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Abstract. The paper proposes electromagnetic field equations from the point of view of their adaptation to numerical methods. Maxwell's equations with 
partial derivatives are used, written concerning field vectors, which most fully reproduce the picture of physical processes in electrical engineering 

devices. The values of these vectors provide comprehensive information about the field at any spatio-temporal point. The concept of creating mathematical 

models of electrical devices adequate to physical processes has been developed. Mathematical transformations are carried out according to the rules 
of differential calculus. Dynamic processes in the elements of electrotechnical devices were analyzed using the apparatus of mathematical modeling. 

An algorithm for implementing differential equations with partial derivative numerical methods using computer simulation was implemented. The obtained 
results made it possible to understand the nature of electromagnetic phenomena in nonlinear media. The paper provides calculations of the field 

parameters in a flat ferromagnetic plate and the groove of the rotor of an electric machine. 

Keywords: еlectromagnetic field differential equations, mathematical model, numerical integration 

RÓWNANIA POLA ELEKTROMAGNETYCZNEGO W ŚRODOWISKU NIELINIOWYM 

Streszczenie. W artykule zaproponowano równania pola elektromagnetycznego pod kątem ich adaptacji do metod numerycznych. Wykorzystano równania 

Maxwella z pochodnymi cząstkowymi, zapisywane względem wektorów pola, które najpełniej odtwarzają obraz procesów fizycznych w urządzeniach 
elektrycznych. Wartości tych wektorów dostarczają wyczerpujących informacji o polu w dowolnym punkcie czasoprzestrzennym. Opracowano koncepcję 

tworzenia modeli matematycznych urządzeń elektrycznych adekwatnych do procesów fizycznych. Przekształcenia matematyczne przeprowadzono zgodnie 

z zasadami rachunku różniczkowego. Do analizy procesów dynamicznych zachodzących w elementach urządzeń elektrotechnicznych wykorzystano 
modelowanie matematyczne. Zaimplementowano algorytm realizacji równań różniczkowych metodami numerycznymi pochodnych cząstkowych 

z wykorzystaniem symulacji komputerowej. Uzyskane wyniki pozwoliły zrozumieć naturę zjawisk elektromagnetycznych w ośrodkach nieliniowych. 

W artykule przeprowadzono obliczenia parametrów pola w płaskiej płycie ferromagnetycznej oraz w rowku wirnika maszyny elektrycznej. 

Słowa kluczowe: równania różniczkowe pola elektromagnetycznego, model matematyczny, całkowanie numeryczne 

Introduction 

Today, scientists are paying more and more attention 

to the methods of nonlinear issues in engineering calculations. 

The need to calculate spatial electromagnetic fields arises when 

solving a wide range of problems in electrical engineering, 

electronics, and telecommunications [1, 2]. These include 

magnetohydrodynamic energy generators, astrophysical objects, 

electromagnetic pulse propagation, plasma accelerators, mobile 

communications, etc. 

Knowledge of research methods and description of electro-

magnetic fields and waves will make it possible to build field 

mathematical models of electrical and electronic devices. The 

simulation itself is a powerful means of researching the above 

devices. Thus, the construction of a mathematical model based 

on the equations of the electromagnetic field of a real physical 

object is realized by a skillful combination of the laws of electrical 

engineering with differential equations [5, 8]. 

Depending on the conditions of the problem and the use 

of the mathematical apparatus (ordinary differential equations 

or equations with partial derivatives), mathematical models can be 

considered as a Cauchy problem or a mixed problem. 

1. Literature review 

The analysis of recent studies shows that it is possible to unify 

equations and models by focusing them on the use of powerful 

numerical methods, in particular, explicit integration. This 

is realized by abandoning the traditional methods of the theory 

of electric circuits in favor of electromagnetic circuit methods and 

electromagnetic field methods in their close combination [1, 4]. 

The effectiveness of mathematical modeling in the study 

of transient processes in electrical devices directly depends 

on methodological (methods of computational mathematics) 

and technical factors in the presence of high-performance 

computers [5, 9]. 

The paper proposes a theoretically grounded mathematical 

apparatus, focused on the construction of optimal computing

algorithms. The real designs of electrotechnical devices are quite 

complex in terms of geometry, which is related to the optimal 

use of conductor, structural, and insulating materials. When 

building a computational algorithm, the differential equations 

in the mathematical model must be approximated by difference 

schemes based on algebraic equations [13]. 

An essential feature of our class of problems from 

a computational point of view is the sharp heterogeneity 

of electrophysical properties, which gives rise to nonlinearity. 

Thus, the electrical conductivity of the construction materials 

of electrical engineering devices can change along spatial 

coordinates with a jump from zero to finite values, and in some 

cases to infinity. The equations of electrodynamics form the basis 

of mathematical models for this class of problems [12]. 

In this work, a mathematical apparatus is used for modeling 

[3], which is based on the theory of nonlinear differential 

equations, the solution of which is possible with the correct 

application of numerical methods oriented to computer 

technology. As is known, electrotechnical materials are 

characterized by isotropic and anisotropic properties. Let's first 

consider the principles of forming equations for an anisotropic 

medium, that is, one whose physical properties depend 

on the direction. In a nonlinear anisotropic medium, the values 

of electrical conductivities, dielectric, and magnetic permillivity 

are functions of the electromagnetic state and are described 

by diagonal matrices. 

At the beginning of its development, the research and analysis 

methods of electrical devices were developed as methods 

in the timeless domain. Electrical devices were treated as ideal 

devices with linearized electromagnetic couplings, which resulted 

in incorrect results. That is, the mathematical apparatus 

inadequately described the physical processes in these devices. 

The maximum use of steel in the magnetic conductors 

of electrical equipment led to the fact that the electromagnetic 

connections in the nominal states differed significantly from 

the linear ones. At the same time, calculation methods were based 

on approximate consideration of nonlinearities, which did not 

meet the requirements of practice. The application of nonlinear
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differential equations significantly complicated their integration. 

However, only such an approach for the analysis of processes 

in electrotechnical devices would ensure high accuracy 

of the calculation. 

During the analysis of electrical devices by electromagnetic 

field methods, it is necessary to integrate differential equations 

with ordinary and partial derivatives in a single time-space. 

For this, equations with partial derivatives must be discretized 

using finite difference or finite element methods [14]. 

As you know, the consideration of the skin effect 

in the grooves of electric machines is based on the theory 

of electric circuits. Here, a multi-loop substitute scheme was used, 

determining whose parameters are complicated due to the increase 

in the number of links. This increased the order of the differential 

equations and their stiffness, which led to a loss of accuracy 

of the results. Summarizing the review of the literature available 

to us, we can state that the most promising direction of analysis 

and research of electromagnetic processes in electrotechnical 

devices is the application of electromagnetic field theory methods 

based on nonlinear differential equations. These are time-domain 

methods. Only in this way is it possible to carry out an adequate 

analysis with the help of mathematical models that describe 

physical processes as accurately as possible. 

2. Researches methodology 

Maxwell's equations for such a case take the form [3]. 

The function rot is the rotor of a three-dimensional vector field 

the coordinates of which are determined by the determinant 

of the third order. The first row is the coordinates 

of the coordinate axes x, y, z, the second corresponds 

to partial differentiation operators, and the third corresponds 

to the coordinate of the vector field [11, 12]. 

 
δrotH

B
rotE

t




 



 (1) 

 δ ε
E

GE
t


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

 (2) 

where H  is the magnetic field intensity vector, A/m; δ  – vector 

of current density, G – matrix of electric conductivities 

the diagonal elements of which are determined from equation (3); 

D  – electric induction vector; E  – vector of electric field 

intensity, ε  – matrix of differential electric permillivity electric 

induction vector D = f (E). 

 

γ

γ

γ
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y

z

G   (3) 

The elements of the matrix G are determined by the 

characteristics of the conductor in the direction of the anisotropy 

x, y, z main axes by formula (4): 

  γ δ / , , ,і іE E i x y z   (4) 

We find the electric field strength from the concepts 

of trigonometry. 

The advantage of writing equation (1) in vector form is that 

it does not depend on the choice of spatial coordinate system. 

However, the expressions of the rotor components differ 

in different coordinate systems. 

According to figure 1, the sum of products of magnetic 

voltages Hdl on all sides of the contour abcda is: +Hydy along side 

ab, z
z

H
H dy dz

y

 
 

 
 along bc, 

y
y

H
H dz dy

z

 
  

 
 along cd, 

–Hzdz along da. 

 

 

Fig. 1. To the explanation of the definition of rotH components in Cartesian 

coordinates 

Regarding the dydz plane according to [3], we obtain 

the following equation (5): 
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 (5) 

where x0, y0, z0 – orts. 

The electric field strength is found from the concepts 

of trigonometry, which is shown by formula (6): 

 2 2 2

x y zE E E E    (6) 

The electric induction vector is determined from 

the characteristics of the dielectric according to equation (7): 

 εD E  (7) 

where ε is the matrix of static electrical permillivity similar 

to expression (2) is determined from expression (8): 

  ε / , , ,і іE D E i x y z   (8) 

The elements of the matrix ε  are determined by 

the characteristic of the dielectric D = f(E). 

Let's rewrite the magnetization characteristic B=f(H) 

in another form [10] equation (9): 

 H NB  (9) 

where N is the diagonal matrix of inverse magnetic reluctance, 

defined similarly to (3). 

The elements of the N matrix are determined from the 

magnetization curve in the directions of the main anisotropy axes. 

Magnetic induction is found similarly to (5) and this is shown 

by formula (10): 

 
2 2 2

x y zB B B B    (10) 

Then the magnetic reluctance are equal (11): 

  ν / , , ,і іB H B i x y z   (11) 

For software implementation of field calculation, 

it is necessary to approximate curves (4), (8), (11) and apply 

equations (1), (2). For this, it is necessary to know the initial 

conditions (the value of the field vectors at t=0) and the boundary 

conditions on the surface of the closed space throughout time. 

Another case of nonlinearity is the electromagnetic field 

in a lattice ferromagnet. Such material is widely used 

for the construction of electrical devices as a magnetic conductor. 

Here we have a case of launching layers of ferromagnets 

and dielectrics. The calculation of the electromagnetic field 

in such an environment, taking into account the boundary 

conditions within homogeneous environments, is practically 

difficult to implement due to the large volume of the calculations. 

Therefore, in practical calculations, the flat-band environment 

is replaced by some anisotropic homogeneous environment, which 

is equivalent in electromagnetic terms to the first one.
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In the transverse direction, we carry out the replacement, taking 

into account the serial connection of the ferromagnetic and non-

magnetic gap magnetic resistances, and in the longitudinal 

direction – a parallel connection. 

We apply the Cartesian coordinate system so that the x-axis 

passes across, and the y, z axis passes along the layers 

of the charged magnetic conductor. 

Let's write the boundary conditions for the vectors ,B H  

at the interface of two homogeneous environments with 

the normal vector 0n , respectively [12] equation (12), (13): 

  2 1 0 0B B n    (12) 

  0 2 1 0n E E    (13) 

then 

  ; ;x fx fd y fy dy z fz dzВ В В H H H H H H       (14) 

Here, the indices f and d indicate belonging to ferro- 

and diamagnets, and its absence – to an equivalent environment. 

The equality of magnetic voltages in the transverse direction 

of the real and equivalent environment taking into account (14) 

can be expressed as dependence (15): 

    ν νf f d d x f d xh h В h h H    (15) 

where ν  are inverse magnetic reluctance, h are layer thicknesses. 

From equation (15), we obtain the inverse static permillivity 

along the x axis. This is shown by equation (16): 

 ν ξνx f
   (16) 

where ξ  is the anisotropy coefficient in the transverse direction. 

 

ν

ν
ξ

d d
f

f

f d

h
h

h h






 (17) 

In the longitudinal direction, we obtain equation (18), which 

shows the equality of the magnetic fluxes: 

   , ,
ν ν

f d
k f d k

f d

h h
Н h h B k y z

 
    

 
 

 (18) 

From (19) here we find the coefficients ν , ν .x y
   

 ν χν , ,k f k y z    (19) 

Where χ  is the anisotropy coefficient of the later direction 

 χ
f d

d f

f

d

h h

h v
h

v






 (20) 

The value ν f
  is determined by the real induction field fB  

in the ferromagnet according to equations (10), (11). The ratio 

of inductions in the transverse and tension in the longitudinal 

directions in ferromagnets and equivalent environment 

is determined in accordance with (14). The ratio (21) between 

the remaining projections is obtained by equations (9), (16), (19): 

 ξ ; / χ ; / χx fx y fy z fzH H В В В В    (21) 

According to the first expression (13) and the last two 

expressions (20), we get (22): 

  2 2 2ν χf x y zB B B    (22) 

The values of Bx, By, Bz at each integration step are obtained 

from the equations of the electromagnetic field. Solving (21), 

for example, by Newton's method, we find according to (15)–(19) 

the magnetic reluctance of the matrix N in equation (8). 

If we add electrical conductivities in the longitudinal 

direction, and supports in the transverse direction, then we get 

the expressions of the matrix elements (3). The electrical 

conductivity of the dielectric is zero 

 
γ

γ 0; γ , ,
f f

x k

f d

h
k x z

h h
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
 (23) 

If the external electromagnetic field changes so slowly that 

the polarization process is proportional to its changes, then 

the ratio between the vectors does not depend on the time 

derivatives of these vectors, and such a field is called quasi-

stationary. The magnetic field due to bias currents can be 

neglected, but the change of the magnetic field over time should 

be taken into account. As a rule, the conditions of quasi-

stationarity are always fulfilled. In a quasi-stationary field 

in a conductive environment in the absence of a extraneous 

currents field, the current density vector is determined only 

by conduction currents [10, 12]. 

Maxwell's second equation is another form of Faraday's law 

and has the form of equation (24): 

 
B

E
t


  


 (24) 

According to (24), the magnetic induction changes over time, 

i.e. it generates an electric field. 

The equation of the continuity of the magnetic field according 

to [3, 4] has the form (25): 

 0В    (25)  

Equations (1), (24), (25) are the basic equations of the quasi-

stationary electromagnetic field. 

The relationship between the magnetic induction vector В  

and the magnetic field strength Н  is expressed through 

the medium parameters according to (11). 

According to equations (5), the system of electromagnetic 

field equations in Cartesian coordinates consists of scalar 

equations (26) written in the projections of the electric 

and magnetic field intensity vectors: 

 

1
; ;

1
; ;

1
; .

H E HH Ey y xz zEx
y z y z v t

HH EH E yx xz zEy
z x z x v t

H EH E Hy yx x zEz
x y x y v t

   
      

     
   

      
     

   
      

     

 (26) 

According to (1), (5), the differential equation (26) takes 

the form (2): 

 0
HH Hyx z

x y z

 
  

  
 (27) 

The complete system of electromagnetic field equations 

consists of the system of equations (23), (24), and (27) only 

imposes restrictions on the distribution of field vector projections 

in space. 

3. Results 

For a complete picture of the field, the basic equations (1), 

(24), (25) should be supplemented with initial and boundary 

conditions. The initial conditions are unknown at t=+0 

and represent the spatial position of the field vectors H=H(x,y,z) 

and E=E(x,y,z) in time. The equations relating to the boundary 

conditions establish the dependence between the sought-after 

functions on both sides of the integration boundary. 

We will exclude the electric components in the equations 

of the electromagnetic field, since the boundary conditions 

are easier to determine relative to the magnetic field vectors. 

Taking into account this factor, we will make the operation 

  from the left and right parts (1), (2). Then we get 

the equation: 

 Н Е    (28) 

We take the vector Е  in the right part of (28) from 

Maxwell's second equation (24), replacing B with H according 

to (11), then we get equation (29): 

  
Н

Н
t

 
  

 
 (29) 
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According to [3], expression (29) takes the form 

  2Н
Н Н

t

 
    

 
 (30) 

Taking into account (24), (28), equation (30) takes 

the form (31): 

 21B
H

t


 

 
 (31) 

According to (31), the electric and magnetic field strengths 

are mutually perpendicular [7]. 

Figure 2 shows the results of calculating the electromagnetic 

field in a ferromagnetic plate made of E4A steel with a thickness 

of β = 2.4 mm. Curve 1 corresponds to a saturated magnetic 

system, curve 2 to an unsaturated magnetic system. Calculations 

were carried out in the MAPLE program. 

Boundary and initial conditions have the form of equations: 

      0, , 750 314 ; , 0 0Н t Н t sin t Н z     (32) 

Dependence (9) is determined by the main magnetization 

curve for this grade of steel. 

The scalar form of this equation consists of equations written 

for the projections of the vector Н  on the coordinate axis (33): 
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Fig. 2. Rated stress curves magnetic field inside the sheet 

Consider another nonlinear problem in the field 

of electrodynamics. We are talking about the phenomenon 

of current displacement (skin effect) in rotating electric machines 

with deep rotor grooves. In such machines, eddy currents 

in the body of current conductors perform operational functions, 

and therefore must be taken into account with high accuracy. 

Taking into account that the current in the conductor flows 

only along its length, and the vector of magnetic field tension, 

by the accepted assumption μ ,Fe    is perpendicular to the walls 

of the groove, we get a clear example of a plane electromagnetic 

wave. 

By choosing a rectangular coordinate system, you can write 

down the conditions (34): 

 0 0 = ;   = E x Е H y H  (34) 

Then we come to equations (23), (26), which, taking into 

account the dimensions of the groove, take the form (35): 

 
1

;
Н b Е Н

E
z a z t

  
    
   

 (35) 

where a, b are respectively the width of the groove and the current 

conductor. 

Excluding the electric field intensity from system (35), 

we obtain the equation (36): 

 
2

2

2

H Н
с

t z

 


 
 (36) 

where 

 2 а
с

b





 (37) 

The derivative 
Ф

t




 can be represented as (38): 

 
Ф

s

ВdS
t t

 


  
 (38) 

Where S is the surface through which the induction flux 

determines the flux Ф. 

Taking into account formula (11) and (35), expression (38) 

takes the form (39): 

    
0

0

Ф 1
0

H E
l dz l dz E E l

t n t z





  
           (39) 

Hence, the tension of the groove part is equal to (40): 

  0U E l   (40) 

This voltage reflects surface phenomena throughout 

the grooved part of the conductor. Its calculation is related 

to the calculation of the electromagnetic field in the groove. 

Consider the method of determining the boundary conditions 

for the electromagnetic field equation (29). According to Biot-

Savar law, the strength of the magnetic field H depends 

on the current flowing in the conductor, as well as on 

the distance from it, so the boundary conditions must be sought 

on the basis of this law. For practical use, another form 

of its recording is more convenient – the law of full current. 

So, knowing the strength of the current in the groove, 

we determine the boundary conditions for the magnetic field 

tension vector using the full current law [6, 11] 

 Нdl I  (41) 

Choosing the path of integration along the line that passes 

along the surface of the groove and in the body of the iron, 

we replace the integral (41) by the sum 

 0a c

а c

H dl H dl H dl I       (42) 

where ,a сH H  are the magnetic field intensity vectors 

on the groove surface and in the steel; a – the width of the groove 

opening zone; c is the length of the trajectory in the ferromagnet; 

I – conductor current. 

We write the integral along the path that passes along 

the bottom of the groove (42): 

 0a c

а c

H dl H dl    (43) 

The magnetic voltage drop in steel is close to zero. Therefore, 

it can be assumed with sufficient accuracy that the integral 

in steel is zero. In the groove opening zone, vector H has only 

a tangential component ( 0 yH y H  – in Cartesian coordinates), 

and Hy=const. 

Then we determine the boundary conditions from (42), (43). 

The initial conditions of the integrating functions are assumed 

to be zero. 

In the upper and lower parts of the groove according to Fig. 2 

  0 ;
I

H Нy
a

    10 0H Hc    (44) 

We find the electric field strength from equation (35). 

The equation has the form (45): 

 
а H

Е
b z


 

 
 (45) 

Having the value E(0), the voltage U of the conductor is found 

according to (40). Equations (36) together with the boundary 

conditions (44) constitute the boundary value problem in the time 

domain for the differential equations of the electromagnetic field. 

Therefore, the current line voltage is determined by the value 

of the electric field intensity vector on the surface of the groove 

(z=0). 
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The described method makes it possible to solve the problem 

of displacement of the current into the groove in the general case. 

This problem is solved on the basis of numerical methods 

of analysis using computer technology [14]. At the same time, 

the differential equations must be replaced by finite-difference 

equations. Let's draw up an explicit differential scheme 

for determining the field strength at the nodes of the spatial grid 

at different moments of time. 

 
   

     

, ,

, 2 , ,

H z t t H z t

c H z z t H z t H z z t

   

        

 (46) 

where c is found according to (37). 

In the case of rigid differential equations, we use an implicit 

difference scheme, which for equation (36) has the form 

 
   

   

, ,

, ,

dH z t аH z z t t
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where 
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is the magnetic constant. 

In equation (47), the known values of H and E at point z 

at time t are related to three unknown values of the same functions 

at points z–Δz, z, z+Δz at time t+Δt. 

Figure 3 shows the time dependence of the voltage per unit 

length of the groove section of the current conductor in the state 

of the given current, calculated according to formulas (45), (46). 

 

Fig. 3. Calculated curves of current (1) and voltage per unit length (2) of the slot 

current conductor in the state of sudden switching on the current source 

I = 4282sin(31.4t). Groove dimensions: h×l×a=0.038 m×0.23 m×0.005 m 

Figure 4 shows the spatial discretization of the groove 

and the distribution of the field strength in it. The segment 

ab corresponds to the voltage, and bc is the internal electromotive 

force. 

 

Fig. 4. Spatial discretization of the groove and distribution field strength in it 

Figure 3 shows that the effect of current displacement 

is observed in the deep groove of the rotor of the electric machine. 

On the surface of the groove, the voltage is the greatest, which has 

a positive effect on the starting characteristics of electric 

asynchronous motors. 

4. Conclusions 

The proposed equations and methods of the theory 

of electromagnetic circuits and the electromagnetic field take into 

account such complex phenomena as the saturation of the steel 

of magnetic conductors, the surface effect in current conductors, 

the asymmetry of electrical circuits, the mutual rotational 

movement of electrical circuits, etc. The differential equations 

are written in the normal Cauchy form and are non-rigid and can 

be integrated by explicit methods that are simple in computer 

implementation. The equations appearing in the models make 

it possible to calculate with sufficient accuracy the quantitative 

characteristics of the object under study, to predict its behavior 

in various nominal and emergency modes, as well as to carry 

out optimization. 

The calculation process is carried out based on the solution 

of the two-point boundary value problem of the differential 

equations of the electromechanical state. The differential 

equations of the electromechanical state are integrated based 

not on the given initial conditions, but on those that exclude 

the transient reaction and make it possible to enter directly into 

the steady process, bypassing the transient one. 

The use of mathematical modeling and computer simulation 

methods makes it possible to abandon field experiments, which 

in many cases are difficult and expensive. Practical tasks 

of calculation and analysis of transient processes in electro-

technical devices should be carried out only by mathematical 

modeling methods, which will allow them to be correctly designed 

and operated. The proposed method can be adapted to construct 

the equations of the electromagnetic field in moving media. 
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