Sample Database [https://dev.mysql.com/doc/employee/en/]

(available: 2023-04-18).

[10] GitHub Framework [https://github.com/topics/framework] (available:

2023.01.18).

[11] Most Popular Backend Frameworks – 2012/2022

[https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-

2022/] (available: 2022.11.22).

[12] Stack Overflow 2022 Developer Survey [https://survey.stackoverflow.co/2022/]

(available: 2023.01.18).

[13] What is REST [https://restfulapi.net/] (available: 2023.01.18).

M.Sc. Dominik Choma

e-mail: dominik.choma@pollub.edu.pl

Dominik Choma received his master's degree

in computer science in the area of web application

at the Faculty of Electrical Engineering and Computer

Science at the Lublin University of Technology.

The author's research interests include graphic design,

frontend, and backend technologies.

http://orcid.org/0009-0004-6302-5683

M.Sc. Kinga Chwaleba

e-mail: kinga.chwaleba@pollub.edu.pl

Kinga Chwaleba received a master's degree with

distinction in Computer Science with specialization

in Web Applications at the Faculty of Electrical

Engineering and Computer Science at the Lublin

University of Technology. The author's research

interests include Java, Spring Boot, and backend

technologies.

http://orcid.org/0009-0007-3458-5464

Ph.D. Mariusz Dzieńkowski

e-mail: m.dzienkowski@pollub.pl

Assistant professor in the Computer Science

Department at the Faculty of Electrical Engineering

and Computer Science at Lublin University

of Technology. His scientific interests include human-

computer interaction, eye tracking applications

and web application development. He is a member

of the Polish Information Processing Society.

http://orcid.org/0000-0002-1932-297X

