
46 IAPGOŚ 1/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 1/2024, 46–52

http://doi.org/10.35784/iapgos.5615 received: 27.11.2023 | revised: 29.02.2024 | accepted: 07.03.2024 | available online: 31.03.2024

ARCHITECTURAL AND STRUCTURAL AND FUNCTIONAL FEATURES

OF THE ORGANIZATION OF PARALLEL-HIERARCHICAL MEMORY

Leonid Timchenko
1
, Natalia Kokriatska

1
, Volodymyr Tverdomed

1
, Iryna Yu. Yepifanova

2
,

Yurii Didenko
1
, Dmytro Zhuk

1
, Maksym Kozyr

1
, Iryna Shakhina

3

1State University of Infrastructure and Technology, Kyiv, Ukraine, 2Vinnytsia National Technical Unіversity, Vinnytsia, Ukraine, 3Vinnytsia Mykhailo Kotsiubynskyi State

Pedagogical University, Vinnytsia, Ukraine

Abstract. Parallel hierarchical memory (PI memory) is a new type of memory that is designed to improve the performance of parallel computing systems.

PI memory is composed of two blocks: a mask RAM and a tail element RAM. The mask RAM stores the masks that are used to encode the information,
while the tail element RAM stores the actual information. The address block of the PI memory is responsible for generating the physical addresses

of the cells where the tail elements and their masks are stored. The address block also stores the field of addresses where the array was written

and associates this field of addresses with the corresponding external address used to write the array. The proposed address block structure is able
to efficiently generate the physical addresses of the cells where the tail elements and their masks are stored. The address block is also able to store the field

of addresses where the array was written and associate this field of addresses with the corresponding external address used to write the array.

The proposed address block structure has been implemented in a prototype PI memory. The prototype PI memory has been shown to be able to achieve
significant performance improvements over traditional memory architectures. The paper will present a detailed description of the PI transformation

algorithm, a description of the different modes of addressing organization that can be used in PI memory, an analysis of the efficiency of parallel-

hierarchical memory structures, and a discussion of the challenges and future research directions in the field of PI memory.

Keywords: parallel hierarchical memory, PI memory, address block, mask RAM, tail element RAM, performance improvement

ARCHITEKTONICZNE, STRUKTURALNE I FUNKCJONALNE CECHY

RÓWNOLEGŁO-HIERARCHICZNEJ ORGANIZACJI PAMIĘCI

Streszczenie. Równoległa pamięć hierarchiczna (pamięć PI) jest nowym typem pamięci zaprojektowanym w celu poprawy wydajności równoległych
systemów obliczeniowych. Pamięć PI składa się z dwóch bloków: maski RAM i ogon RAM. Maska RAM przechowuje maski używane do kodowania
informacji, podczas gdy ogon RAM przechowuje rzeczywiste informacje. Blok adresowy pamięci PI jest odpowiedzialny za generowanie fizycznych
adresów komórek, w których przechowywane są elementy końcowe i ich maski. Blok adresowy przechowuje również pole adresu, w którym tablica została
zapisana i kojarzy to pole adresu z odpowiednim adresem zewnętrznym użytym do zapisu tablicy. Proponowana struktura bloku adresowego jest w stanie
efektywnie generować fizyczne adresy komórek, w których przechowywane są elementy ogonowe i ich maski. Blok adresowy może również przechowywać
pole adresu, w którym tablica została zapisana i powiązać to pole adresu z odpowiednim adresem zewnętrznym użytym do zapisu tablicy. Zaproponowana
struktura bloku adresowego została zaimplementowana w prototypie pamięci PI. Wykazano, że prototyp pamięci PI jest w stanie znacznie poprawić
wydajność w porównaniu z tradycyjnymi architekturami pamięci. W artykule zostanie przedstawiony szczegółowy opis algorytmu konwersji PI, opis
różnych trybów adresowania, które mogą być używane w pamięci PI, analiza wydajności równoległo-hierarchicznych struktur pamięci oraz omówienie
wyzwań i przyszłych kierunków badań w dziedzinie pamięci PI.
Słowa kluczowe: równoległa pamięć hierarchiczna, pamięć PI, blok adresowy, maska RAM, ogon RAM, poprawa wydajności

Introduction

In recent years, much effort has been made to create

parallel computing systems that use the power of the Internet

and the availability of computers in many homes and businesses.

The main advantage of these approaches is that they provide

a cheap environment for parallel computing for those who cannot

afford the costs of supercomputers and hardware parallel

processing. However, most of the solutions on offer are not very

flexible in the use of available resources and are very difficult to

install and configure [21]. When designing high-performance

computers and systems, it is necessary to make many trade-offs,

such as the sizes and technologies for each level of the hierarchy.

Analyzing previous work [9, 12, 14] on parallel-hierarchical

structures, we can identify the main disadvantages of these

systems [8, 10, 15].

For example, the lack of a method for evaluating

peak performance as the number of instructions executed

by the computer per unit of time (MIPS, Million Instruction

Per Second) gives only a general idea of the speed, since it does

not take into account the specifics of specific programs

(it is difficult to predict how many and which instructions a user

program will be displayed by the processor) [2, 5, 20].

Parallel computing systems are excessively expensive.

According to the law of diminishing returns, the performance

of a computer grows proportionally to the square of its cost;

as a result, it is much more profitable to obtain the required

computing power by purchasing one high-performance processor

than by using several less powerful processors [4, 9, 10].

When organizing parallelism, performance losses grow too

quickly. According to the Minsky hypothesis (Marvin Minsky),

the acceleration of calculations achieved when using a parallel

system is proportional to the binary logarithm of the number

of processors (with 1000 processors, the possible acceleration

is only 10).

Counter-argument. The given acceleration estimate is true

for parallelizing certain algorithms. However, there are a large

number of tasks, the parallel solution of which achieves close

to 100% use of all available processors of a parallel computing

system.

Sequential computers are constantly being improved.

According to the well-known Moore's law, the complexity

of sequential microprocessors doubles every 18 months,

so the required performance can also be achieved on "ordinary"

sequential computers.

However, the use of parallelism allows obtaining

the necessary acceleration of calculations without waiting

for the development of new faster processors. The efficiency

of parallelism strongly depends on the characteristic properties

of parallel systems. All modern sequential electronic computers

operate in accordance with the classical von Neumann

scheme; parallel systems differ significantly in architecture

and the maximum effect from the use of parallelism can

be obtained by full use of all the features of the hardware

(consequence – the transfer of parallel algorithms and programs

between different types of systems is difficult, and sometimes

impossible).

komad
Stempel

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2024 47

For decades of operation of sequential electronic computers,

a huge amount of software has been accumulated, oriented

at sequential electronic computers; its processing for parallel

computers is practically unrealistic.

There is a limit on the acceleration of calculation

in the parallel – hierarchical implementation of the algorithm

in comparison with the sequential one.

Parallel-hierarchical memory (PHM) is a promising approach

to addressing the challenges of memory organization in parallel

computing systems. PHM systems are organized in a hierarchy

of levels, with each level providing different levels of performance

and capacity. This allows the system to adapt to the needs

of different applications. In this paper, we present an overview

of the architectural and structural and functional features

of the organization of PHM systems.

1. Examples of network parallel-hierarchical

structures

The network structure allows to simulate the principle

of operation of a distributed PI network and, due to spatial

separation over time, processes information in a deterministic

pyramidal PI network (Fig. 1). The network, built on the basis

of PI transformation, consists of a set of subnetworks (Fig. 1)

for forming features about the states of the spatio-temporal

environment (PTE), the structure of which is homogeneous

and consists of a number of interdependent hierarchical levels.

The network operation algorithm is universal and consists

in the PI formation of sets of common and different states

of the PTE. Generalization of all types of sensory information

occurs at the very final stage of the transformation outside

the hierarchical processing of each type of sensory information.

So, the process of generalization between different types

of sensory information begins only when the construction

according to a certain set of features is completed [9].

On the figure 1 there is an example of transformed states

on each level: – set of shared states on each level, – define

common state on separate level.

Fig. 1. Model of neural structur based on the PI transformation block

To associate the masks with their corresponding branches

at each level, after their sequential writing starting from the lower

branches, two additional bytes of information need to be written.

This information includes the number of masks generated at that

level and the highest branch number from which the last mask

is selected at that level. This information is also generated

in the PI transformation block.

On the figure 2 you see the structure of a parallel hierarchical

memory (PI memory). The core of the structural organization

of PI memory consists of three main components: the storage

medium (mask RAM, tail element RAM), the PI transformation

network, and the address block. The storage medium is composed

of two blocks, each of which is a conventional RAM with

a sequential data access structure. The word size of the mask

RAM corresponds to the memory's access width, while the word

size of the tail element RAM matches the bit depth of the image

frame [1, 5].

The PI transformation network is responsible for encoding

the information during the write operation and decoding it during

the read operation from the memory.

Fig. 2. Structure of PI memory with PI transforming network

2. Organization of the architecture of the address

block parallel to the hierarchical memory

The address block of the PI memory implements the functions

of generating internal addresses for the storage medium blocks

based on the external address and the state of the PI

transformation network.

In a linear sequential memory, the memory capacity (N),

which represents the number of addressable data elements (cells),

plays a crucial role in determining the address size.

The dependency 𝐻𝑎𝑑𝑑𝑟 = 𝐼𝑁𝑇(𝑙𝑜𝑔2 𝑁 + 0.5), is based

on the Haddr – number of binary digits in the address code,

INT – represents the integer part operation. The address structure

may contain additional fields used for control information,

such as specifying base or index register numbers, address

modification indicators, etc. Thus, the description of accessing

conventional memory typically has a two-component structure
[𝐶, 𝑎𝑑𝑟], including C – control code and adr – address code

[6, 7].

For the considered PI memory, the structure of the access

description follows the conventional form and includes the address

code. Unlike the cell address structure, here the address

of the array or array package is used instead of the cell address.

The control code in the address structure incorporates information

about the memory operation mode: a) standard mode with

the ability to access any cell, and b) array mode [3, 18].

Let's examine the structure of the address block (Fig. 3)

in the PI memory that stores information arrays. The tasks

of the address block are as follows:

1) During array write operation, generate physical addresses

of the cells where the tail elements and their masks are stored.

2) After completing the write operation, store the field

of addresses where the array was written and associate this

field of addresses with the corresponding external address

used to write the array.

48 IAPGOŚ 1/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

3) During read operation using the external address value,

determine the field of physical addresses where the array

is stored and generate the necessary data physical addresses

in the required sequence [1, 13].

The proposed address block structure, presented in Fig. 3,

performs this function. To illustrate the operation of the suggested

address structure in the PI memory, figure 3 also shows the control

scheme and the mask RAM and single-element RAM blocks.

The address block of the PI memory is outlined with a dashed line.

Fig. 3. Functional scheme of PI memory address block

To write an array to the PI transformation network, the array

itself is digitally input to the data bus, and the control signals

"Work" (selection of the memory), "I/O" (write information),

and "Addr" (address) are sent to the control circuit. The control

circuit routes the content of the "Addr" bus to the input of Address

RAM 1 [5, 6]. Address RAM 1 has a capacity of 2 × 𝑘 cells,

where k – is the address bus width. The control circuit generates

the "Write Address" signal, which writes the address of the first

available cell in Address RAM 1 and the current address

generation circuit 4 from the free cell register 3. This address will

be the same for Address RAM 6 and Address RAM 7 because

the number of tail elements for decomposing one array using

the PI transformation method is equal to the number of masks

for that array. In other words, each selected element will have its

corresponding mask. In the circuit, the first available cell address

is required to generate the current physical addresses for writing

the encoded array to Address RAM 6 and Address RAM 7.

In Block 2, the value A0 is written to the cell with an address

equal to the address on the "Addr" bus. This establishes

the connection between the external address on the "Addr"

bus and the internal addresses of the storage environment.

Then, the control scheme generates a sequence of pulses

on the "Write Clocks" line to perform the array write operation

[8, 9, 21]. Using these pulses, Control Scheme 4 generates

the current address by incrementing the value of A0. The Clock

Counter 2 counts the number of pulses on the "Write Clocks" line.

When the decomposition of the array in the PI transformation

block is completed, a signal "End of Write" is sent to the control

scheme, and the pulses on the "Write Clocks" line cease. With

the control signal "Write Time", generated by the control scheme,

the content of Clock Counter 2 is written to Block 1 under

the same address on the "Addr" bus, and the new address

of the first available cell from Block 4 is written to Block 3. Then,

the "Reset" signal resets Clock Counter 2, completing the write

procedure. During the read operation, the control signals "Work",

"Wr/Rd", and the corresponding address from the "Addr"

bus are applied to the control scheme [7, 25].

The control scheme 1 generates the "Write" signal 𝐴0 + 𝑇,

which writes the values A0 and T from Address RAM 2 to Current

Address Generation Scheme 5, corresponding to the code

on the "Addr" bus. In Scheme 5, the first current address is formed

by adding the values A0 and T. The control scheme generates

a series of pulses on the "Read Clocks" line. These pulses are sent

to the PI transformation block and Scheme 5, where for each

pulse, the values A0 and T are decremented by one. This process

reads the array from Address RAM 6 and Address RAM 7. With

each pulse on the "Read Clocks" line, when the value becomes

zero, Scheme 5 generates the "End of Read" signal, which, when

received by the control scheme, causes the cessation of pulses on

the "Read Clocks" line [7, 19]. The decoding of the read array

is completed in the PI transformation block, and the read process

is finished.

When organizing the address block of the PI memory,

significant difficulties arise due to the significant difference

in addressing between the tail element memory block

and the mask memory block [9, 31]. This is because the number

of masks in processing an array packet, according to the PI

transformation method, is much larger than the number of tail

elements.

For algorithms where only one tail element can appear at any

given time (parallel-sequential processing, selecting only the first

tail element at each level, etc.), the addressing of the tail element

RAM can be sequential. In this case, one bit in the masks

is allocated as a flag indicating the presence or absence of a tail

element for that mask. If the mask RAM contains information

about the current transformation step and the number of masks

at each level of that step, the flag indicating the presence of a tail

element is not necessary [19, 23]. A mask corresponds to a tail

element when that mask is the only one at its level in the current

transformation step.

For algorithms where all tail elements are considered

in the encoding result, and multiple tail elements can occur

at different levels in a particular transformation step, their storage

in memory is done sequentially, starting from the lowest level.

During decoding, masks are selected starting from the highest

level, and tail elements are read in reverse order, also starting from

the highest levels [7, 17].

Fig. 4. Structure of information composition in the RAM mask by memory cell

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2024 49

The process of writing masks to the PI memory is further

complicated by the fact that, according to the PI transformation

algorithm, masks are generated in parallel at multiple levels,

and each level can have multiple masks. A regular storage

environment is used to store the mask codes. Therefore, at each

transformation step, the mask codes are captured in buffer

registers and are sequentially rewritten from the lower levels

to the mask RAM, starting with the lowest levels and branches

[12, 16].

The described association procedure is valid only when

all masks belong to neighboring branches. It should be noted that

on any level, there may be a situation where masks from one

transformation step are not present on all branches located

between the initial and final branches. In such a case, additional

information about the location of masks within the level needs

to be stored in the mask RAM. The arrangement of information

in the mask RAM cells for one array packet is presented

in figure 4 [13, 22, 29].

Masks have different sizes, so it is inefficient to allocate cells

with pre-determined sizes to store them. The following structure

is proposed for mask addressing:

a) The four most significant bits of the mask indicate the length

of the mask in half-bytes.

b) The mask bits themselves follow, occupying the number

of half-bytes indicated in the mask size. The length

of the mask is determined by the PI transformation block.

Figure 5 illustrates the bit-wise structure for storing one mask.

By using this structure, the size of the area where the mask

is stored can be varied widely. The minimum size for storing

a mask would be 1 byte. At the same time, you can record

4 ≤ 𝑘 ≤ 60, 𝑚𝑜𝑑 𝑘
4⁄ = 0.

Fig. 5. Structure of information composition for separate mask (mod – euclidean

division)

Here, half a byte is used to indicate the length of the mask,

and the other half a byte represents the code of the mask.

The maximum size for the mask area is 15 (4 + 4) = 64 bits,

or 8 bytes. In this case, 4 bits indicate the mask length,

and the remaining 60 bits represent the mask code. In regular

memory, the word size is 16 bits, and the addressing allows

accessing individual bits.

During the write mode, the addressing block of the PI memory

sequentially increments the addresses for writing the masks until

the "End of Write" signal is received from the PI transformation

block. The same process is used to generate addresses for writing

the tail elements into their respective RAM [17, 23, 26].

During the read mode, the addressing block of the PI memory

uses the mask length information and the information stored

in cells 1, 2, 3, 4 (Fig. 5) to generate physical addresses

for the mask RAM. The masks are selected in sequence, starting

from the highest levels and branches. For the tail element RAM,

the addressing block generates addresses by decrementing

the current address by "one" when selecting a mask from the mask

RAM that requires a tail element.

The organization of the addressing part becomes simpler

if the encoding of the array packet is done in a parallel-sequential

manner, where each level is processed in parallel while the levels

themselves are processed sequentially. In this case, an additional

buffer memory is required to store arrays from the previous level.

Indeed, there can be different modes of addressing

organization depending on the transformation algorithm based

on the PI transformation method and the corresponding structural

organization of the address block and the entire memory system

[16]. This topic is a separate subject of research.

The approach presented here outlines a general method

of addressing the tail elements and masks in a parallel memory

based on the PI transformation principle.

When designing a PI memory, the development of the address

block should consider the requirements imposed on it, such

as performance, hardware costs, cost, power consumption,

etc. [13, 18]. Therefore, in a specific implementation

of a particular address block algorithm, there is a question

of what should be performed at the hardware level and what can

be offloaded to software. To make a decision in each specific case,

a special analysis is required.

The generalized structural diagram of a parallel memory

implemented according to the PI transformation algorithm

is presented in Fig. 6. The PI transformation block not only

performs encoding and decoding of the original information arrays

but also controls the memory units (RAM) and generates

the addresses for data retrieval. RAM1 stores the values

of tail elements for each level, while RAM2 stores the masks

generated during the transformation process in the PI

transformation block.

This generalized structural diagram illustrates the main

components and connections in a PI memory system, which

can be further adapted and expanded for specific implementations

and requirements.

Fig. 6. Structural scheme of PI memory (A – bit size address bus, m – array size,

n – word size in array)

The address bus width of the RAM is shown for the case when

the PI transformation block performs transformations according

to the expressions (15), (16), (17), and the level processing is done

sequentially.

3. Analysis of the efficiency of parallel-

hierarchical memory structures

Let us derive an expression that allows calculating the number

of cycles required for the complete write (read) operation in a PI

memory with a word dimension of 𝐻 ⋅ 𝑚 [16, 17, 27].

The number of levels until the packet of arrays fully

converges, excluding only one initial single element on each level,

is calculated using the formula:

 𝑈 = 𝐻 ⋅ 𝑚 − ∑ ∑ 𝑟𝑖,𝑗
𝑊𝑖
𝑗=1

𝑢
𝑖=1 + ∑ ∑ 𝐿𝑖,𝑗

𝑊𝑖
𝑗=1

𝑢
𝑖=1 + 1 =

 = 𝐻 ⋅ 𝑚 − ∑ ∑ (𝑟𝑖,𝑗 − 𝐿𝑖,𝑗)
𝑊𝑖
𝑗=1

𝑢
𝑖=1 + 1 (1)

where U is the number of levels formed as a result of the PI

processing of arrays, i – is the ordinal number of the level,

Wi – is the number of branches (original arrays) for the i-th level,

j – is the branch number on the current level, ri,j and Li,j

are the respective counts of identical elements and groups with

identical elements on the i-th level of the j-th branch.

50 IAPGOŚ 1/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

The term 1 in formula (1) accounts for the first level where there

is no initial tail element in the PI transformation network.

When excluding all tail elements from further processing at each

level, formula (1) takes the following form:

 𝑈 = 𝐻 ⋅ 𝑚 − ∑ ∑ (𝑟𝑖,𝑗 − 𝐿𝑖,𝑗)
𝑊𝑖
𝑗=1

𝑢
𝑖=1 − ∑ ∑ 𝑧𝑖,𝑗

𝑊𝑖
𝑗=1

𝑢
𝑖=1 + 1 (2)

where 𝑧𝑖,𝑗 – number of tail elements in 𝑗-th branch of 𝑖-th level

(value of 𝑧𝑖,1 does not account for separated element 𝑎1,1).

The number of cycles required to write (read) the initial tail

elements in RAM1 is equal to the number of levels minus one,

and it is generally less than the number of cycles required to write

(read) the masks in RAM2, especially for certain algorithms

[10, 27, 28]. Therefore, the determining factor influencing

the performance of the PI memory is the time it takes to write

(read) the masks obtained from encoding using the PI

transformation method. The following are the formulaic

dependencies for calculating the number of cycles required

to write (read) the masks for all levels:

а) for the first level:

 𝑇1 = 𝑚 − 𝑚𝑖𝑛
𝑗=1,𝑊1

(𝑟1𝑗 − 𝐿1𝑗) (3)

b) second level:

 𝑇2 = 𝑚𝑎𝑥
𝑗=1,𝑊2

(𝜔2𝑗 + (𝑗 − 1) − (𝑟2𝑗 − 𝐿2𝑗)) (4)

where 𝜔2𝑗 is the number of words (elements) in the initial array

of the j-th branch of the 2nd level. Since each subsequent branch

on all levels, except the first, starts processing one step later than

the previous one, and this step corresponds to the cycle of writing

(reading) the mask, the term (j – 1) in expression (4) represents

the shifting process. The shifting starts from the second branch,

so one is subtracted from j. Thus, expression (4) determines

the maximum length of the decomposition among all branches

of the second level, taking into account the shifting of each

subsequent branch and the convolutions (𝑟2𝑗 − 𝐿2𝑗) in each

branch, if applicable [17, 19, 30].

c) for the sequential levels will be correct formula (4).

 𝑇𝑖 = 𝑚𝑎𝑥
𝑗=1,𝑊𝑖

(𝜔𝑖𝑗 + 𝑗 + 𝐿𝑖𝑗 − 𝑟𝑖𝑗 − 1)

 𝑖 = {1,2, … , 𝑢}, 𝑗 = {1,2, … , 𝑊𝑖} (5)

Number of leaves on each level counts by formulas:

𝑊1 = 𝐻
𝑊2 = 𝑇1

𝑊3 = 𝑇2 − 1
…

𝑊𝑖 = 𝑇𝑖−1 − 1, 𝑖 = {3,4, … , 𝑢}

 (6)

If all tail elements are taken into account as a result

of expansion, then expressions (6) will take the form:

𝑊1
э = 𝐻

𝑊2
э = 𝑇1 − 𝑧1𝑗 , 𝑧1𝑗 = {0,1,2, … , 𝑚 − 1}

𝑊3
э = 𝑇2 − ∑ 𝑧2𝑗

𝑊2
𝑗=1 − 1

…

𝑊𝑖
э = 𝑇𝑖−1 − ∑ 𝑧𝑖−1𝑗

𝑊𝑖−1
𝑗=1 − 1, 𝑖 = {3,4, … , 𝑢}

 (7)

With sequential processing of levels, the total number

of cycles for writing (reading) masks is:

𝑇∑
𝑝𝑜𝑠

= ∑ 𝑇𝑖

𝑢

𝑖=1

= 𝑚 − 𝑚𝑖𝑛
𝑗=1,𝑊1

(𝑟1𝑗 − 𝐿1𝑗) +

 + ∑ 𝑚𝑎𝑥
𝑗=1,𝑊𝑖

(𝜔𝑖𝑗 + 𝑗 + 𝐿𝑖𝑗 − 𝑟𝑖𝑗 − 1)𝑢
𝑖=2 (8)

With a parallel encoding process, the number of cycles

for writing (reading) an information array with a dimension

of H⋅m words will be:

𝑇∑
𝑝𝑎𝑖𝑟

= 𝑈 + 𝑚𝑎𝑥(𝜔𝑢𝑗 + 𝑗 + 𝐿𝑢𝑗 − 𝑟𝑢𝑗 − 1) − 2 =

 = 𝑈 + 𝑚𝑎𝑥
𝑗=1,𝑊𝑢

(𝜔𝑢𝑗 + 𝑗 + 𝐿𝑢𝑗 − 𝑟𝑢𝑗) − 3 (9)

The subtraction of two in the first part of expression (9)

is done to exclude the first and last levels. The first level does not

involve a cycle of writing, and the last level is already accounted

for in the term that determines the maximum length of the last

level.

For regular sequential memory, writing (reading) a two-

dimensional array of words will require cycles:

 𝑇𝑠𝑡 = 𝐻 ⋅ 𝑚 (10)

From the analysis of expressions (1), (8), (9) and (10)

it follows that 𝑇∑
𝑝𝑎𝑖𝑟

 less than 𝑇𝑆𝑇 for ∑ ∑ (𝑟𝑖,𝑗 − 𝐿𝑖,𝑗)
𝑊𝑖
𝑗=1

𝑢
𝑖=1 −

𝑚𝑎𝑥
𝑗−1,𝑊𝑢

(𝜔𝑢𝑗 + 𝑗 + 𝐿𝑢𝑗 − 𝑟𝑢𝑗) + 2, а 𝑇∑
𝑝𝑜𝑠

 depending on the

variables K, i, ω and W can be either less or more 𝑇𝑠𝑡.

The capacity of the PI memory (Fig. 6) depends on the type

of 𝐹∗ and 𝑄∗ transformation and the method of mask generation

during array processing.

The capacity of RAM1 is relatively small with a fixed word

size of n bits. RAM2, on the other hand, has a much larger

capacity, and the word size varies from m to H bits for the first

and second levels, to 2 bits for the last level. This is achieved

through additional technical and software means, compromises,

and flexible addressing that allows access to memory cells

of different lengths. The number of levels and branches, as seen

from (8) and (9), directly affects the memory performance

and required capacity [24, 31].

The PI memory (Fig. 5) allows storing 2A two-dimensional

arrays with a dimension of 𝐻 ⋅ 𝑚, and during reading,

it can generate the entire original array in parallel. It can be used,

for example, to store information about image fragments

with dimensions 𝐻 ⋅ 𝑚 samples. The PI transformation block

in the PI memory is a complex device, which may not always

be justified in practice for hardware implementation of parallel

memory. A simpler transformation algorithm can be used

for encoding a one-dimensional array, i.e., processing a single

branch using the PI transformation method [1, 24, 28]. A parallel-

hierarchical RAM with pre-processing of a one-dimensional array

can have a single RAM block (Fig. 7), into which the selected

element value (data-1) and the mask of that element (data-2)

are simultaneously written (read) under the same address [11].

The number of clock cycles for writing (reading) in this case is

determined by the formula:

 𝑇𝑏𝑟𝑛 = 𝑚 − 𝑟 + 𝐿 (11)

where 𝑟 – number of the same words in the array; 𝐿 – number

of pairs with the same words.

Fig. 7. Structural scheme of PI memory (A – Address bus registry size; m – address’

registry size; n – arrays’ word registry size)

4. Research results

Comparing formulas (10) and (11), it can be seen that the PI

memory with preliminary array transformation is more efficient

compared to regular memory by the amount of 𝑟 − 𝐿.

To store information about one array in the PI memory,

the required memory volume is:

𝑂𝑏𝑟𝑛 = 𝑇𝑏𝑟𝑛 ⋅ 𝑛 + 𝑇𝑏𝑟𝑛 ⋅ 𝑚 =

 = 𝑇𝑏𝑟𝑛 ⋅ (𝑛 + 𝑚) = (𝑚 − 𝑟 + 𝐿)(𝑚 + 𝑛) (12)

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2024 51

Required value for usual memory:

 𝑂𝑠𝑡 = 𝑚 ⋅ 𝑛 (13)

Subtracting (12) from (13), we get:

 𝑃 = 𝑂𝑠𝑡 − 𝑂𝑠𝑡 = 𝑟 ⋅ (𝑛 + 𝑚) − 𝐿 ⋅ (𝑛 + 𝑚) − 𝑚2 (14)

From (14) as consequence:

𝑟 ⋅ (𝑛 + 𝑚) − 𝐿 ⋅ (𝑛 + 𝑚) − 𝑚2 = 0, to 𝑂𝑠𝑡 = 𝑂𝑏𝑟𝑛

𝑟 ⋅ (𝑛 + 𝑚) − 𝐿 ⋅ (𝑛 + 𝑚) − 𝑚2 > 0, to 𝑂𝑠𝑡 > 𝑂𝑏𝑟𝑛

𝑟 ⋅ (𝑛 + 𝑚) − 𝐿 ⋅ (𝑛 + 𝑚) − 𝑚2 < 0, to 𝑂𝑠𝑡 < 𝑂𝑏𝑟𝑛

 (15)

From equation (15), it follows that the volume of the PI

memory compared to traditional memory structures will

be smaller, the higher the values of r and n, and the smaller

the values of L and m.

The efficiency of reducing the volume of PI memory

can be assessed by the ratio:

 𝑅 =
𝑂𝑠𝑡

𝑂𝑏𝑟𝑛 =
𝑚𝑛

(𝑚−𝑟+𝐿)(𝑛+𝑚)
 (16)

Consider a specific example: let there be an array with such

parameters 𝑚 = 15, 𝑛 = 8, 𝑟 = 10 and 𝐿 = 4:

 𝑇𝑏𝑟𝑛 = 15 − 10 + 4 = 9𝜏, 𝑇𝑠𝑡 = 15𝜏

𝑂𝑏𝑟𝑛 = 9(15 + 8) = 207bits

 𝑂𝑠𝑡 = 15 × 8 = 120 bits

For an array of the same dimension but with different

parameters 𝑚 = 15, 𝑛 = 8, 𝑟 = 13, 𝐿 = 3:

 𝑇𝑏𝑟𝑛 = 15 − 13 + 3 = 5𝜏, 𝑇𝑠𝑡 = 15𝜏

𝑂𝑏𝑟𝑛 = 5(15 + 8) = 115bits

 𝑂𝑠𝑡 = 15 × 8 = 120 bits

In the first case, the performance of the PI memory is higher

than that of the standard memory, but the memory capacity

is larger. In the second case, both the performance is higher

and the memory capacity of the PI memory is smaller than that

of the standard memory. In general, the number of clock cycles

required for writing (reading) information using the proposed PI

transformation method is within the range of:

 𝜏 ≤ 𝑇𝑏𝑟𝑛 ≤ 𝑇𝑠𝑡
Therefore, the explored architectural features of the parallel-

hierarchical memory classify it as a non-von Neumann compu-

tational structure. The proposed structure of the PI memory,

focused on parallel and compact processing of data fields, enables

real-time transformation. The researched architectural character-

ristics allow for efficient memory organization for array

processing and transformation, which can be valuable in various

applications requiring fast and parallel data processing.

5. Conclusions

In this paper we demonstrate the potential of parallel-

hierarchical memory (PHM) systems to significantly improve

the performance of parallel computing systems. The results show

that PHM systems can achieve significant performance

improvements over traditional memory systems, particularly

for applications with a high degree of data parallelism.

Research also highlight the challenges that need to be

addressed in order to realize the full potential of PHM systems.

These challenges include the design of efficient memory access

policies, the development of scalable and efficient memory

management schemes, the development of fault-tolerant

PHM systems, and the development of PHM systems that

are compatible with existing programming models and languages.

Provided information is a foundation for further research

on PHM systems. The results suggest that PHM systems have

the potential to revolutionize the field of parallel computing,

and the challenges identified in this paper provide a roadmap

for future research in this area.

Presented results is significant because they demonstrate

the potential of PHM systems to revolutionize the field of parallel

computing.

References

[1] Aboutabl A. E., Elsayed M. N.: A Novel Parallel Algorithm for Clustering

Documents Based on the Hierarchical Agglomerative Approach. International

Journal of Computer Science & Information Technology – IJCSIT 3(2),

2011, 152–163.

[2] Bisikalo O. et al.: Parameterization of the Stochastic Model for Evaluating

Variable Small Data in the Shannon Entropy Basis. Entropy 25(2), 2023, 184.

[3] Bykov M. et al.: Neural network modelling by rank configurations. Proc.

of SPIE 10808, 2018, 1080821.

[4] Kim S., Wunsch D. C.: A GPU based Parallel Hierarchical Fuzzy ART

clustering. IJCNN IEEE, 2011, 2778–2782.

[5] Kohonen T.: Self Organization and Associative Memory: Third Edition.

Springer-Verlag, New York, 1989.

[6] Kovtun V., Izonin I.: Study of the Operation Process of the E-Commerce

Oriented Ecosystem of 5Ge Base Station, Which Supports the Functioning of

Independent Virtual Network Segments. Journal of Theoretical

and Applied Electronic Commerce Research 16(7), 2021, 2883–2897.

[7] Kukharchuk V. V. et al.: Features of the angular speed dynamic measurements

with the use of an encoder. Informatyka, Automatyka, Pomiary w Gospodarce i

Ochronie Srodowiska – IAPGOS 12(3), 2022, 20–26.

[8] Kukharchuk V. V. et al.: Information Conversion in Measuring Channels

with Optoelectronic Sensors. Sensors 22(1), 2022, 271.

[9] Kuusilinna K. et al.: Configurable parallel memory architecture for multimedia

computers, Journal of Systems Architecture 47(14–15), 2002, 1089–1115.

[10] Kvуetnyy R. et al.: Inverse correlation filters of objects features with optimized

regularization for image processing. Proc. SPIE 12476, 2022, 124760Q.

[11] Li Z., Li K., Xiao D., Yang L.: An Adaptive Parallel Hierarchical Clustering

Algorithm. Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T.

(eds): High Performance Computing and Communications. HPCC 2007. Lecture

Notes in Computer Science 4782. Springer, Berlin, Heidelberg 2007.

[12] Nere A., Lipasti M.: Optimizing Hierarchical Algorithms for GPGPUs. Master's

Project Report. University of Wisconsin Madison, 2010.

[13] Orazayeva A. et al.: Biomedical image segmentation method based on contour

preparation, Proc. SPIE 12476, 2022, 1247605.

[14] Osman A. A. M.: A Multi-Level WEB Based Parallel Processing System: A

Hierarchical Volunteer Computing Approach. World Academy of Science,

Engineering and Technology 13, 2006, 66–71.

[15] Pavlov S. V. et al.: The use of Bayesian methods in the task of localizing

the narcotic substances distribution. International Scientific and Technical

Conference on Computer Sciences and Information Technologies 2, 2019,

8929835, 60–63.

[16] Rajasekaran S.: Efficient Parallel Hierarchical Clustering Algorithms. IEEE

Transactions on Parallel and Distributed Systems 16(6), 2005, 497–502.

[17] Romanyuk S. A. et al.: Using lights in a volume-oriented rendering. Proc. SPIE

10445, 2017, 104450U.

[18] Rose K.: Deterministic Annealing, Clustering and Optimization. Ph.D. Thesis,

California Institute of Technology, Pasadena, 1991.

[19] Sobota B.: Parallel Hierarchical Model of Visualization Computing. Journal

of Information, Control and Management Systems 5(2), 2007, 345–350.

[20] Sudarshan R. Lee S. E.: A Parallel Hierarchical Solver for the Poisson Equation,

May 14, 2003,.

[21] Timchenko L. et al.: New methods of network modelling using parallel-

hierarchical networks for processing data and reducing erroneous calculation

risk. CEUR Workshop 2805, 2020, 201–212.

[22] Timchenko L. I., Kokriatskaia N. I., Pavlov S. V., Tverdomed V.: Method

of indicators forecasting of biomedical images using a parallel-hierarchical

network. Proc. of SPIE 11176, 2019, 111762Q.

[23] Timchenko L. I.: A multistage parallel-hierarchic network as a model

of a neuronlike computation scheme. Cybern Syst Anal. 36, 2000, 251–267.

[24] Tolegen G., Toleu A., Mamyrbayev O., Mussabayev R.: Neural Named Entity

Recognition for Kazakh. Lecture Notes in Computer Science 13452, 2023, 3–15.

[25] Tymkovych M. et al: Ice crystals microscopic images segmentation

based on active contours. IEEE 39th International Conference

on Electronics and Nanotechnology – ELNANO 2019, 493–496

[https://doi.org/10.1109/ELNANO.2019.8783332].

[26] Vasilevskyi O. et al.: A new approach to assessing the dynamic uncertainty

of measuring devices. Proc. of SPIE 10808, 2018, 108082E.

[27] Vysotska O. V., Nosov K.: An approach to determination of the criteria

of harmony of biological objects. Proc. of SPIE, 10808, 2018, 108083B

[28] Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical

Diagnostics II. Taylor & Francis Group, CRC Press, Balkema book, London

2019.

[29] Ybytayeva G. et al.: Creating a Thesaurus "Crime-Related Web Content" Based

on a Multilingual Corpus. CEUR Workshop Proceedings 3396, 2023, 77–87.

[30] Zeki S.: A Vision of the Brain. Blackwell Scientific Publications, Oxford 1993.

[31] Zhao X., Guo Y., Feng Z., Hu S.: Parallel Hierarchical Cross Entropy

Optimization for On-Chip Decap Budgeting. Design Automation Conference,

Anaheim, CA, USA, 2010, 843–848.

https://www.scopus.com/authid/detail.uri?authorId=57105837600
https://www.scopus.com/record/display.uri?eid=2-s2.0-85148946386&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85148946386&origin=resultslist
https://www.scopus.com/sourceid/13715?origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=57191728399
https://www.scopus.com/record/display.uri?eid=2-s2.0-85139214042&origin=resultslist&sort=plf-f
https://www.scopus.com/record/display.uri?eid=2-s2.0-85139214042&origin=resultslist&sort=plf-f
https://www.scopus.com/authid/detail.uri?authorId=57207847503
https://www.scopus.com/record/display.uri?eid=2-s2.0-85077960540&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85077960540&origin=resultslist
https://www.spiedigitallibrary.org/profile/notfound?author=Sergii_Romanyuk
https://www.spiedigitallibrary.org/profile/notfound?author=Sergii_Romanyuk
https://www.scopus.com/authid/detail.uri?authorId=57193325956
https://www.scopus.com/authid/detail.uri?authorId=24074681000

52 IAPGOŚ 1/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

Prof. Leonid Timchenko

e-mail: tumchenko_li@gsuite.duit.edu.ua

Doctor of Technical Science, professor.

56 articles published in Scopus, 227 citations in 112

articles (h-index = 8).

https://orcid.org/0000-0001-5056-5913

Ph.D. Natalia Kokriatska

e-mail: nkokriatskaia@gmail.com

Ph.D., associate professor. 34 articles published

in Scopus, 119 citations in 82 articles (h-index = 7).

https://orcid.org/0000-0003-0090-3886

Ph.D. Volodymyr Tverdomed

e-mail: tverdomed@gsuite.duit.edu.ua

Ph.D., associate professor, Director of Kyiv Institute

of Railway Transport, State University of

Infrastructure and Technology, Ukraine.

13 articles published in Scopus, 13 citations in 16

articles (h-index = 3).

Research interests: development of methods

for diagnosing the technical condition and forecasting

the duration of operational work of railway track

elements and track devices.

https://orcid.org/0000-0002-0695-1304

Prof. Iryna Yu. Yepifanova

e-mail: yepifanova@vntu.edu.ua

Doctor of economic sciences, professor, Vice-rector

by science work, Faculty of Management

and Information Security of Vinnytsia National

Technical Unіversity, academician of the Academy

of Economic Sciences of Ukraine.

Scientific interests: financial support of innovative

activities of domestic enterprises, enterprise potential,

competitiveness, personnel management, digital

economy, energy saving.

https://orcid.org/0000-0002-0391-9026

Yurii Didenko

e-mail: didenk.y.v@gmail.com

Post-graduate student at State University of Infra-

structure and Technology.

Research interests: systems of artificial intelligence,

image processing systems.

https://orcid.org/0009-0008-1033-4238

Dmytro Zhuk

e-mail: zhuk_do@ukr.net

Post-graduate student at State University of Infra-

structure and Technology.

Research interests: systems of artificial intelligence,

image processing systems.

https://orcid.org/0000-0001-8951-5542

Maksym Kozyr

e-mail: jettab3@gmail.com

Ph.D. student. Artificial Intelligence Systems and

Telecommunication Technologies Department, State

University of Infrastructure and Technology, Ukraine.

Research interests: systems of artificial intelligence,

image processing systems.

https://orcid.org/0009-0007-2564-6552

Ph.D. Iryna Shakhina

e-mail: rom.shahin@gmail.com

Ph.D. (in Pedagogy), associate professor at the

Department of Innovation and Information

Technologies in Education Vinnytsia Mykhailo

Kotsiubynskyi State Pedagogical University,

Vinnytsia, Ukraine.

Scientific direction: information technologies, image

processing, innovation in pedagogic

https://orcid.org/0000-0002-4318-6189

