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Abstract. Parallel hierarchical memory (PI memory) is a new type of memory that is designed to improve the performance of parallel computing systems. 

PI memory is composed of two blocks: a mask RAM and a tail element RAM. The mask RAM stores the masks that are used to encode the information, 
while the tail element RAM stores the actual information. The address block of the PI memory is responsible for generating the physical addresses 

of the cells where the tail elements and their masks are stored. The address block also stores the field of addresses where the array was written 

and associates this field of addresses with the corresponding external address used to write the array. The proposed address block structure is able 
to efficiently generate the physical addresses of the cells where the tail elements and their masks are stored. The address block is also able to store the field 

of addresses where the array was written and associate this field of addresses with the corresponding external address used to write the array. 

The proposed address block structure has been implemented in a prototype PI memory. The prototype PI memory has been shown to be able to achieve 
significant performance improvements over traditional memory architectures. The paper will present a detailed description of the PI transformation 

algorithm, a description of the different modes of addressing organization that can be used in PI memory, an analysis of the efficiency of parallel-

hierarchical memory structures, and a discussion of the challenges and future research directions in the field of PI memory. 
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ARCHITEKTONICZNE, STRUKTURALNE I FUNKCJONALNE CECHY 

RÓWNOLEGŁO-HIERARCHICZNEJ ORGANIZACJI PAMIĘCI 

Streszczenie. Równoległa pamięć hierarchiczna (pamięć PI) jest nowym typem pamięci zaprojektowanym w celu poprawy wydajności równoległych 
systemów obliczeniowych. Pamięć PI składa się z dwóch bloków: maski RAM i ogon RAM. Maska RAM przechowuje maski używane do kodowania 
informacji, podczas gdy ogon RAM przechowuje rzeczywiste informacje. Blok adresowy pamięci PI jest odpowiedzialny za generowanie fizycznych 
adresów komórek, w których przechowywane są elementy końcowe i ich maski. Blok adresowy przechowuje również pole adresu, w którym tablica została 
zapisana i kojarzy to pole adresu z odpowiednim adresem zewnętrznym użytym do zapisu tablicy. Proponowana struktura bloku adresowego jest w stanie 
efektywnie generować fizyczne adresy komórek, w których przechowywane są elementy ogonowe i ich maski. Blok adresowy może również przechowywać 
pole adresu, w którym tablica została zapisana i powiązać to pole adresu z odpowiednim adresem zewnętrznym użytym do zapisu tablicy. Zaproponowana 
struktura bloku adresowego została zaimplementowana w prototypie pamięci PI. Wykazano, że prototyp pamięci PI jest w stanie znacznie poprawić 
wydajność w porównaniu z tradycyjnymi architekturami pamięci. W artykule zostanie przedstawiony szczegółowy opis algorytmu konwersji PI, opis 
różnych trybów adresowania, które mogą być używane w pamięci PI, analiza wydajności równoległo-hierarchicznych struktur pamięci oraz omówienie 
wyzwań i przyszłych kierunków badań w dziedzinie pamięci PI. 
Słowa kluczowe: równoległa pamięć hierarchiczna, pamięć PI, blok adresowy, maska RAM, ogon RAM, poprawa wydajności

Introduction 

In recent years, much effort has been made to create 

parallel computing systems that use the power of the Internet 

and the availability of computers in many homes and businesses. 

The main advantage of these approaches is that they provide 

a cheap environment for parallel computing for those who cannot 

afford the costs of supercomputers and hardware parallel 

processing. However, most of the solutions on offer are not very 

flexible in the use of available resources and are very difficult to 

install and configure [21]. When designing high-performance 

computers and systems, it is necessary to make many trade-offs, 

such as the sizes and technologies for each level of the hierarchy. 

Analyzing previous work [9, 12, 14] on parallel-hierarchical 

structures, we can identify the main disadvantages of these 

systems [8, 10, 15]. 

For example, the lack of a method for evaluating 

peak performance as the number of instructions executed 

by the computer per unit of time (MIPS, Million Instruction 

Per Second) gives only a general idea of the speed, since it does 

not take into account the specifics of specific programs 

(it is difficult to predict how many and which instructions a user 

program will be displayed by the processor) [2, 5, 20]. 

Parallel computing systems are excessively expensive. 

According to the law of diminishing returns, the performance 

of a computer grows proportionally to the square of its cost; 

as a result, it is much more profitable to obtain the required 

computing power by purchasing one high-performance processor 

than by using several less powerful processors [4, 9, 10]. 

When organizing parallelism, performance losses grow too 

quickly. According to the Minsky hypothesis (Marvin Minsky), 

the acceleration of calculations achieved when using a parallel 

system is proportional to the binary logarithm of the number 

of processors (with 1000 processors, the possible acceleration 

is only 10). 

Counter-argument. The given acceleration estimate is true 

for parallelizing certain algorithms. However, there are a large 

number of tasks, the parallel solution of which achieves close 

to 100% use of all available processors of a parallel computing 

system. 

Sequential computers are constantly being improved. 

According to the well-known Moore's law, the complexity 

of sequential microprocessors doubles every 18 months, 

so the required performance can also be achieved on "ordinary" 

sequential computers. 

However, the use of parallelism allows obtaining 

the necessary acceleration of calculations without waiting 

for the development of new faster processors. The efficiency 

of parallelism strongly depends on the characteristic properties 

of parallel systems. All modern sequential electronic computers 

operate in accordance with the classical von Neumann 

scheme; parallel systems differ significantly in architecture 

and the maximum effect from the use of parallelism can 

be obtained by full use of all the features of the hardware 

(consequence – the transfer of parallel algorithms and programs 

between different types of systems is difficult, and sometimes 

impossible). 

komad
Stempel
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For decades of operation of sequential electronic computers, 

a huge amount of software has been accumulated, oriented 

at sequential electronic computers; its processing for parallel 

computers is practically unrealistic. 

There is a limit on the acceleration of calculation 

in the parallel – hierarchical implementation of the algorithm 

in comparison with the sequential one. 

Parallel-hierarchical memory (PHM) is a promising approach 

to addressing the challenges of memory organization in parallel 

computing systems. PHM systems are organized in a hierarchy 

of levels, with each level providing different levels of performance 

and capacity. This allows the system to adapt to the needs 

of different applications. In this paper, we present an overview 

of the architectural and structural and functional features 

of the organization of PHM systems.  

1. Examples of network parallel-hierarchical 

structures 

The network structure allows to simulate the principle 

of operation of a distributed PI network and, due to spatial 

separation over time, processes information in a deterministic 

pyramidal PI network (Fig. 1). The network, built on the basis 

of PI transformation, consists of a set of subnetworks (Fig. 1) 

for forming features about the states of the spatio-temporal 

environment (PTE), the structure of which is homogeneous 

and consists of a number of interdependent hierarchical levels. 

The network operation algorithm is universal and consists 

in the PI formation of sets of common and different states 

of the PTE. Generalization of all types of sensory information 

occurs at the very final stage of the transformation outside 

the hierarchical processing of each type of sensory information. 

So, the process of generalization between different types 

of sensory information begins only when the construction 

according to a certain set of features is completed [9]. 

On the figure 1 there is an example of transformed states 

on each level:  – set of shared states on each level,  – define 

common state on separate level. 

Fig. 1. Model of neural structur based on the PI transformation block 

To associate the masks with their corresponding branches 

at each level, after their sequential writing starting from the lower 

branches, two additional bytes of information need to be written. 

This information includes the number of masks generated at that 

level and the highest branch number from which the last mask 

is selected at that level. This information is also generated 

in the PI transformation block. 

On the figure 2 you see the structure of a parallel hierarchical 

memory (PI memory). The core of the structural organization 

of PI memory consists of three main components: the storage 

medium (mask RAM, tail element RAM), the PI transformation 

network, and the address block. The storage medium is composed 

of two blocks, each of which is a conventional RAM with 

a sequential data access structure. The word size of the mask 

RAM corresponds to the memory's access width, while the word 

size of the tail element RAM matches the bit depth of the image 

frame [1, 5]. 

The PI transformation network is responsible for encoding 

the information during the write operation and decoding it during 

the read operation from the memory. 

 

Fig. 2. Structure of PI memory with PI transforming network 

2. Organization of the architecture of the address 

block parallel to the hierarchical memory 

The address block of the PI memory implements the functions 

of generating internal addresses for the storage medium blocks 

based on the external address and the state of the PI 

transformation network. 

In a linear sequential memory, the memory capacity (N), 

which represents the number of addressable data elements (cells), 

plays a crucial role in determining the address size. 

The dependency 𝐻𝑎𝑑𝑑𝑟 = 𝐼𝑁𝑇(𝑙𝑜𝑔2 𝑁 + 0.5), is based 

on the Haddr – number of binary digits in the address code, 

INT – represents the integer part operation. The address structure 

may contain additional fields used for control information, 

such as specifying base or index register numbers, address 

modification indicators, etc. Thus, the description of accessing 

conventional memory typically has a two-component structure 
[𝐶, 𝑎𝑑𝑟], including C – control code and adr – address code 

[6, 7]. 

For the considered PI memory, the structure of the access 

description follows the conventional form and includes the address 

code. Unlike the cell address structure, here the address 

of the array or array package is used instead of the cell address. 

The control code in the address structure incorporates information 

about the memory operation mode: a) standard mode with 

the ability to access any cell, and b) array mode [3, 18]. 

Let's examine the structure of the address block (Fig. 3) 

in the PI memory that stores information arrays. The tasks 

of the address block are as follows: 

1) During array write operation, generate physical addresses 

of the cells where the tail elements and their masks are stored. 

2) After completing the write operation, store the field 

of addresses where the array was written and associate this 

field of addresses with the corresponding external address 

used to write the array. 
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3) During read operation using the external address value, 

determine the field of physical addresses where the array 

is stored and generate the necessary data physical addresses 

in the required sequence [1, 13]. 

 

The proposed address block structure, presented in Fig. 3, 

performs this function. To illustrate the operation of the suggested 

address structure in the PI memory, figure 3 also shows the control 

scheme and the mask RAM and single-element RAM blocks. 

The address block of the PI memory is outlined with a dashed line. 

 

Fig. 3. Functional scheme of PI memory address block 

To write an array to the PI transformation network, the array 

itself is digitally input to the data bus, and the control signals 

"Work" (selection of the memory), "I/O" (write information), 

and "Addr" (address) are sent to the control circuit. The control 

circuit routes the content of the "Addr" bus to the input of Address 

RAM 1 [5, 6]. Address RAM 1 has a capacity of 2 × 𝑘 cells, 

where k – is the address bus width. The control circuit generates 

the "Write Address" signal, which writes the address of the first 

available cell in Address RAM 1 and the current address 

generation circuit 4 from the free cell register 3. This address will 

be the same for Address RAM 6 and Address RAM 7 because 

the number of tail elements for decomposing one array using 

the PI transformation method is equal to the number of masks 

for that array. In other words, each selected element will have its 

corresponding mask. In the circuit, the first available cell address 

is required to generate the current physical addresses for writing 

the encoded array to Address RAM 6 and Address RAM 7. 

In Block 2, the value A0 is written to the cell with an address 

equal to the address on the "Addr" bus. This establishes 

the connection between the external address on the "Addr" 

bus and the internal addresses of the storage environment. 

Then, the control scheme generates a sequence of pulses 

on the "Write Clocks" line to perform the array write operation 

[8, 9, 21]. Using these pulses, Control Scheme 4 generates 

the current address by incrementing the value of A0. The Clock 

Counter 2 counts the number of pulses on the "Write Clocks" line. 

When the decomposition of the array in the PI transformation 

block is completed, a signal "End of Write" is sent to the control 

scheme, and the pulses on the "Write Clocks" line cease. With 

the control signal "Write Time", generated by the control scheme, 

the content of Clock Counter 2 is written to Block 1 under 

the same address on the "Addr" bus, and the new address 

of the first available cell from Block 4 is written to Block 3. Then, 

the "Reset" signal resets Clock Counter 2, completing the write 

procedure. During the read operation, the control signals "Work", 

"Wr/Rd", and the corresponding address from the "Addr" 

bus are applied to the control scheme [7, 25]. 

The control scheme 1 generates the "Write" signal 𝐴0 + 𝑇, 

which writes the values A0 and T from Address RAM 2 to Current 

Address Generation Scheme 5, corresponding to the code 

on the "Addr" bus. In Scheme 5, the first current address is formed 

by adding the values A0 and T. The control scheme generates 

a series of pulses on the "Read Clocks" line. These pulses are sent 

to the PI transformation block and Scheme 5, where for each 

pulse, the values A0 and T are decremented by one. This process 

reads the array from Address RAM 6 and Address RAM 7. With 

each pulse on the "Read Clocks" line, when the value becomes

zero, Scheme 5 generates the "End of Read" signal, which, when 

received by the control scheme, causes the cessation of pulses on 

the "Read Clocks" line [7, 19]. The decoding of the read array 

is completed in the PI transformation block, and the read process 

is finished. 

When organizing the address block of the PI memory, 

significant difficulties arise due to the significant difference 

in addressing between the tail element memory block 

and the mask memory block [9, 31]. This is because the number 

of masks in processing an array packet, according to the PI 

transformation method, is much larger than the number of tail 

elements. 

For algorithms where only one tail element can appear at any 

given time (parallel-sequential processing, selecting only the first 

tail element at each level, etc.), the addressing of the tail element 

RAM can be sequential. In this case, one bit in the masks 

is allocated as a flag indicating the presence or absence of a tail 

element for that mask. If the mask RAM contains information 

about the current transformation step and the number of masks 

at each level of that step, the flag indicating the presence of a tail 

element is not necessary [19, 23]. A mask corresponds to a tail 

element when that mask is the only one at its level in the current 

transformation step. 

For algorithms where all tail elements are considered 

in the encoding result, and multiple tail elements can occur 

at different levels in a particular transformation step, their storage 

in memory is done sequentially, starting from the lowest level. 

During decoding, masks are selected starting from the highest 

level, and tail elements are read in reverse order, also starting from 

the highest levels [7, 17]. 

 

Fig. 4. Structure of information composition in the RAM mask by memory cell 
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The process of writing masks to the PI memory is further 

complicated by the fact that, according to the PI transformation 

algorithm, masks are generated in parallel at multiple levels, 

and each level can have multiple masks. A regular storage 

environment is used to store the mask codes. Therefore, at each 

transformation step, the mask codes are captured in buffer 

registers and are sequentially rewritten from the lower levels 

to the mask RAM, starting with the lowest levels and branches 

[12, 16]. 

The described association procedure is valid only when 

all masks belong to neighboring branches. It should be noted that 

on any level, there may be a situation where masks from one 

transformation step are not present on all branches located 

between the initial and final branches. In such a case, additional 

information about the location of masks within the level needs 

to be stored in the mask RAM. The arrangement of information 

in the mask RAM cells for one array packet is presented 

in figure 4 [13, 22, 29]. 

Masks have different sizes, so it is inefficient to allocate cells 

with pre-determined sizes to store them. The following structure 

is proposed for mask addressing: 

a) The four most significant bits of the mask indicate the length 

of the mask in half-bytes. 

b) The mask bits themselves follow, occupying the number 

of half-bytes indicated in the mask size. The length 

of the mask is determined by the PI transformation block. 

 

Figure 5 illustrates the bit-wise structure for storing one mask. 

By using this structure, the size of the area where the mask 

is stored can be varied widely. The minimum size for storing 

a mask would be 1 byte. At the same time, you can record 

4 ≤ 𝑘 ≤ 60,  𝑚𝑜𝑑 𝑘
4⁄ = 0. 

 

Fig. 5. Structure of information composition for separate mask (mod – euclidean 

division) 

Here, half a byte is used to indicate the length of the mask, 

and the other half a byte represents the code of the mask. 

The maximum size for the mask area is 15 (4 + 4) = 64 bits, 

or 8 bytes. In this case, 4 bits indicate the mask length, 

and the remaining 60 bits represent the mask code. In regular 

memory, the word size is 16 bits, and the addressing allows 

accessing individual bits. 

During the write mode, the addressing block of the PI memory 

sequentially increments the addresses for writing the masks until 

the "End of Write" signal is received from the PI transformation 

block. The same process is used to generate addresses for writing 

the tail elements into their respective RAM [17, 23, 26]. 

During the read mode, the addressing block of the PI memory 

uses the mask length information and the information stored 

in cells 1, 2, 3, 4 (Fig. 5) to generate physical addresses 

for the mask RAM. The masks are selected in sequence, starting 

from the highest levels and branches. For the tail element RAM, 

the addressing block generates addresses by decrementing 

the current address by "one" when selecting a mask from the mask 

RAM that requires a tail element. 

The organization of the addressing part becomes simpler 

if the encoding of the array packet is done in a parallel-sequential 

manner, where each level is processed in parallel while the levels 

themselves are processed sequentially. In this case, an additional 

buffer memory is required to store arrays from the previous level. 

Indeed, there can be different modes of addressing 

organization depending on the transformation algorithm based 

on the PI transformation method and the corresponding structural 

organization of the address block and the entire memory system 

[16]. This topic is a separate subject of research. 

The approach presented here outlines a general method 

of addressing the tail elements and masks in a parallel memory 

based on the PI transformation principle. 

When designing a PI memory, the development of the address 

block should consider the requirements imposed on it, such 

as performance, hardware costs, cost, power consumption, 

etc. [13, 18]. Therefore, in a specific implementation 

of a particular address block algorithm, there is a question 

of what should be performed at the hardware level and what can 

be offloaded to software. To make a decision in each specific case, 

a special analysis is required. 

The generalized structural diagram of a parallel memory 

implemented according to the PI transformation algorithm 

is presented in Fig. 6. The PI transformation block not only 

performs encoding and decoding of the original information arrays 

but also controls the memory units (RAM) and generates 

the addresses for data retrieval. RAM1 stores the values 

of tail elements for each level, while RAM2 stores the masks 

generated during the transformation process in the PI 

transformation block. 

This generalized structural diagram illustrates the main 

components and connections in a PI memory system, which 

can be further adapted and expanded for specific implementations 

and requirements. 

 

Fig. 6. Structural scheme of PI memory (A – bit size address bus, m – array size,  

n – word size in array) 

The address bus width of the RAM is shown for the case when 

the PI transformation block performs transformations according 

to the expressions (15), (16), (17), and the level processing is done 

sequentially. 

3. Analysis of the efficiency of parallel-

hierarchical memory structures 

Let us derive an expression that allows calculating the number 

of cycles required for the complete write (read) operation in a PI 

memory with a word dimension of 𝐻 ⋅ 𝑚 [16, 17, 27]. 

The number of levels until the packet of arrays fully 

converges, excluding only one initial single element on each level, 

is calculated using the formula: 

 𝑈 = 𝐻 ⋅ 𝑚 − ∑ ∑ 𝑟𝑖,𝑗
𝑊𝑖
𝑗=1

𝑢
𝑖=1 + ∑ ∑ 𝐿𝑖,𝑗

𝑊𝑖
𝑗=1

𝑢
𝑖=1 + 1 = 

 = 𝐻 ⋅ 𝑚 − ∑ ∑ (𝑟𝑖,𝑗 − 𝐿𝑖,𝑗)
𝑊𝑖
𝑗=1

𝑢
𝑖=1 + 1  (1) 

where U is the number of levels formed as a result of the PI 

processing of arrays, i – is the ordinal number of the level, 

Wi – is the number of branches (original arrays) for the i-th level, 

j – is the branch number on the current level, ri,j and Li,j 

are the respective counts of identical elements and groups with 

identical elements on the i-th level of the j-th branch. 
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The term 1 in formula (1) accounts for the first level where there 

is no initial tail element in the PI transformation network. 

When excluding all tail elements from further processing at each 

level, formula (1) takes the following form: 

 𝑈 = 𝐻 ⋅ 𝑚 − ∑ ∑ (𝑟𝑖,𝑗 − 𝐿𝑖,𝑗)
𝑊𝑖
𝑗=1

𝑢
𝑖=1 − ∑ ∑ 𝑧𝑖,𝑗

𝑊𝑖
𝑗=1

𝑢
𝑖=1 + 1 (2) 

where 𝑧𝑖,𝑗  – number of tail elements in 𝑗-th branch of 𝑖-th level 

(value of 𝑧𝑖,1 does not account for separated element 𝑎1,1). 

The number of cycles required to write (read) the initial tail 

elements in RAM1 is equal to the number of levels minus one, 

and it is generally less than the number of cycles required to write 

(read) the masks in RAM2, especially for certain algorithms 

[10, 27, 28]. Therefore, the determining factor influencing 

the performance of the PI memory is the time it takes to write 

(read) the masks obtained from encoding using the PI 

transformation method. The following are the formulaic 

dependencies for calculating the number of cycles required 

to write (read) the masks for all levels:  

а) for the first level: 

 𝑇1 = 𝑚 − 𝑚𝑖𝑛
𝑗=1,𝑊1

(𝑟1𝑗 − 𝐿1𝑗) (3) 

b) second level: 

 𝑇2 = 𝑚𝑎𝑥
𝑗=1,𝑊2

(𝜔2𝑗 + (𝑗 − 1) − (𝑟2𝑗 − 𝐿2𝑗)) (4) 

where 𝜔2𝑗  is the number of words (elements) in the initial array 

of the j-th branch of the 2nd level. Since each subsequent branch 

on all levels, except the first, starts processing one step later than 

the previous one, and this step corresponds to the cycle of writing 

(reading) the mask, the term (j – 1) in expression (4) represents 

the shifting process. The shifting starts from the second branch, 

so one is subtracted from j. Thus, expression (4) determines 

the maximum length of the decomposition among all branches 

of the second level, taking into account the shifting of each 

subsequent branch and the convolutions (𝑟2𝑗 − 𝐿2𝑗) in each 

branch, if applicable [17, 19, 30]. 

c) for the sequential levels will be correct formula (4). 

 𝑇𝑖 = 𝑚𝑎𝑥
𝑗=1,𝑊𝑖

(𝜔𝑖𝑗 + 𝑗 + 𝐿𝑖𝑗 − 𝑟𝑖𝑗 − 1) 

 𝑖 = {1,2, … , 𝑢},    𝑗 = {1,2, … , 𝑊𝑖} (5) 

Number of leaves on each level counts by formulas: 

 

𝑊1 = 𝐻
𝑊2 = 𝑇1

𝑊3 = 𝑇2 − 1 
…

𝑊𝑖 = 𝑇𝑖−1 − 1,  𝑖 = {3,4, … , 𝑢}

 (6) 

If all tail elements are taken into account as a result 

of expansion, then expressions (6) will take the form: 

 

𝑊1
э = 𝐻

𝑊2
э = 𝑇1 − 𝑧1𝑗 ,    𝑧1𝑗 = {0,1,2, … , 𝑚 − 1}

𝑊3
э = 𝑇2 − ∑ 𝑧2𝑗

𝑊2
𝑗=1 − 1 

…

𝑊𝑖
э = 𝑇𝑖−1 − ∑ 𝑧𝑖−1𝑗

𝑊𝑖−1
𝑗=1 − 1,  𝑖 = {3,4, … , 𝑢}

 (7) 

With sequential processing of levels, the total number 

of cycles for writing (reading) masks is: 

𝑇∑
𝑝𝑜𝑠

= ∑ 𝑇𝑖

𝑢

𝑖=1

= 𝑚 − 𝑚𝑖𝑛
𝑗=1,𝑊1

(𝑟1𝑗 − 𝐿1𝑗) + 

 + ∑ 𝑚𝑎𝑥
𝑗=1,𝑊𝑖

(𝜔𝑖𝑗 + 𝑗 + 𝐿𝑖𝑗 − 𝑟𝑖𝑗 − 1)𝑢
𝑖=2  (8) 

With a parallel encoding process, the number of cycles 

for writing (reading) an information array with a dimension 

of H⋅m words will be: 

𝑇∑
𝑝𝑎𝑖𝑟

= 𝑈 + 𝑚𝑎𝑥(𝜔𝑢𝑗 + 𝑗 + 𝐿𝑢𝑗 − 𝑟𝑢𝑗 − 1) − 2 = 

 = 𝑈 + 𝑚𝑎𝑥
𝑗=1,𝑊𝑢

(𝜔𝑢𝑗 + 𝑗 + 𝐿𝑢𝑗 − 𝑟𝑢𝑗) − 3  (9) 

The subtraction of two in the first part of expression (9) 

is done to exclude the first and last levels. The first level does not 

involve a cycle of writing, and the last level is already accounted 

for in the term that determines the maximum length of the last 

level. 

For regular sequential memory, writing (reading) a two-

dimensional array of words will require cycles: 

 𝑇𝑠𝑡 = 𝐻 ⋅ 𝑚  (10) 

From the analysis of expressions (1), (8), (9) and (10) 

it follows that 𝑇∑
𝑝𝑎𝑖𝑟

 less than 𝑇𝑆𝑇 for ∑ ∑ (𝑟𝑖,𝑗 − 𝐿𝑖,𝑗)
𝑊𝑖
𝑗=1

𝑢
𝑖=1 −

𝑚𝑎𝑥
𝑗−1,𝑊𝑢

(𝜔𝑢𝑗 + 𝑗 + 𝐿𝑢𝑗 − 𝑟𝑢𝑗) + 2, а 𝑇∑
𝑝𝑜𝑠

 depending on the 

variables K, i, ω and W can be either less or more 𝑇𝑠𝑡. 

The capacity of the PI memory (Fig. 6) depends on the type 

of 𝐹∗ and 𝑄∗ transformation and the method of mask generation 

during array processing. 

The capacity of RAM1 is relatively small with a fixed word 

size of n bits. RAM2, on the other hand, has a much larger 

capacity, and the word size varies from m to H bits for the first 

and second levels, to 2 bits for the last level. This is achieved 

through additional technical and software means, compromises, 

and flexible addressing that allows access to memory cells 

of different lengths. The number of levels and branches, as seen 

from (8) and (9), directly affects the memory performance 

and required capacity [24, 31]. 

The PI memory (Fig. 5) allows storing 2A two-dimensional 

arrays with a dimension of 𝐻 ⋅ 𝑚, and during reading, 

it can generate the entire original array in parallel. It can be used, 

for example, to store information about image fragments 

with dimensions 𝐻 ⋅ 𝑚 samples. The PI transformation block 

in the PI memory is a complex device, which may not always 

be justified in practice for hardware implementation of parallel 

memory. A simpler transformation algorithm can be used 

for encoding a one-dimensional array, i.e., processing a single 

branch using the PI transformation method [1, 24, 28]. A parallel-

hierarchical RAM with pre-processing of a one-dimensional array 

can have a single RAM block (Fig. 7), into which the selected 

element value (data-1) and the mask of that element (data-2) 

are simultaneously written (read) under the same address [11]. 

The number of clock cycles for writing (reading) in this case is 

determined by the formula: 

 𝑇𝑏𝑟𝑛 = 𝑚 − 𝑟 + 𝐿 (11) 

where 𝑟 – number of the same words in the array; 𝐿 – number 

of pairs with the same words. 

 

Fig. 7. Structural scheme of PI memory (A – Address bus registry size; m – address’ 

registry size; n – arrays’ word registry size) 

4. Research results 

Comparing formulas (10) and (11), it can be seen that the PI 

memory with preliminary array transformation is more efficient 

compared to regular memory by the amount of 𝑟 − 𝐿. 

To store information about one array in the PI memory, 

the required memory volume is: 

𝑂𝑏𝑟𝑛 = 𝑇𝑏𝑟𝑛 ⋅ 𝑛 + 𝑇𝑏𝑟𝑛 ⋅ 𝑚 = 

 = 𝑇𝑏𝑟𝑛 ⋅ (𝑛 + 𝑚) = (𝑚 − 𝑟 + 𝐿)(𝑚 + 𝑛)  (12) 
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Required value for usual memory: 

 𝑂𝑠𝑡 = 𝑚 ⋅ 𝑛  (13) 

Subtracting (12) from (13), we get: 

 𝑃 = 𝑂𝑠𝑡 − 𝑂𝑠𝑡 = 𝑟 ⋅ (𝑛 + 𝑚) − 𝐿 ⋅ (𝑛 + 𝑚) − 𝑚2  (14) 

From (14) as consequence: 

 

𝑟 ⋅ (𝑛 + 𝑚) − 𝐿 ⋅ (𝑛 + 𝑚) − 𝑚2 = 0,   to  𝑂𝑠𝑡 = 𝑂𝑏𝑟𝑛

𝑟 ⋅ (𝑛 + 𝑚) − 𝐿 ⋅ (𝑛 + 𝑚) − 𝑚2 > 0,   to  𝑂𝑠𝑡 > 𝑂𝑏𝑟𝑛

𝑟 ⋅ (𝑛 + 𝑚) − 𝐿 ⋅ (𝑛 + 𝑚) − 𝑚2 < 0,   to 𝑂𝑠𝑡 < 𝑂𝑏𝑟𝑛

 (15) 

From equation (15), it follows that the volume of the PI 

memory compared to traditional memory structures will 

be smaller, the higher the values of r and n, and the smaller 

the values of L and m. 

The efficiency of reducing the volume of PI memory 

can be assessed by the ratio: 

 𝑅 =
𝑂𝑠𝑡

𝑂𝑏𝑟𝑛 =
𝑚𝑛

(𝑚−𝑟+𝐿)(𝑛+𝑚)
  (16) 

Consider a specific example: let there be an array with such 

parameters 𝑚 = 15, 𝑛 = 8, 𝑟 = 10 and 𝐿 = 4: 

 𝑇𝑏𝑟𝑛 = 15 − 10 + 4 = 9𝜏, 𝑇𝑠𝑡 = 15𝜏 

𝑂𝑏𝑟𝑛 = 9(15 + 8) = 207bits 

 𝑂𝑠𝑡 = 15 × 8 = 120 bits  

For an array of the same dimension but with different 

parameters 𝑚 = 15, 𝑛 = 8, 𝑟 = 13, 𝐿 = 3: 

 𝑇𝑏𝑟𝑛 = 15 − 13 + 3 = 5𝜏,  𝑇𝑠𝑡 = 15𝜏 

𝑂𝑏𝑟𝑛 = 5(15 + 8) = 115bits 

 𝑂𝑠𝑡 = 15 × 8 = 120 bits  

In the first case, the performance of the PI memory is higher 

than that of the standard memory, but the memory capacity 

is larger. In the second case, both the performance is higher 

and the memory capacity of the PI memory is smaller than that 

of the standard memory. In general, the number of clock cycles 

required for writing (reading) information using the proposed PI 

transformation method is within the range of: 

 𝜏 ≤ 𝑇𝑏𝑟𝑛 ≤ 𝑇𝑠𝑡  
Therefore, the explored architectural features of the parallel-

hierarchical memory classify it as a non-von Neumann compu-

tational structure. The proposed structure of the PI memory, 

focused on parallel and compact processing of data fields, enables 

real-time transformation. The researched architectural character-

ristics allow for efficient memory organization for array 

processing and transformation, which can be valuable in various 

applications requiring fast and parallel data processing. 

5. Conclusions 

In this paper we demonstrate the potential of parallel-

hierarchical memory (PHM) systems to significantly improve 

the performance of parallel computing systems. The results show 

that PHM systems can achieve significant performance 

improvements over traditional memory systems, particularly 

for applications with a high degree of data parallelism. 

Research also highlight the challenges that need to be 

addressed in order to realize the full potential of PHM systems. 

These challenges include the design of efficient memory access 

policies, the development of scalable and efficient memory 

management schemes, the development of fault-tolerant 

PHM systems, and the development of PHM systems that 

are compatible with existing programming models and languages. 

Provided information is a foundation for further research 

on PHM systems. The results suggest that PHM systems have 

the potential to revolutionize the field of parallel computing, 

and the challenges identified in this paper provide a roadmap 

for future research in this area. 

Presented results is significant because they demonstrate 

the potential of PHM systems to revolutionize the field of parallel 

computing. 
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