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Abstract. Transfer Learning (TL) is a popular deep learning technique used in medical image analysis, especially when data is limited. It leverages pre-
trained knowledge from State-Of-The-Art (SOTA) models and applies it to specific applications through Fine-Tuning (FT). However, fine-tuning large 

models can be time-consuming, and determining which layers to use can be challenging. This study explores different fine-tuning strategies for five SOTA 

models (VGG16, VGG19, ResNet50, ResNet101, and InceptionV3) pre-trained on ImageNet. It also investigates the impact of the classifier by using 
a linear SVM for classification. The experiments are performed on four open-access ultrasound datasets related to breast cancer, thyroid nodules cancer, 

and salivary glands cancer. Results are evaluated using a five-fold stratified cross-validation technique, and metrics like accuracy, precision, and recall 

are computed. The findings show that fine-tuning 15% of the last layers in ResNet50 and InceptionV3 achieves good results. Using SVM for classification 
further improves overall performance by 6% for the two best-performing models. This research provides insights into fine-tuning strategies 

and the importance of the classifier in transfer learning for ultrasound image classification. 
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OPTYMALIZACJA KLASYFIKACJI OBRAZÓW ULTRASONOGRAFICZNYCH TECHNIKĄ 

TRANSFER LEARNING: STRATEGIE DOSTRAJANIA I WPŁYW KLASYFIKATORA 

NA WSTĘPNIE WYTRENOWANE WARSTWY WEWNĘTRZNE 

Streszczenie. Transfer Learning (TL) to popularna technika głębokiego uczenia stosowana w analizie obrazów medycznych, zwłaszcza gdy ilość danych 

jest ograniczona. Wykorzystuje ona wstępnie wyszkoloną wiedzę z modeli State-Of-The-Art (SOTA) i zastosowanie ich do konkretnych aplikacji poprzez 

dostrajanie (Fine-Tuning – FT). Jednak dostrajanie dużych modeli może być czasochłonne, a określenie, których warstw użyć, może stanowić wyzwanie. 
W niniejszym badaniu przeanalizowano różne strategie dostrajania dla pięciu modeli SOTA (VGG16, VGG19, ResNet50, ResNet101 i InceptionV3) 

wstępnie wytrenowanych na ImageNet. Zbadano również wpływ klasyfikatora przy użyciu liniowej SVM do klasyfikacji. Eksperymenty przeprowadzono 

na czterech ogólnodostępnych zbiorach danych ultrasonograficznych związanych z rakiem piersi, rakiem guzków tarczycy i rakiem gruczołów ślinowych. 
Wyniki są oceniane przy użyciu techniki pięciowarstwowej walidacji krzyżowej, a wskaźniki takie jak dokładność, precyzja i odzyskiwanie są obliczane. 

Wyniki pokazują, że dostrojenie 15% ostatnich warstw w ResNet50 i InceptionV3 osiąga dobre wyniki. Użycie SVM do klasyfikacji  dodatkowo poprawia 

ogólną wydajność o 6% dla dwóch najlepszych modeli. Badania te zapewniają informacje na temat strategii dostrajania i znaczenia klasyfikatora 
w uczeniu transferowym dla klasyfikacji obrazów ultrasonograficznych. 

Słowa kluczowe: CNN, transfer learning, dostrajanie, SVM, obrazy ultrasonograficzne, klasyfikacja nowotworów 

Introduction 

Medical ultrasound imaging is a widely used modality 

for diagnosing various conditions, such as tumors, cysts, 

and abnormalities in organs and tissues. It is a non-invasive 

technique, less expensive, and can provide real-time images 

for diagnosis purposes [15]. 

Accurate classification of ultrasound medical images plays 

a crucial role in the clinical decision-making process. However, 

it can be challenging due to the complexity of these images, 

as well as the limited availability of annotated data for training 

Deep Learning (DL) models based on Convolutional Neural 

Networks (CNNs) [7, 21]. These kinds of models have shown 

remarkable success in image classification tasks, but they may 

face limitations in medical ultrasound images due to the previous-

mentioned obstacles.  

In recent years, Transfer Learning (TL) has shown promising 

results in various computer vision tasks, and become a prominent 

DL technique allowing models trained on large datasets such 

as ImageNet, to be fine-tuned on smaller target datasets. 

TL has the potential to address the data deficiency limitations 

found in medical images, making it a valuable tool for improving 

the accuracy and efficiency of Computer-Aided-Diagnosis (CAD) 

systems. 

TL pre-trained models have already learned low-level 

and generic features common to many images such as edges, 

contours, shapes, and so on. While high-level features specific 

to the classification task are learned through the classifier 

by means of Fine-Tuning (FT). This technique can help reduce 

the computational cost of DL models, saving the effort of building 

layers from scratch. This can be especially beneficial 

in the medical field where annotated data are scarce and costly 

to obtain. 

Despite its advantages, TL requires essentially a classifier 

built on-top for FT purposes. The classifier can be as simple 

as a Global Max-Pooling (GMP) or Flatten layer with Fully 

Connected (FC) layers that match the number of target classes. 

Utilizing such a shallow Multilayer Perceptron (MLP) classifier 

may not guarantee optimal results and can, in certain cases, 

result in overfitting the training set due to the depth of the pre-

trained models. However, choosing an adequate FT strategy 

and a questionable classifier can help overcome these limitations. 

In such cases, hybrid approaches combining CNNs extracted 

features along with Machine Learning (ML) estimators can offer 

improved performance and robustness. 

In recent years, there has been growing interest in combining 

CNNs with other classifiers to improve accuracy, robustness, and 

interpretability. One popular hybrid approach is the combination 

of CNN and Support Vector Machines (SVM) [4].  

CNNs are known for their ability to learn hierarchical features 

from images, automatically capturing relevant patterns 

and structures. SVM, on the other hand, is a well-known ML 

estimator that was initially designed for binary classification tasks 

providing a clear decision boundary while handling small datasets 

effectively. Combining the feature extraction capabilities of CNNs 

with the discriminative power of SVM, this approach can lead 

to a better-generalized classification outcome. 

In this paper, we emphasize the significance of FT techniques 

in TL for the classification of ultrasound images. We evaluate five 

of the classically recognized ImageNet pre-trained models, namely 

VGG16, VGG19, ResNet50, ResNet101, and InceptionV3, using 

various FT strategies. Additionally, we investigate the effecti-

veness of the hybrid CNN-SVM approach by incorporating 

an SVM classifier on top of the fine-tuned pre-trained models. 

The findings of this study provide valuable insights into 

the advantages of fine-tuning specific layers and the hybrid CNN-

SVM approach for ultrasound image classification. 
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1. Related works 

In recent research, TL has been widely used to address 

the demand for large labeled data required to train DL models. 

Training these models from scratch for medical images can 

be challenging due to several reasons. Notably, dataset availability 

is often expensive in collection and storage, particularly when 

involving professional radiologists in the annotation process 

which is time-consuming and error-prone posing challenges 

in training DL models. As a result, researchers have introduced 

TL as an efficient and low-cost technique to remediate the lack 

of data. Many researchers have used ImageNet pre-trained models, 

such as VGG16, ResNet, and InceptionV3 in various medical 

imaging applications, such as skin cancer, breast cancer, 

and so on. 

TL commonly employs two strategies: fine-tuning, utilized 

when the target dataset is enough for the training, and feature 

extraction, an alternative method for leveraging low-level features 

from pre-trained models. Besides, data augmentation techniques 

such as rotation, cropping, noise adding, and color manipulation  

have also been commonly used to expand the dataset 

and prevent overfitting [8, 21]. 

TL has made major contributions to medical image analysis 

by overcoming the problem of data scarcity and saving time 

and hardware resources. In the review paper [5], authors 

investigated 121 studies around selecting the best backbone 

models and TL approaches for medical images. They have 

therefore divided TL strategies into four categories including 

feature extractor, feature extractor hybrid, fine-tuning, and fine-

tuning from scratch. Authors have also declared Inception, 

ResNet, VGG, AlexNet, and LeNet as the most common TL 

models used in literature. The same was also confirmed 

in the review paper [6]. Additionally, authors of [5] have 

recommended preferring ResNet and Inception models as feature 

extractors due to their performance and computational efficiency. 

In the same context, authors in [14] suggest a novel deep 

learning cascaded feature framework to address the issue 

of the high dimensionality of features extracted from deep layers 

of pre-trained CNNs models. Their framework utilized pre-trained 

models such as AlexNet, VGG, and GoogleNet to extract shallow 

and deep features, and have employed their univariate strategy 

to overcome the dimensionality and multicollinearity issues 

in the extracted features. The evaluation of their proposed 

framework yielded an accuracy of 98.50%, sensitivity of 98.06%, 

specificity of 98.99%, and precision of 98.98%. 

The authors of the paper [3], investigated ten TL models 

as backbones for the U-Net [12] model for segmenting 

breast ultrasound images. The obtained results demonstrated 

the efficiency of pre-trained models in extracting relevant features 

for breast lesions segmentation. 

In [19], authors used deep learning pre-trained models 

such as ResNet50, DenseNet121, and EfficientNetB3, besides 

transformer-based methods such as ViT-B/16 to classify Salivary 

gland tumors. These tumors are commonly inferred from 

the parotid glands where only 20% of the tumors are malignant. 

Authors have performed a binary classification on a dataset 

of 251 patients, with about 29.5% of the malignant cases. They 

used data augmentation techniques during the training such 

as random flipping, rotating, blurring, and lighting adjustments. 

Their results outperformed those of inexperienced radiologists. 

Notably, EfficientNetB3 and DenseNet121 models achieved 

accuracy and Area Under the Curve (AUC) of 80%, 0.82, 

and 77%, 0.81 respectively. In the same context, [20] have trained 

a modified ResNet18 network over 1200 epochs with a learning 

rate of 1e-6 using Adam optimizer on a dataset of parotid lesions 

from 232 patients and a total of 3791 cropped parotid gland region 

images. The dataset was partitioned into 90% of training and 10% 

of validation sets. Additionally, data augmentation techniques 

such as image flipping and contrast adjustment were used 

for data enhancement. Authors have reported an accuracy 

of 82.18% with a micro-AUC of 0.93. 

In the context of hybrid models, authors in [1] and [17] 

demonstrated the advantages of using linear L2-SVM 

as a top layer instead of softmax in DL architectures, highlighting 

benefits such as differentiability and stronger error penalization. 

They showed that L2-SVM is slightly better than L1-SVM, 

and they used linear SVMs in their experiments. They 

tested their approach on well-known datasets and achieved 

competitive results in a facial expression recognition 

competition. They highlighted the effectiveness of the last 

layer SVM in comparison to softmax, and they attributed 

the performance gain to the superior regularization effects 

of the SVM loss function rather than better parameter 

optimization.  

The work in [9] develops a generic CAD system based 

on features extracted from pre-trained CNNs tested on 12 open-

access image datasets. The authors aimed to explore the power 

of intermediate and last layers of ImageNet pre-trained models 

such as GoogleNet (Inception), ResNet, and DenseNet201 feature 

vectors for training an ensemble of SVMs. The extracted features 

are fed to SVMs, then combined for the final results. 

Regarding thyroid nodule classification, [16] suggested 

a hybrid model based on CNN and SVM, compiled with a hinge 

loss function. They evaluated the results on two public datasets 

containing 1180 and 2616 thyroid ultrasound images 

after applying data augmentation. They reported an accuracy 

of 94.57%, 96% and specificity of 91.89%, 93.93%, 

and a sensitivity of 96.70%, 97.80% for both datasets, dataset-1 

and dataset-2 respectively. 

To guarantee optimal performances, SVM hyperparameters 

such as the C penalty parameter, and the kernel were investigated. 

[18] used Quantum-Behaved Particle Swarm Optimization 

(QPSO) algorithm to optimize SVM parameters due to its global 

search ability and fewer control parameters. A hybrid 

model consisting of a LeNet-5 network and SVM 

was utilized and validated on breast cancer cell images. 

The model achieved a test accuracy of 93.15%, outperforming 

the model without SVM, by 1.9%. 

2. Proposed method 

In this section, we introduce and discuss the different phases 

involved in this study, with a particular emphasis on FT strategies. 

Then, we delve into the details of the FT hybrid CNN-SVM 

approach and explore its potential in enhancing the overall 

classification performances. The study workflow is described 

in Fig. 1. 

 

Fig. 1. Study workflow 

2.1. Study workflow 

To evaluate the experiment, four publicly available ultrasound 

datasets were used representing diverse anatomical regions and 

clinical cancer scenarios. Breast, thyroid nodules, and salivary 

glands are the organs investigated with their corresponding 

datasets 1) Breast Mendeley [11], 2) Breast Ultrasound Images 

(BUSI) [2], 3) Digital Database of Thyroid Images (DDTI) [10], 

and 4) Salivary Glands from Ultrasound cases website [13]. 

Fine-tuning strategies

...

..

50% Dropout

Global Max Pooling
Softmax

1fc,512 nodes

100% 85% 75% 50% 25% 15% 0%

Base model

VGG16, VGG19, ResNet50, 

ResNet100, InceptionV3

SVM Classifier

Benign

Malignant

Benign

Malignant

Classifier on-top

MLP classifier



p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 4/2023      29 

TL FT strategies were separately applied to each dataset using 

four state-of-the-art pre-trained models: VGG16, VGG19, 

ResNet50, ResNet101, and InceptionV3.  

A model selection mechanism was implemented using a 5-fold 

Stratified Cross-Validation (SCV) technique, where the best 

model was saved during each fold for subsequent evaluation. 

This technique is widely recognized and effective in handling 

imbalanced datasets, which is often the case for medical images. 

Additionally, classification evaluation metrics including accuracy, 

precision, recall, and AUC values were computed. Furthermore, 

the Receiver Operator Characteristic (RoC) curve and Confusion 

Matrix (CM) were provided for a comprehensive description 

of the classification outcomes for the two best-performing models. 

FT strategies and the effectiveness of the hybrid CNN-SVM 

approach were separately evaluated for each dataset. This enabled 

a thorough evaluation of the proposed approaches within 

the specific medical ultrasound domain, offering valuable insights 

into their performance and applicability. Figure 2 displays 

four samples from each dataset, while table 1 provides 

an overview of their class distribution. 

2.2. Models configurations 

A. Phase 1: Transfer learning fine-tuning 

approach (FT) 

This approach aims at extracting optimal features from 

ultrasound images. For this task, pre-trained models with 

ImageNet weights were used as backbones, followed by a shallow 

MLP classifier with a GlobalMaxPooling layer, a fully connected 

layer (512 nodes) with 50% dropout, and a final fully connected 

layer (2 nodes) with softmax activation function. 

Table 2 describes the seven fine-tuning strategies that were 

implemented, irrespective of the models' depth, and highlights 

the number of total and frozen layers for the investigated 

pre-trained models. 

Models in this phase were compiled using binary cross-

entropy and Adam optimizer, then trained for 30 epochs with 

a learning rate of 0.0001 and a batch size of 4. Models evaluation 

was conducted using a Stratified Cross-Validation technique 

with metrics computed and averaged across the 5-folds 

representing the overall model performance. 

B. Phase 2: Transfer learning fine-tuning hybrid 

approach (FT-SVM) 

This approach consisted of employing SVM in replacement 

of the basic classifier made earlier. SVM inputs were obtained 

from the best features extracted from the FT models that were 

saved during the earlier phase. 

Based on the literature review, the linear kernel-based 

SVM classifier has proved its efficiency in delivering good results 

in image classification tasks. Therefore, only SVM's 

C-hyperparameter was tuned using a GridSearch mechanism 

with a 5-fold SCV technique for values ranging from 0.1, 1, 10, 

and 100. SVM's C parameter is known to penalize each 

misclassified point and controls the SVM decision boundaries. 

Thus, choosing the right C value may require more thorough tests, 

hence the used GridSearch mechanism. 

 

 

Fig. 2. Ultrasound datasets overview 

Table 1. Datasets class distribution 

Dataset Benign Malignant Total 

Breast Mendeley 100 150 250 

Breast BUSI 437 210 647 

Thyroid DDTI 49 399 448 

Salivary Glands 781 109 890 

Table 2. Fine-tuning strategies and pre-trained models: layers description 

 VGG16 VGG19 ResNet50 ResNet101 InceptionV3 

Total layers 19 22 175 345 311 

FT strategies (%) Number of frozen layers 

0% (purely TL) 19 22 175 345 311 

15% 16 19 149 293 264 

25% 14 16 131 259 233 
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3. Experimental results and discussion 

The investigated fine-tuning strategies yielded the results 

described in table 3 Since there are many metrics involved, 

we have structured the results in this table by the AUC value 

which reflects the true positive and the false negative rates 

of the classification. The AUC values were computed for each 

strategy, both for the fine-tuned models using a basic MLP 

classifier and the fine-tuned models using SVM. The best-

performing models were chosen based on their AUC values 

performances across all models. Fine-tuning 15% of layers was 

found the best strategy and resulted in a good classification, 

specifically when performed by SVM. Table 4 shows 

the computed metrics for the five models along with the optimal 

SVM-C parameter value. Results in this table are structured 

as follows: each metric consists of a pair of values, representing 

the performance of the fine-tuned layers with the basic classifier 

and the fine-tuned layers with SVM.  

For each dataset, excluding Breast Mendeley due to its 

potentially optimistic results that could impact the overall 

accuracy of the study, the confusion matrix and RoC curves were 

generated separately for the winning strategy in both ResNet50 

and InceptionV3. Additionally, in the breast BUSI dataset, 

ResNet50 showed an increase of 18% in sensitivity, while 

InceptionV3 exhibited an increase of 12%. For the thyroid DDTI 

dataset, ResNet50 achieved a sensitivity increase of 3%, whereas 

InceptionV3 showed a 2% increase. In the case of the salivary 

glands dataset, ResNet50 demonstrated an increase of 0.52% 

in sensitivity compared to InceptionV3 with a 0.42%. Besides, 

InceptionV3 was found the most consistent model across 

all strategies and different ultrasound datasets being used. 

Figures 3, 5, and 7 display the confusion matrix of ResNet50 

and InceptionV3 for the breast BUSI, thyroid DDTI, 

and Salivary Glands datasets, respectively, using the 15% FT 

strategy. Additionally, Figures 4, 6 and 8 illustrate the differences 

in RoC curves and emphasize the superior performance of SVM 

in the overall classification. 

Table 3. Fine-tuning strategies by AUC values: FT and FT-SVM 

AUC (%) VGG16 VGG19 ResNet50 ResNet101 InceptionV3 

Breast Mendeley 

0% :(0.97, 0.95) 

15% :(0.94, 1.00) 

25% :(0.86, 1.00) 

50% :(1.00, 1.00) 

75% :(1.00, 1.00) 

85% :(1.00, 0.98) 

100%:(1.00, 1.00) 

0% :(0.94, 0.97) 

15% :(0.76, 0.90) 

25% :(0.90, 1.00) 

50% :(0.94, 1.00) 

75% :(1.00, 0.98) 

85% :(1.00, 0.99) 

100%:(0.97, 1.00) 

0% :(0.53, 0.70) 

15% :(1.00, 1.00) 

25% :(1.00, 1.00) 

50% :(0.99, 1.00) 

75% :(0.66, 0.97) 

85% :(0.66, 0.99) 

100%:(1.00, 1.00) 

0% :(0.74, 0.97) 

15% :(1.00, 1.00) 

25% :(1.00, 1.00) 

50% :(0.95, 0.95) 

75% :(0.95, 1.00) 

85% :(0.97, 1.00) 

100%:(1.00, 1.00) 

0% :(0.99, 1.00) 

15% :(1.00, 1.00) 

25% :(1.00, 1.00) 

50% :(1.00, 1.00) 

75% :(1.00, 1.00) 

85% :(1.00, 0.99) 

100%:(1.00, 1.00) 

Breast BUSI 

0% :(0.80, 0.81) 

15% :(0.76, 0.93) 

25% :(0.80, 0.90) 

50% :(0.84, 0.94) 

75% :(0.86, 0.96) 

85% :(0.87, 0.95) 

100%:(0.64, 0.88) 

0% :(0.78, 0.84) 

15% :(0.67, 0.85) 

25% :(0.79, 0.88) 

50% :(0.78, 0.96) 

75% :(0.84, 0.95) 

85% :(0.86, 0.94) 

100%:(0.60, 0.87) 

0% :(0.51, 0.78) 

15% :(0.87, 0.98) 

25% :(0.85, 0.93) 

50% :(0.81, 0.95) 

75% :(0.76, 0.89) 

85% :(0.80, 0.90) 

100%:(0.90, 0.99) 

0% :(0.56, 0.76) 

15% :(0.81, 0.95) 

25% :(0.82, 0.95) 

50% :(0.75, 0.81) 

75% :(0.76, 0.83) 

85% :(0.78, 0.85) 

100%:(0.84, 0.97) 

0% :(0.81, 0.84) 

15% :(0.90, 0.99) 

25% :(0.90, 0.98) 

50% :(0.88, 0.98) 

75% :(0.83, 0.97) 

85% :(0.85, 0.96) 

100%:(0.88, 0.98) 

Thyroid DDTI 

0% :(0.51, 0.50) 

15% :(0.50, 0.50) 

25% :(0.50, 0.50) 

50% :(0.52, 0.50) 

75% :(0.50, 0.50) 

85% :(0.50, 0.55) 

100%:(0.50, 0.50) 

0% :(0.50, 0.50) 

15% :(0.50, 0.50) 

25% :(0.50, 0.50) 

50% :(0.50, 0.50) 

75% :(0.50, 0.50) 

85% :(0.51, 0.59) 

100%:(0.50, 0.50) 

0% :(0.50, 0.50) 

15% :(0.59, 0.94) 

25% :(0.52, 0.83) 

50% :(0.50, 0.50) 

75% :(0.50, 0.50) 

85% :(0.50, 0.51) 

100%:(0.55, 0.50) 

0% :(0.50, 0.50) 

15% :(0.49, 0.50) 

25% :(0.50, 0.50) 

50% :(0.50, 0.50) 

75% :(0.50, 0.50) 

85% :(0.50, 0.50) 

100%:(0.54, 0.57) 

0% :(0.52, 0.50) 

15% :(0.54, 0.91) 

25% :(0.55, 0.92) 

50% :(0.55, 0.50) 

75% :(0.51, 0.66) 

85% :(0.53, 0.62) 

100%:(0.51, 0.93) 

Salivary Glands 

0% :(0.61, 0.50) 

15% :(0.50, 0.50) 

25% :(0.56, 0.75) 

50% :(0.50, 0.50) 

75% :(0.72, 0.84) 

85% :(0.68, 0.88) 

100%:(0.50, 0.50) 

0% :(0.54, 0.50) 

15% :(0.50, 0.50) 

25% :(0.50, 0.50) 

50% :(0.55, 0.50) 

75% :(0.58, 0.89) 

85% :(0.65, 0.62) 

100%:(0.50, 0.50) 

0% :(0.50, 0.50) 

15% :(0.67, 0.94) 

25% :(0.60, 0.61) 

50% :(0.50, 0.55) 

75% :(0.50, 0.50) 

85% :(0.50, 0.50) 

100%:(0.79, 0.96) 

0% :(0.66, 0.50) 

15% :(0.61, 0.93) 

25% :(0.52, 0.50) 

50% :(0.50, 0.50) 

75% :(0.50, 0.50) 

85% :(0.50, 0.66) 

100%:(0.79, 0.95) 

0% :(0.58, 0.50) 

15% :(0.71, 0.95) 

25% :(0.74, 0.90) 

50% :(0.80, 0.96) 

75% :(0.70, 0.97) 

85% :(0.63, 0.85) 

100%:(0.79, 0.94) 

Table 4. Fine-tuning results for the 15% layers 

Dataset Metrics(%) VGG16 VGG19 ResNet50 ResNet101 InceptionV3 

Breast Mendeley 

SVM-C parameter 

Accuracy 

Precision 

Sensitivity 

1 

(0.9480, 1.0000) 

(0.9419, 1.0000) 

(0.9733, 1.0000) 

0.1 

0.7960, 0.9160) 

(0.7619, 0.8778) 

(0.9600, 1.0000) 

0.1 

(1.0000, 1.0000) 

(1.0000, 1.0000) 

(1.0000, 1.0000) 

0.1 

(1.0000, 1.0000) 

(1.0000, 1.0000) 

(1.0000, 1.0000) 

1 

(1.0000, 1.0000) 

(1.0000, 1.0000) 

(1.0000, 1.0000) 

Breast BUSI 

SVM-C parameter 

Accuracy 

Precision 

Sensitivity 

100 

(0.8176, 0.9412) 

(0.7875, 0.9234) 

(0.6000, 0.8952) 

100 

(0.7650, 0.8654) 

(0.7735, 0.7996) 

(0.3904, 0.7904) 

1 

(0.8887, 0.9768) 

(0.8415, 0.9494) 

(0.8095, 0.9809) 

0.1 

(0.8469, 0.9644) 

(0.8100, 0.9673) 

(0.6904, 0.9238) 

10 

(0.9072, 0.9876) 

(0.8504, 0.9764) 

(0.8666, 0.9857) 

Thyroid DDTI 

SVM-C parameter 

Accuracy 

Precision 

Sensitivity 

0.1 

(0.8893, 0.8906) 

(0.8893, 0.8906) 

1.0000, 1.0000) 

0.1 

( 0.8893, 0.8906) 

(0.8893, 0.8906 

(1.0000, 1.0000) 

10 

(0.8849, 0.9821) 

(0.9088, 0.9852) 

(0.9676, 0.9949) 

0.1 

(0.8783, 0.8906) 

(0.8881, 0.8906) 

(0.9875, 1.0000) 

100 

(0.8783, 0.9753) 

(0.8970, 0.9778) 

(0.9751, 0.9949) 

Salivary Glands 

SVM-C parameter 

Accuracy 

Precision 

Sensitivity 

0.1 

(0.8786, 0.8775) 

(1.0000, 0.0000) 

(0.0091, 0.0000) 

0.1 

(0.8775, 0.8775) 

(0.0000, 0.0000) 

(0.0000, 0.0000) 

10 

(0.8932, 0.9775) 

(0.6060, 0.9345) 

(0.3669, 0.8809) 

1 

(0.8853, 0.9662) 

(0.5744, 0.8545) 

(0.2477, 0.8722) 

10 

(0.8876, 0.9752) 

(0.5463, 0.8904) 

(0.4862, 0.9090) 
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Fig. 3. BUSI confusion matrix curves: 15% of layers FT and FT+SVM 

       

Fig. 4. BUSI RoC curve: 15% of layers FT and FT+SVM 

       

Fig. 5. DDTI confusion matrix: 15% of layers FT and FT+SVM 
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Fig. 6. DDTI RoC curves: 15% of layers FT and FT+SVM 

       

Fig. 7. Salivary Glands confusion matrix: 15% of layers FT and FT+SVM 

       

Fig. 8. Salivary Glands RoC curves: 15% of layers FT and FT+SVM 
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4. Conclusion 

This paper demonstrates the effectiveness of transfer learning 

and the effect of fine-tuning specific layers in enhancing 

ultrasound image classification tasks. Using different state-of-the-

art ImageNet pre-trained models, various fine-tuning strategies 

were implemented and investigated such as fine-tuning 0%, 15%, 

25%, 50%, 75%, 85%, and 100% of inner layers. The evaluation 

of these strategies was performed in two phases, first, fine-tuning 

with a basic classifier, and second, replacing the classifier with a 

linear SVM. The whole evaluation process has been implemented 

with a 5-fold cross-validation mechanism ensuring robust model 

evaluation and selection. Among the five implemented models, 

two models namely, ResNet50, and InceptionV3 have shown good 

performances while fine-tuning 15% of their layers. Additionally, 

the overall performance of these models has increased 

significantly while adopting a hybrid approach by leveraging a 

linear SVM on the classifier part of the fine-tuned models. The 

results of this study underscore the importance of optimizing deep 

learning techniques in ultrasound image analysis. Additionally, 

they shed light on the significance of fine-tuning strategies and 

classifier selection in achieving accurate and reliable classification 

outcomes. 
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