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Abstract. Following article address the issue of automatic knee disorder diagnose with usage of neural networks. We proposed several hybrid neural 

net architectures which aim to successfully classify abnormality using MRI (magnetic resonance imaging) images acquired from publicly available dataset. 

To construct such combinations of models we used pretrained Alexnet, Resnet18 and Resnet34 downloaded from Torchvision. Experiments showed 
that for certain abnormalities our models can achieve up to 90% accuracy. 
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ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH 

W DIAGNOZIE SCHORZEŃ STAWU KOLANOWEGO 

Streszczenie. Niniejszy artykuł porusza temat automatycznej diagnozy uszkodzenia stawu kolanowego z zastosowaniem sieci neuronowych. 
Zaproponowano kilka hybrydowych sieci neuronowych, które podjęły próbę poprawnej klasyfikacji nieprawidłowości wykorzystując zdjęcia rezonansu 

magnetycznego pochodzące z publicznie dostępnego zbioru. Do konstrukcji kombinacji sieci skorzystano z pretrenowanych modeli (Alexnet, Resnet18, 

Resnet34) pobranych z Torchvision. Eksperyment pokazał, że dla klasyfikacji niektórych schorzeń modele osiągnęły nawet 90% skuteczności. 

Słowa kluczowe: klasyfikacja, zdjęcia MRI, Resnet, Alexnet 

Introduction 

Knee joint disorders are a problem strictly combined with the 

human aging process. Such disorders are outcomes of everyday 

work and accidents that lead to physical damage. One of the most 

effective diagnose methods of such injuries is the analysis of MRI 

images. 

In this project we tried to construct a hybrid neural network 

architecture that could possibly accurately classify knee joint 

abnormalities using MRI images uploaded by Stanford University 

as "A Knee MRI Dataset And Competition" [8]. The researchers 

from Stanford ML Group also published an article [1] presenting 

results of their models which served as a reference point to scores 

achieved by our neural nets. We would also acknowledge the fact 

that for better understanding of our task we analysed Ahmed 

Besbes’s implementation available here [5]. 

The goal of the whole project is to check whether a single 

person’s exam consisting of 3 planes (axial, coronal and sagittal) 

indicate the occurrence of an injury like abnormality, ACL tears 

or meniscal tears. Each exam was viewed and tagged with labels 

by medical doctors. 

 

Fig. 1. Single exam's planes 

This article is constructed as follows. At the beginning 

of the text we describe the dataset and the idea standing behind 

the experiment. After that we present the types of used neural nets 

and statistical methods. The last part of  the paper is dedicated 

for experiment’s results and summary. 

1. Dataset characteristics 

The dataset consists of 1 370 MRI examinations taken 

at Stanford University Medical Center. Each of the examination 

has 3 labels indicating presence of abnormality, ACL tears 

and meniscal tears. Occurrence of ACL tears or meniscal tears 

means that the abnormality label will be positive but it doesn’t 

work the other way round. That means that the abnormality label 

covers not only ACL tears and meniscal tears but also other types 

of abnormalities not specified among labels. 

MRI images were taken using various devices (GE Discovery, 

GE Healthcare, Waukesha, WI). Moreover two types of magnetic 

fields were used: 3.0 T (55.6% of exams) and 1.5 T for the rest 

of the exams. 

Data uploaded by Stanford University was already pre-

processed. That included converting DICOM (Digital Imaging 

and Communications in Medicine) files to png format 

and rescaling them to 256256 resolution. Given that the images 

didn’t have the same pixel intensity the researchers used 

standardization algorithm which based on pixel intensity taken 

from training dataset. The algorithm itself was run on both 

training and testing dataset. 

In order to enhance the training dataset we performed 

augmentation consisting of random rotation, transposition and 

horizontal flip. 

Table 1. Labels frequency 

Label 
Number of 

occurences 

Abnormality 1 104 

ACL Tears 319 

Meniscal Tears 508 

2. Experiment description 

For each plane we attempted to build a single model (called 

submodel) which specialized in a specific label. To boost 

the performance of models we decided to use pretrained versions 

of Resnet18, Resnet34 and Alexnet downloaded from Torchvision 

[7] which served us as main parts of our submodels. Overview 

of their structures are available here: [2, 3]. The idea standing 

behind single net’s functioning was to process the outcome 

of the pretrained model with average and max pooling, 

concatenate the results and finally perform calculations using fully 

connected layer. Whole structure is presented in Fig. 2. 

 

Fig. 2. Submodel's architecture scheme 
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The best suited model for classifying presence of specific 

label using given plane was chosen based on its performance 

and the results of McNemar’s test run between all models. 

The main models were composed out of 3 submodels each 

taking as input specific plane. Outcome of each submodel was 

sent to linear layer which ended up with 2 neurons. 

 

Fig. 3. Main models' architecture scheme 

All neural nets were trained using binary cross entropy loss 

given by: 

 𝑙 = −𝑤[𝑦 ∗ 𝑙𝑛𝜎(𝑥) + (1 − 𝑦) ∗ ln(1 − 𝜎(𝑥)) (1) 

where x stands for predicted value, y for actual value, σ for logit 

function and w for weight loss.  

To balance unequal label distribution we multiplied losses 

from actual positive observations with reversed proportion 

of number of actual positive observations to number of actual 

negative observations. This operation can be describes as follows: 

 𝑤 = {

𝑛.𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑜𝑏𝑠.

𝑛.𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑏𝑠.
, 𝑦 = 1

1, 𝑦 = 0
 (2) 

3. Resnet 

Resnet is a type of a neural network created by a group 

of researchers from Microsoft. Their main objective was solving 

the issue of degradation which takes place at the training process. 

The symptoms of this phenomenon appeared as deteriorated loss 

values not only on training set but also on test set whenever 

the construction of neural net was expanded with extra layers.  

As a result, the researchers invented residual block which 

at that time differed from standard neural networks with the idea 

of using input vector at the beginning and at the end of set 

of layers. 

 

Fig. 4. Residual block scheme 

Microsoft’s researchers formulated a hypothesis saying that 

it’s possible in an asymptotic way to estimate the outcomes 

of complicated functions. In the case of Resnet the authors took 

a step further and checked whether couple of connected layers 

are able to estimate outcome of residual function: 

 𝐹(𝒙) = H(𝐱) − 𝒙 (3) 

where H(x) is a covered mapping. It’s possible to describe the way 

of working of residual block depicted in Fig. 4 in a following way: 

 𝒚 = 𝐹(𝐱, {𝑊𝑖}) + 𝒙 (4) 

where x, y are input and output tensor from the residual block. 𝑊𝑖 

describes the weights of i-th layer. The full version of F function 

can be expanded with 2 layers visible in Fig. 4 which gives: 

 𝐹 = 𝑊2 ∙ 𝜎(𝑊1𝒙) (5) 

where σ is Relu activation function. The transformation presented

in the equation (5) is called the skip connection and works only 

when dimensions of x and F are equal. When it’s not the case then 

linear projection 𝑊𝑆 is needed: 

 𝒚 = 𝐹(𝐱, {𝑊𝑖}) + 𝒙𝑊𝑠 (6) 

 Resnet’s architecture is in fact a stack of residual blocks with 

implemented skip connections. 

 

Fig. 5. Resnet34‘s architecture scheme 

4. Alexnet 

Alexnet is a type of neural network created by Alex 

Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. Its success 

was based on several of innovations, whose Alexnet’s creators 

were not always authors of, that were used all together in one 

architecture. Alexnet’s training was spread around 2 graphic 

cards which allowed updating of 2 parallel mapping series 

and efficient memory management. Alexnet’s structure begins 

with 3 convolutional layers which share data between graphic 

cards – input mapping for each of layer is structured from output 

tensors created by the previous layers placed  on both graphic 

cards. Next 2 layers are convolutional type but in this case 

they are independent in sense of data sharing. They are followed 

by 3 fully connected layers. 

 

Fig. 6. Alexnet’s architecture scheme 

One of the most groundbreaking innovation was activation 

function called Relu which was described by following equation: 

 𝑓(𝑥) = max (0, 𝑥) (7) 

At that time most of the neural networks used hyperbolic tangent 

which led to slower training tempo. 

 Another idea implemented in Alexnet was the local response 

normalization inspired by a phenomenon called the lateral 

inhibition which is characterized by excited neuron disabling its 

neighbors. This phenomenon leads to specialization of overexcited 

neurons in detecting certain patterns. Formally the local response 

normalization looks in the following way: 

 𝑏𝑥,𝑦
𝑖 =

𝑎𝑥,𝑦
𝑖

(𝑘+ 𝛼 ∑ (𝑎𝑥,𝑦
𝑗

)2
min (𝑁−1,   𝑖+

𝑛
2)

𝑗=max (0,   𝑖−𝑚/2)
)𝛽

 (8) 

where: 𝑎𝑥,𝑦
𝑖  is the outcome of applying i-th filter on element placed 

at (x,y) position and Relu function, 𝑏𝑥,𝑦
𝑖  is the normalized response 

for element placed at position (x,y) after applying i-th filter and k, 

n, α, β are the hyperparameters. 

5. McNemar’s test and Wilson’s confidence 

interval 

For comparison of models’ classification results we performed 

McNemar's test whose overview is available here [6] and here [4]. 

This method uses convergence table which splits the same 

observations classified by two compared models into 4 groups 

presented in Table 2. 
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Table 2. Convergence table 

 

Classifier 1 

correct results 

Classifier 1 

incorrect results 

Classifier 1 

correct results 
a b 

Classifier 1 

incorrect results 
c d 

 

The null hypothesis states that both classifiers disagree 

to the same extend. If the null hypothesis is rejected, it means 

that there’s a possibility that both classifiers disagree in a different 

way. To perform McNemar’s test p value should be calculated 

which, depending on alfa value (here 0.05), confirms or rejects 

the null hypothesis: 

p value > 0.05 → null hypothesis confirmed, 

p value ≤ 0.05 → null hypothesis rejected. 

In many cases chi square distribution is impossible to estimate 

since b + c < 25. Because of that reason we decided to use the 

exact p value given by the following equation: 

 𝑒𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 𝑝 = 2 ∙ ∑ (𝑛
𝑖
)𝑛

𝑖=𝑏 ∙ 0.5𝑖 ∙ (1 − 0.5)𝑛−𝑖 (9) 

where n = b + c. 

 In order to estimate the values of expected metrics 

on unseen before data we calculated Wilson confidence interval. 

A comprehensive overview is available here [9]. This method 

allowed us to construct range of expected results with given 

probability (95% in this project). Wilson confidence interval 

is given by the following equation: 

 𝑝 ≈ (𝑤−, 𝑤+) =
1

1+
𝑧2

 𝑛

∙ (𝑝̂ +
𝑧2

2𝑛
) ±

𝑧

1+
𝑧2

 𝑛

√
𝑝̂(1−𝑝̂)

𝑛
+

𝑧2

4𝑛2
 (10) 

where n is the number of observations, z is z score for 95% 

confidence interval and 𝑝̂ is the number of positive observations. 

6. Results of submodels 

 For each label, for each plane, and for each pretrained model 

we performed a training process which lasted 10 epochs. Among 

10 checkpoints we selected the one which obtained the highest 

accuracy on test set at the end of epoch. If at least 2 checkpoints 

achieved the same accuracy, then we chose the one which had the 

highest AUC (area under curve) result. At the end of the selection 

process we ended up with 27 submodels which we had to reduce 

to 9 – one submodel for (plane, label) pair.  

 To analyze submodel’s performance we calculated the 

following statistics: accuracy, precision, recall, F1 score and AUC. 

To take a deeper look into delivered statistics we computed 

Wilson confidence interval. Furthermore we calculated p values 

using McNemar’s test to find out whether submodels are 

statistically different.  

 Tables 3 and 4 present an example of results obtained 

by 3 submodels dedicated for abnormality classification using 

axial plane. In this case because of the high p values we decided 

to move forward with Resnet18 which has the least number 

of parameters. 

Table 3. Classification of abnormality using axial plane 

Model Accuracy Precission Recall F1 AUC 

Alexnet 

0.83 

(0.753, 

0.887) 

0.86 

(0.787, 

0.911) 

0.94 

(0.882, 

0.97) 

0.9 

(0.833, 

0.942) 

0.688 

(0.601, 

0.764) 

Resnet18 

0.87 

(0.798, 

0.919) 

0.87 

(0.798, 

0.919) 

0.98 

(0.936, 

0.994) 

0.92 

(0.857, 

0.956) 

0.709 

(0.623, 

0.783) 

Resnet34 

0.86 

(0.787, 

0.911) 

0.86 

(0.787, 

0.911) 

0.98 

(0.936, 

0.994) 

0.92 

(0.857, 

0.956) 

0.689 

(0.602, 

0.756) 

Table 4. p values between submodels classifying abnormality using axial plane 

Models p value 

Resnet18 Resnet34 1 

Resnet18 Alexnet 0.424 

Resnet34 Alexnet 0.648 

 

We would also like to present insight into training process 

of chosen model. Fig. 7 and Fig. 8 show us that, even though 

all models were pretrained beforehand, the loss levels reached 

during training and testing looked different for submodel equipped 

with Alexnet and its equivalents with Resnets. The Alexnet 

submodel needed much more time to reach loss level represented 

by Resnet submodels. 

Using the same strategy as described in the given example we 

selected the rest of submodels whose overview is presented 

in Tables 5 and 6. 

Table 5. Final submodels chosen to build main models 

Model Accuracy Precission Recall F1 AUC 

Abnormality 

Resnet18 (axial) 

0.87 

(0.798, 

0.919) 

0.87 

(0.798, 

0.919) 

0.98 

(0.936, 

0.994) 

0.92 

(0.857, 

0.956) 

0.709 

(0.623, 

0.783) 

Resnet18 (coronal) 

0.82 

(0.742, 

0.878) 

0.85 

(0.775, 

0.903) 

0.95 

(0.895, 

0.977) 

0.9 

(0.833, 

0.942) 

0.654 

(0.565, 

0.733) 

Resnet18 (sagittal) 

0.82 

(0.742, 

0.878) 

0.82 

(0.742, 

0.878) 

0.98 

(0.936, 

0.994) 

0.89 

(0.821, 

0.934) 

0.589 

(0.5, 

0.673) 

ACL tears 

Resnet18 (axial) 

0.75 

(0.666, 

0.819) 

0.85 

(0.775, 

0.903) 

0.54 

(0.451, 

0.627) 

0.66 

(0.571, 

0.739) 

0.731 

(0.645, 

0.802) 

Resnet34 (coronal) 

0.85 

(0.775, 

0.903) 

0.86 

(0.787, 

0.911) 

0.8 

(0.72, 

0.862) 

0.83 

(0.753, 

0.887) 

0.845 

(0.77, 

0.899) 

Resnet34 (sagittal) 

0.83 

(0.753, 

0.887) 

0.83 

(0.753, 

0.887) 

0.8 

(0.72, 

0.862) 

0.81 

(0.731, 

0.87) 

0.83 

(0.753, 

0.887) 

Table 6. Final submodels chosen to build main models 

Model Accuracy Precission Recall F1 AUC 

Meniscal tears 

Resnet18 (axial) 

0.67 

(0.582, 

0.748) 

0.62 

(0.531, 

0.702) 

0.62 

(0.531, 

0.702) 

0.62 

(0.531, 

0.702) 

0.661 

(0.572, 

0.739) 

Resnet18 (coronal) 

0.78 

(0.698, 

0.845) 

0.75 

(0.666, 

0.819) 

0.73 

(0.644, 

0.801) 

0.74 

(0.655, 

0.81) 

0.77 

(0.687, 

0.836) 

Resnet34 (sagittal) 

0.72 

(0.634, 

0.793) 

0.72 

(0.634, 

0.793) 

0.6 

(0.511, 

0.683) 

0.65 

(0.561, 

0.729) 

0.71 

(0.623, 

0.784) 

 

 

Fig. 7. Loss levels of submodels (classifying abnormality on train dataset) at the end of each epoch 
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Fig. 8. Loss levels of submodels (classifying abnormality on test dataset) at the end of each epoch 

7. Results of main models 

 To assess main models’ effectiveness we decided to calculate 

the same metrics as in the submodels’ cases but this time we 

expanded the analysis with specificity. 

Table 7. Final models comparison compared with equivalents from Stanford 

University 

Model Accuracy Precission Specificity Recall F1 AUC 

Abnormality 

Stanford's 

model 

0.85 

(0.775, 

0.903) 

No data 

0.88 

(0.800, 

0.929) 

0.71 

(0.500, 

0.862) 

No data 

0.94 

(0.895, 

0.937) 

Authorial 

model 

0.87 

(0.798, 

0.919) 

0.86 

(0.787, 

0.911) 

0.99 

(0.952, 

0.998) 

0.4 

(0.317, 

0.489) 

0.92 

(0.857, 

0.956) 

0.69 

(0.607, 

0.77) 

ACL tears 

Stanford's 

model 

0.87 

(0.794, 

0.916) 

No data 

0.759 

(0.635, 

0.850) 

0.97 

(0.890, 

0.991) 

No data 

0.97 

(0.938, 

0.965) 

Authorial 

model 

0.9 

(0.833, 

0.942) 

0.9 

(0.833, 

0.942) 

0.87 

(0.798, 

0.919) 

0.924 

(0.862, 

0.959) 

0.88 

(0.81, 

0.927) 

0.9 

(0.83, 

0.94) 

Meniscal tears 

Stanford's 

model 

0.725 

(0.639, 

0.797) 

No data 

0.710 

(0.587, 

0.808) 

0.74 

(0.616, 

0.837) 

No data 

0.85 

(0.78, 

0.847) 

Authorial 

model 

0.77 

(0.687, 

0.836) 

0.69 

(0.602, 

0.766) 

0.85 

(0.775, 

0.903) 

0.706 

(0.619, 

0.78) 

0.76 

(0.676, 

0.828) 

0.78 

(0.694, 

0.841) 

 

In each of 3 pairs of compared models the same pattern can be 

spotted – the differences in accuracy between Stanford’s models 

and authorial models are low. For instance accuracy of Stanford’s 

model responsible for classifying images with abnormality 

presence reached 0.85 in comparison to authorial model’s 0.87. 

It seems that the neural nets created by Stanford ML Group 

work much better in detecting those images which don’t have 

sought label. In contrast to them authorial models excel in finding 

disorders in the images that actually present joint with disorder. 

For example recall and specificity of Stanford’s model classifying 

ACL tears reached levels of 0.759 and 0.924. The same metrics 

for authorial model stood at 0.9 and 0.924. 

It’s worth mentioning that Stanford’s neural networks 

overtook the authorial models when it comes to the AUC levels. 

The possible explanation for that could be the difference in a way

of selecting submodel’s checkpoint among epochs during training. 

The original Stanford’s paper mentions that the researched chose 

those versions which had the lowest averaged loss counted within 

epoch. On the other hand authorial submodels were picked 

according to the highest accuracy. 

8. Summary 

In conclusion we would like to say that the created models that 

served to classify 3 types of knee joint disorder achieved 

comparable results as their equivalents from Stanford University. 

Their differences in a way of selection are with no doubts a good 

material for further research. 

It seems that the topic of classifying knee joint injuries 

using neural nets is worth spending much more time on it. In our 

opinion aspects like choice of pretrained model or the construction 

of submodel could be much better explored. It’s also clear 

to us that such models should help the medical doctors not only 

in the proper classification but also In pointing the place where 

injury is located. This was the main idea of Researchers from 

Stanford University who implemented class activation mapping – 

a heatmap generating technique which shows which part 

of the image were significant in classification. 
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