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Abstract. Interpolation of a point series is a necessary step in solving such problems as building graphs de-scribing phenomena or processes, as well 

as modelling based on a set of reference points of the line frames defining the surface. To obtain an adequate model, the following conditions are imposed 

upon the interpolating curve: a minimum number of singular points (kinking points, inflection points or points of extreme curvature) and a regular 
curvature change along the curve. The aim of the work is to develop the algorithm for assigning characteristics (position of normals and curvature value) 

to the interpolating curve at reference points, at which the curve complies with the specified conditions. The characteristics of the curve are assigned 

within the area of their possible location. The possibilities of the proposed algorithm are investigated by interpolating the point series assigned 

to the branches of the parabola. In solving the test example, deviations of the normals and curvature radii from the corresponding characteristics 

of the original curve have been determined. The values obtained confirm the correctness of the solutions proposed in the paper. 

Keywords: interpolation, monotone curve, singular points, normal, centre of curvature, evolute, curvature radius 

ULEPSZENIE ALGORYTMU WYZNACZANIE CHARAKTERYSTYKI 

INTERPOLACYJNEJ KRZYWEJ MONOTONICZNEJ 

Streszczenie. Interpolacja szeregu punktowego jest niezbędnym krokiem w rozwiązywaniu takich problemów, jak budowanie grafów opisujących zjawiska 

lub procesy, a także modelowanie w oparciu o zbiór punktów odniesienia układów liniowych definiujących powierzchnię. Aby uzyskać odpowiedni model, 
na interpolowaną krzywą stawia się następujące warunki: minimalną liczbę punktów osobliwych (punktów załamania, punktów przegięcia lub punktów 

skrajnej krzywizny) oraz regularną zmianę krzywizny wzdłuż krzywej. Celem pracy jest opracowanie algorytmu przypisania charakterystyk (położenia 

normalnych i wartości krzywizny) krzywej interpolacyjnej w punktach odniesienia, w których krzywa spełnia określone warunki. Charakterystyki krzywych 
nadawane są w obszarze ich możliwego położenia. Możliwości proponowanego algorytmu są badane poprzez interpolację szeregów punktów przypisanych 

do gałęzi paraboli. W rozwiązaniu przykładu testowego wyznaczono odchylenia normalnych i promieni krzywizny od odpowiednich charakterystyk 

pierwotnej krzywej. Otrzymane wartości potwierdzają poprawność zaproponowanych w pracy rozwiązań. 

Słowa kluczowe: interpolacja, krzywa monotoniczna, punkty osobliwe, normalna, środek krzywizny, ewolucja, promień krzywizny 

Introduction 

Interpolation of a series of fixed points is a necessary step 

in solving many geometric modelling problems. Such problems 

include creating graphs describing phenomena or processes, 

as well as modelling based on a set of reference points 

of the linear frameworks defining the surface. 

The input data for process research are always discrete 

and can be presented on the graph by a sequence of points. 

Interpolation of reference points makes it possible to estimate 

the characteristics of the process at any point through 

the coordinates of the points of the interpolating curve. For this 

estimate to be correct, the interpolating curve configuration must 

comply with the layout of the sequence of reference points. 

Such compliance is impossible without controlling 

the emergence of singular points along the interpolating curve. 

These can be: 

 kinking points, where the curve has two tangent lines; 

 inflection points, at which the convex and concave parts 

of the curve meet; 

 extreme curvature points, where the direction of the increase 

in curvature along the curve changes; 

 points at which the regularity of curvature changes along 

the curve is disturbed. 

For a phenomenon or process to be adequately represented, 

the interpolation method must provide a number of singular points 

along the curve, minimum possible by task conditions. This means 

that the curve contains singular points in areas where, based 

on the configuration of the sequence of reference points, their 

presence is imperative. At the same time, there should be no 

singular points on sections that can be interpolated by a monotone 

curve along which curvature values change monotonously 

and regularly. 

In case of uncontrolled emergence of singular points, 

the interpolating curve may deviate from the reference points 

to an uncontrolled distance. Therefore, the corresponding graph 

sections will not reflect the characteristics of the original 

phenomenon or process accurately. 

Modelling complex surfaces is based on forming linear 

frameworks [5, 14, 25, 26]. In many cases, framework lines 

can only be obtained by interpolating a sequence of points. 

The number of reference points may be significant, and the 

sequence of points may have a complex setup. This happens when 

the input data for the surface model is an array of points whose 

coordinates are obtained by measuring an existing prototype 

(reverse engineering) [16, 24, 27, 28, 32]. Another example 

is grid-based modelling, where two families of lines intersect 

to define the array of points that must be interpolated. 

Complex surfaces tend to bound products whose function 

is to interact with the environment. These are surfaces with 

elevated aero- or hydrodynamic properties. The laminar flow 

of such surfaces is ensured by the characteristics of the curves 

forming the surface framework [2, 6, 9, 10, 15, 18, 23]. 

The minimum by task conditions number of singular points 

of the curves forming the linear framework is the basic condition 

providing elevated dynamic properties of the surface. 

Imposing additional conditions on the interpolating curve 

requires increasing the degree of its equation. Such conditions 

may include the number of points through which the curve passes, 

location of tangents, and curvature values of the curve at specific 

points. The more conditions are imposed on the curve, the higher 

the possibility that it will have singular points, and the harder 

it is to control their presence and location. 

If the interpolating curve is formed as a polynomial [1], 

the degree of its equation is less by one than the number 

of reference points. If the polynomial degree is higher than 3,
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it is impossible to control the emergence of inflection points. 

The emergence of inflection points can be prevented 

by interpolating second-order curves [3, 8, 19, 22, 30] 

or a B-spline [4, 17, 20, 21]. However, these methods are 

insufficient in terms of controlling the emergence of extreme 

curvature points. 

The contradiction between imposing additional conditions 

on the interpolating curve and the control of the emergence 

of singular points on its sections is objective. The analytical 

representation of the curve lies at the basis of this contradiction. 

The equation defining the curve specifies its configuration, 

smoothness, and the pattern of changes in curvature values 

along the curve. If these patterns are out of compliance 

with the configuration of the reference points sequence 

and the characteristics assigned to them, then the emergence 

of singular points is inevitable. At present, this contradiction does 

not have a system solution. 

Papers [11–13] propose a solution to the problem 

of controlling the emergence of singular points on the 

interpolating curve based on avoiding the analytical representation 

of its sections. 

The author of [13] proposes a solution to the problem 

of forming a curve in the form of the area of possible location 

of its monotone parts. The area of possible location of the curve 

is formed as a sequence of closed contours, joined together 

at reference points. The dimensions of each of the contours 

are determined by the distance between the respective reference 

points, the absence of singular points on the section of the curve 

and the characteristics of the curve assigned at the reference 

points. 

The area of possible location of section i…i+1 of the curve 

with no inflection points is defined by triangles i; N; i+1 (Fig. 1). 

The triangles are bounded by lines (i-1;i), (i;i+1) and (i+1;i+2) 

passing through three pairs of consecutive reference points. 

 

Fig. 1. Area of possible location of the interpolating curve 

If the positions of the tangents are assigned to the reference 

points, the possible location of the interpolation curve section 

is triangle i; Т; i+1, bounded by segment [i, i+1] and tangents ti 

and ti+1. 

The area of possible location of the section of the curve 

with no extreme curvature points is bounded by arcs of circles. 

The boundaries of the area consist of arcs of circles osculating to 

the curve at reference points (OCi and OCi+1) and arcs of circles 

tangent to the osculating circle and a tangent at a different 

reference point (Ciri+1 and Ciri) (Fig. 1). 

Research has established that the value of the area of possible 

location of the curve, determined based on the assumption 

that there are no extreme curvature points, is 2-3 times less than 

the area determined by the convexity condition of the curve. 

The analytical description of the boundaries of the area 

of possible location of the monotone curve was obtained in [11]. 

The article also offers a solution for the task of providing a given 

interpolation accuracy. The assignment of intermediate points 

within the reference sections corresponding to the tangent line 

and osculating circles leads to an increase in the number 

of sections and a decrease in their dimensions. The location area 

of the curve is considered to be formed when the dimensions 

of the maximum of its sections do not exceed the given value. 

In this case, the graph describing the phenomenon or process 

can be represented as an area of possible location of the curve. 

While modelling a surface, lines contours are formed within 

the areas of the location of its framework, representing the curves 

with assigned characteristics with specified accuracy. The solution 

of the problem within the area of possible location of the 

monotone curve is proposed in [11]. The contour is formed 

by smoothly joined arcs of circles. Location of the contour within 

the specified area is provided by: 

 the given direction of monotone increase of the radii of circles 

along the contour; 

 the contour’s contingency with the interpolating curve 

at reference points. 

The disadvantage of solutions proposed in [11] is a complex 

algorithm for deter-mining the boundaries of the curve’s location 

and a large number of necessary calculations. 

The size of the areas of possible location of the interpolating 

curve is determined by the positions of its tangents and the 

curvature values assigned by the designer at reference points. 

The option of assigning these characteristics proposed in [13] 

ensures that there is such an area at each of the sections. The task 

of controlling the width ratio of the areas of different sections 

was not considered in the work. As a consequence, an area 

is likely to be formed where narrow sections alternate with areas 

of significant width. The curve formed within such an area will 

consist of areas, along which curvature changes rapidly, as well 

as areas where it changes insignificantly. Such a solution would 

reduce both the interpolation accuracy and the dynamic properties 

of the modelled surfaces. 

The possibility to level the width of the adjacent sections 

of the area of the curve by correcting the characteristics 

of the interpolating curve at the point separating the sections 

was investigated in [11, 12]. The possibility to improve 

the obtained solution as a result of successive iterations 

was established. 

Implementing the iterative approach in computer software 

implies the existence of consecutive cycles providing a step-by-

step approximation of the curve’s characteristics to the required 

values. The sequence of interpolated points can be in the thou-

sands. Consequently, the iteration process can take a considerable 

amount of time, making it difficult to form the area of the curve’s 

location in interactive mode. 

The need for software implementation for the method under 

development re-quires increasing its effectiveness through: 

1. developing a method for assigning the correct characteristics 

of the interpolating curve at reference points; 

2. developing a simpler algorithm for determining the area 

of possible location of the monotone curve. 

The article is aimed at the development and approbation 

of the algorithm for as-signing the positions of curvature centres 

corresponding to reference points, at which it is possible 

to provide regular and uniform change in curvature values along 

the interpolating curve. To achieve this aim, it is necessary to: 

 develop a method of assigning the location of the normals 

based on the assumption that the curve has no singular points; 

 develop a method for assigning the positions of the curvature 

centres on already assigned normals, which would provide 

a uniform change in curvature values along the curve; 

 test the proposed algorithm when assigning curvature 

centres to interpolating curves at reference points assigned 

to a monotone curve. 

The development of these methods requires solving the 

following tasks:  

 determining the area of possible location of the normal 

of the interpolating monotone curve at reference points; 

 determining the optimal location of each normal within 

the corresponding area, based on the conditions of the task;  

 determining the areas of possible location of curvature centres 

and assigning their final positions. 
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1. Materials and methods 

Let us consider how a sequence of curvature centres (Сi) 

of the monotone curve interpolating a given point series is formed, 

by the example of the curve with increasing radii of curvature. 

The osculating circle corresponding to point i (OCi) divides 

the monotone curve into two parts (Fig. 2). 

 

Fig. 2. Position of osculating and tangent circles with respect to the monotone curve 

The part of the curve at which the radius of curvature 

is smaller than the radius of ОCi (Ri) is located inside it. The rest 

of the curve is outside ОCi. Point i, tangent to the curve 

at this point (ti) and point i+1, located on the curve outside ОCi 

define the tangent circle TCi. The radius of TCi is greater than Ri. 

Point i-1 belonging to the curve and located inside OCi defines 

 TCi, whose radius is smaller than Ri. Points i-1, i, i+1 define 

the adjacent circle (AСi) (Fig. 3). The radius of АСi can be both 

larger and smaller than Ri. 

  

Fig. 3. Position of OCi with respect to the monotone curve 

The points assigned to the monotone curve define a sequence 

of adjacent, tangent, and osculating circles whose radii increase 

monotonously along the point series: 

…<R ACi-1<R TCi-1<R 

 TCi<R ACi<R TCi<R TCi+1<R ACi+1<… (1) 

 …<Ri-1<R TCi-1<R  TCi<Ri<R TCi<R  TC+1<Ri+1<… (2) 

The position of the curvature centres of the interpolating 

monotone curve corresponding to the reference points shall 

be determined and assigned based on (1), (2).  

The centres of AC … Si-1, Si, Si+1, … are located 

at the intersection of the lines drawn through bisecting points 

of the segments (point Кi) perpendicularly to the segments 

connecting the adjacent reference points (Fig. 4). 

 

Fig. 4. Original area of the i-th centre of curvature 

According to (1), the normal of the monotone curve at point i 

(ni) must intersect sections [Si-1, Si] and [Si, Si+1] at points Oi 

and Oi – centres of TCi и TCi respectively. According to (2), 

points Oi and Oi bound the range of the centre of curvature Сi 

on normal ni. The original area of location of Сi is a triangle 

bounded by lines (Ki-1, Si), (Ki, Si+1) and that of lines (i, Si+1) 

or (i, Si-1), which is at a smaller angle to (Ki-1, Si). 

The reference criterion for the mutual arrangement 

of the normals assigned to adjacent points i and i+1 is the ratio 

of the lengths of the segments (Fig. 5): 

 |Si, Oi|  | Ci,  Oi+1|. (3) 

 

Fig. 5. Mutual arrangement of normals assigned to adjacent points 

The equality of the specified segments means that point Тi 

belongs to line (Кi, Si). In this case, section (i, i+1) 

of the monotone curve is the arc of the circle with centre Тi. 

When assigning the position of normals at reference 

points, we will strive for a uniform arrangement of the centres 

of TC within the segment bounded by the centres 

of the corresponding AC. 

Let us look at the variant of assigning such positions 

to the normals.  

1. Assign a preliminary position of ni, at which point  

Oi  ni  (Кi-1, Si) separates segment [Si-1, Si] at a ratio of        

|Oi, Si| : |Si-1, Si| = 1:3.  

2. Determine point Oi, at which ni intersects line (Кi, Si). 

If the value of the ratio of the lengths of segments 

|Si, Oi |:|Si, Si+1| does not exceed 1:2, then the position of ni 

is considered to be finalized. Otherwise, we assign the final 

position of ni, at which point Oi divides segment [Si, Si+1] 

at a ratio of |Oi, Si| : |Si, S i+1| = 1:3. 

3. The position of normal ni+1 is selected from two options: 

 point Oi+1  ni+1  (Кi, Si+1) divides segment [Oi, Si+1] into 

equal parts; 

 point Oi+1  ni+1  (Кi+1, Si+1) divides segment [Si+1, Si+2] 

at a ratio of |Oi+1, Si+1| : |Si+1, Si+2| = 1:3.  

The final position of ni+1 is that, at which the normal is closer 

to point Si+1.  

Having assigned the positions of normals at all reference 

points according to the given scheme, we obtain a sequence 

of centres of TC whose radii comply with condition (1). 

The criterion for the final selection of the positions of normal 

is the ratio of the lengths of the parts into which the normals 

divide the segments connecting the centres of the corresponding 

AC. The position of normals in which the specified segments 

are divided into three equal parts shall be considered optimal. 

The position of the centres of curvature is determined 

on corresponding normals based on the properties of the evolute 

of the monotone curve [7, 29]: 

 evolute is a convex curve with no inflection points 

or spinodes; 

 the normals of the curve are tangent to its evolute 

in the respective centres of curvature; 

 the length of any section of the evolute is equal to the 

difference in values of the radii of curvature at points 

bounding the corresponding section of the original curve. 

The position of the centres of curvature Сi is assigned within 

the respective segments [Oi, Oi]. Consider the option of assigning 

these positions. 

1. For each section of the interpolating curve, the minimum 

length of the evolute is determined. For section (i…i+1) such 

an evolute is segment [Ci,  Ci+1], the length and location of which 

are determined by the conditions: 

 1

1

| , ' | ;

| , | | ' , |,

i i i

i i i i

C C r

C T C T





  


 

 (4) 

where Δri = |i + 1,  Ci+1| – |i, + 1, Ci| – the difference in the radii 

values of the circles whose arcs make up the section of contour 

(i, i+1). 

 Segment [Ci,  Ci+1] can be defined by finding its position 

in relation to triangle A, Oi+1, Ti (Fig. 6). 



p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 4/2023      47 

 

Fig. 6. Finding the minimum evolute of a section of the interpolating curve 

Point A is assigned on line ni based on the equality 

of segments |A,Ti|=| Oi+1,Ti|. The position of segment [Ci,  Ci+1] 

in relation to triangle A, Oi+1, Ti determines the coefficient: 

 1 1

1 1

| ' , | | ' , | | ' , ' |

| , | | ' , | | , ' |

i i i i i i

i i i i

C T C T C C
f

A T O T A O

 

 

   , (5) 

whose value is calculated by the formula: 

 

1 1

1
2 | , ' | | , ' |i i i

f
T O A O 


 


, (6) 

where 1 1| , | | , ' | | 1, ' |i ii A A O i O       is equal to the difference 

in lengths of evolute [Ci,  Ci+1] and segment [A, Oi+1]. 

2. After determining the minimum evolutes for each section 

of the curve, a sequence of segments …, [Ci-1, Ci], [Ci, Ci+1], … 

is obtained (Fig. 7) determining the involute as smoothly joined 

arcs of circles. This involute interpolates the reference point series 

by locating within the area of possible location of the monotone 

curve and is similar to the contour formed by method proposed 

in [11]. 

 

Fig. 7. Sequence of minimum evolutes 

3. The curvature centres of the interpolating curve Ci, 

corresponding to the reference points, are assigned within 

the boundaries of segments [ Ci, Ci]. Assigning the i-th centre 

of curvature within the range of segment [i, Ci], and the i+1-th 

centre of curvature outside line [i+1,  Ci+1] enables forming 

the section of the evolute as a smooth convex line (Fig. 8), which 

defines the involute as a monotone curve with a regular curvature 

change.  

 

Fig. 8. Evolute of the section of the monotone curve 

The criterion for the final assignment of curvature centres 

within the reference ranges [Oi, Oi] is the ratio of the lengths 

of the parts into which these centres divide the corresponding 

segments [ Ci, Ci]. The position of the centres of curvature 

in the middle of these segments shall be considered optimal. 

The normals of the interpolating curve assigned at reference 

points and the chords connecting the curvature centres assigned 

on these normals bound the sequence of triangles (Fig. 9). 

The sides of each triangle correspond to: 

 |Ci, Ci+1|Ri+1 -Ri| Ci, Ti|+| Ci+1, Ti |, (7) 

and their sequence is the area of possible location of the evolute 

of the monotone curve that interpolates the set reference points. 

 

Fig. 9. Area of location of the evolute of the discretely presented curve 

The solutions presented above allow assigning the 

characteristics of the interpolating curve at reference points 

according to the following algorithm: 

1. The original point series is divided into parts that can be 

interpolated by a mono-tone curve. 

2. For the reference points defining the monotone sections 

of the interpolating curve, the areas of location of normal 

are determined, at which it is possible to ensure the absence 

of singular points for these sections. 

3. The position of each of the normals is determined based 

on the greatest possible approximation of the criterion determining 

its location within the area to the value accepted as optimal.  

4. The ranges of possible location of the centres of curvature 

are determined on the assigned normals, based on the task 

of ensuring a uniform change of curvature values along the curve. 

5. The centres of curvature are assigned within the respective 

ranges, based on the given ratio of lengths of the segments into 

which the range is divided by the centre of curvature. 

2. Results and discussion 

Consider solving the problem of assigning curvature centres 

to an interpolating curve based on forming the area of possible 

location of the evolute of the monotone curve, on the example 

of a sequence of reference points assigned to the branch 

of the parabola defined by the equation 𝑦 =
𝑥2

300
. 

The characteristics of the reference point series are given 

in table 1. 

Table 1. Characteristics of the reference point series 

i 

Point coordinates, 

mm 
Chord length  

|i, i+1|, mm 

Radius of AC 

RACi, mm 

Range of location of 

the normal Δni, ° 
x y 

1 30 3 31.32 - 1.046 

2 60 12 33.54 188.58 1.074 

3 90 27 36.62 238.73 1.074 

4 120 48 84.85 348.37 1.386 

5 180 108 103.23 570.09 2.727 

6 240 192 123.55 1002.64 2.244 

7 300 300 - - - 

 

The increasing values of the radii of AC along the sequence 

of reference points determine the direction in which the radii 

of curvature increase along the monotone curve, which can 

interpolate these points. 

The values given in the sixth column of the table of the ranges 

of the normals of the interpolation curve are determined 

by the smaller of the angles between line (i, Si) and one 

of the lines (i, Si-1) or (i, Si+1) (Fig. 4). For example, for point 4, 

range Δn4 is equal to angle S4, 4, S5. For point 1, the range 

is defined by angle В, 1, S2, where В is the intersection point 

of (2, S3) and (К1, S2). For the last point, the normal range 

is not determined because the AC7 does not exist, and point S7 

does not bound the turn of normal n7 towards increasing angle 

6, 7,O7. The equality of ranges Δn2 and Δn3 means that their value 

is determined by the condition of intersection by normals n2 

and n3 of segment [S2, S3]. 
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The position assigned to each of the normals determines 

the ratio of the lengths of the segments: 

 

1

;

;

i i
i

i i

S O
K

S S 


 , (8) 

where Oi – the intersection point of normal ni with line (Ki,Si) 

(Fig. 5). 

The coefficient values of Ki for the normals of the 

interpolating curve are given in Tab. 2. 

Table 2. Characteristics of the reference point series 

i 1 2 3 4 5 6 7 

Ki - 0.333 0.292 0.283 0.301 0.276 - 

 

The position of normal n2, which corresponds to the smallest 

initial range of possible location, is assigned first. The position 

of normals n3… n6 is defined according to the above method. 

The position of the normal n1 at the first reference point 

is determined by the ratio of the lengths of segments 

|O1,  O2| = | O2, S2|. The position of normal n7 at the last, seventh 

point is determined by the ratio of the lengths of segments 

|S6, O6| = |O6,  O7|. 

Similar coefficients values of Ki reflect the correct assignment 

of the position of normals, which enables a monotonous 

and uniform change in the curvature values along the formed 

curve. 

Once the normals have been assigned at reference points, 

the dimensions and position of the minimum evolutes 

are determined for each section of the interpolating curve, 

and then the curvature centres corresponding to the reference 

points are assigned. The results are shown in Tab. 3. 

The proposed method makes it possible to determine 

the boundaries of the ranges of location of the curvature centre 

for all the reference points except the first and last ones. 

For the first point, the upper boundary of (ʹС1), the extreme 

position of which is reference point 1 itself, is not determined. 

For the last point, the lower boundary of (Сʹ7), which can be 

at an arbitrary large distance from reference point 7, is not 

determined. We shall define the radius of the curvature centre 

based on the ratio of the lengths of similar ranges to the adjacent 

sections, as follows: 

 2 2
1 1 2 2

3 3

| ' , ' |
| ' , ' | | ' , ' |

| ' , ' |

С С
С С С С

С С
 , (9) 

 6 6
7 7 6 6

5 5

| ' , ' |
| ' , ' | | ' , ' |

| ' , ' |

С С
С С С С

С С
 . (10) 

The parabola, on which a sequence of reference points 

was assigned, can be considered as a variant of the monotone 

curve that can interpolate these points. In the seventh column 

of the table, for comparison, the curvature radii of the parabola 

at reference points are given.  

Deviation of the positions of normals and the relative 

deviation of the curvature radii for the interpolating curve 

are shown in Tab. 4. 

The greatest deviation from the characteristics of the original 

curve occurred at the first and the last reference points. The reason 

for this error may be the fact that one of the boundaries 

of the characteristic ranges corresponding to these points 

is calculated based on the coordinates of the rest of reference 

points, and the other boundary is assigned intuitively, based 

on logical reasoning. This error can be reduced by reducing 

the distances between the reference points at the beginning and 

at the end of their sequence by increasing their number [11, 31].  

The similarity of the values of the characteristics assigned 

by the proposed meth-od to the corresponding characteristics 

of the original curve confirms the correctness of the results 

presented in the article. 

Table 3. Characteristics of the reference point series 

i 

Radius of TC,  

mm 

Minimum evolute 

length, mm 

Centre of curvature 

range, mm 
Curvature radius of the 

interpolating curve 

Ri, mm 

Curvature radius of the 

parabola 𝑅𝑖
𝑝𝑎𝑟

, mm 
RʹTCi R TCʹi |Сʹi,ʹСi+1| |ʹСi,Сʹi| 

1 - 166.74 29.46 5.30 155.10 159.09 

2 176.10 201.94 55.23 10.02 184.56 187.40 

3 218.66 260.65 110.82 18.94 239.79 237.90 

4 319.22 384.88 218.92 40.58 350.61 355.03 

5 468.62 693.55 417.33 75.50 569.53 571.71 

6 837.83 1200.0 742.18 134.33 986.86 1007.55 

7 1422.14 - - 239.00 1729.04 1677.05 

Table 4. Deviation of characteristics of the interpolating and the reference curves 

Point number, i 1 2 3 4 5 6 7 

Deviation angle of the normal, º 0.32 0.14 0.11 0.23 0.18 0.25 1.07 

Deviation of the curvature radius, % 2.51 1.50 0.79 1.24 0.38 2.05 3.10 

 

3. Conclusions 

The article offers an algorithm for assigning the positions 

of curvature centres of the interpolating curve at reference points. 

The curvature centres are assigned on the basis of a regular 

and uniform increase in curvature values along the sections 

of the curve where the initial conditions prevent the occurrence 

of singular points. 

The algorithm is based on the following methods: 

 assigning the positions of normals of the interpolating curve 

at reference points; 

 assigning the positions of curvature centres on the assigned 

normals. 

The position of each of the normals is assigned within an area, 

the boundaries of which are defined by the specified properties 

of the interpolating curve. The reference area of the possible 

location of the normal is uniquely defined by the coordinates 

of five consecutive reference points. The boundaries 

of the reference area shall be refined in accordance with 

the condition that the normals are assigned simultaneously 

at the previous and subsequent reference points. The proposed 

method for simultaneous assignment of normals to all the 

reference points provides: 

 a proportional decrease of the reference area of the normal 

for all the points; 

 location of each normal in the centre of the refined area. 

These proportions are the compliance criterion of the assigned 

normals with the configuration of the reference point series.  

The position of each centre of curvature is assigned within 

a predetermined segment that belongs to the corresponding 

normal. These segments are the ranges of curvature centres, 

and they take into account the whole area of a possible solution 

with the assigned positions of the normals. The proportions 

in which the curvature centres divide the corresponding ranges 

may serve as a criterion for the correctness of assigning their 

positions. 

Assigning the centres of curvature at the points bounding 

the mentioned ranges provides a unique solution – an interpolating 

curve consisting of smoothly joined arcs of circles whose radii 

increase monotonously along the curve. Assigning the curvature 

centres within the ranges determines the possible location 

of the evolutes of the mono-tone regular curve that interpolates 
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the reference points. The position of the centres of curvature 

and the points bounding the ranges of their possible assignment 

uniquely determine the possible location of the involute 

– the interpolating curve. 

In this case, the solution is not unique. Based on the same 

location of the involute, it is possible to form a set of interpolating 

curves, whose characteristics comply with the conditions 

of the problem. 

The possibilities of the proposed algorithm and its constituent 

methods have been investigated by interpolating a sequence 

of points assigned to the branches of the parabola. The standard 

positions of normals obtained by solving the test example deviate 

from the corresponding normals of the reference curve (parabola) 

within 0.32 degrees. The relative deviation of the assigned 

curvature radii from the corresponding values of the reference 

curve was within the range of 0.79–3.10 per cent. The values 

of these deviations confirm the correctness of the proposed 

solutions. 

The proposed methods are based on geometric constructions, 

which resolve themselves to determining the intersection points 

of straight lines and dividing the segments in the fixed ratio. 

The necessary calculations consist in solving systems of linear 

equations. The simplicity of the geometric and computational 

schemes ensures high accuracy of calculations and does 

not require the application of iteration pro-cesses. 

These features make the proposed algorithm the most 

appropriate for the task of its further implementation in the form 

of a computer program. 

The disadvantages of the proposed solutions include the fact 

that the calculations of the division ratio of the initial ranges 

are based on logical reasoning and are currently insufficiently 

investigated. These ratios provided a positive result in solving 

the test example, but they cannot be established as optimum. 

The elimination of this deficiency requires further investigation 

of various sequences of points assigned on various curves. 

The results obtained in this work complement and develop 

the research carried out in previous works [11–13]. Assigning 

the characteristics of the interpolation curve based on the area 

of possible location of its evolute simplifies the interpolation 

problem, reduces computational error, making the solution more 

reliable. However, this paper does not address the issue 

of ensuring the given accuracy of interpolation. The problem 

of forming the evolute of the curve, which contains a minimum 

based on the initial data number of singular points and interpolates 

a sequence of reference point with given accuracy, is to be solved 

in further research. 
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